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FOR INTEGRAL OPERATORS ON CONES WHEN 0<p<1
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ABSTRACT. We extend our recent results concerning norm inequalities on cones
to include the case when O <p < 1.

In this note, we let V' be a homogeneous cone in R". V defines a partial
ordering in R” in such a way that x <y y if and only if y — x € V. The cone
interval (a, b) is thus given by (a,b)={xe€V:a<y x <y b}. For x e V
we define Ay (x) = [, ,, dy.

Let G(V) denote the automorphism group of ¥ and f: V — R* bea
V-homogeneous function of order f. It is known (see [2, 5]) that if f(x) is
not identically 0 then f(x) = c(Ay(x))? forall x € V.

A *-function on V is a mapping x — x* such that x* = —gradlog¢y(x),
where ¢y (x) is the characteristic function of V. We have (see [1, 4]) that
(x*)* = x and the Jacobian determinant |9,x*| = cA;z(x), where ¢ is a
constant depending on V.

Let V* be the dual of ¥ and G(V — V*) be the group of linear transforms
mapping V onto V*. A homogeneous cone V is called a domain of positivity
if there is an S € G(V — V*) so that S is symmetric and positive definite. It
can be shown (see [4, 5]) that if V' is a domain of positivity then x <y y &
y* <ps X*.

We shall continue to consider integral operators of the form

Kf(x)= /V k(x, ) ) dy, xeV,

and
K1) = /V k(x,y)f(x)dx, yeV,

where f:V — R* and k:V xV — Rt is (V x V)-homogeneous of order
B ; that is,
k(Ax, Ay) = |A|Pk(x,y) VA€ GV).
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We have shown (see [5]) the following general theorem concerning the L7
boundedness of an integral operator on a cone:

Theorem 1. Let V be a homogeneous cone in R* and 1 < p < q < oo.
Assume that the kernel k(x,y) : V xV — R* is (V x V)-homogeneous of
order B. If, for some o,y € R, KA$(x) < oo and
/ ka/p(x y)A¥,“’+("+B+')"/"'(x) dx < 0o
v

for x,y eV, where 1/p+1/p' =1, then

( [ 8o e dx) Moo ( [ enadreosiriet dx)

In this note, we extend the preceding result to the case 0 < p < 1.

1/p

Theorem 2. Let V C R" be a homogeneous cone and 0 < p < 1. Assume
that k(x,y): V xV — R* is (V x V)-homogeneous of order —1. If there exist
a,y € R such that

(1) KA (x) < 00

and

) K*Ai‘p“"p/p')(y) <o

for x,y eV, then

(3) / ATP(x) (K f(x))Pdx > c/ fP(x)AP(x)dx,
v v

in the sense that if the integral on the left is finite, then the integral on the right
is also finite and the inequality holds.

Proof. We show first that, for some constant ¢ > 0,
(4) (Kf(X))P > c- K(f? - A%/ )(x) - A%/ (x).

In fact, since (1/p) > 1, we use Holder’s inequality to obtain that
[ ke ) 2018 () dy

- /V (k(x, ) @) - kP17 (x, )" (y) dy
< ( [ ko) dy),, : ( [t ey e dy) "
= (Kf(x)) - (KA (x))'.

Note that, because of assumption (1), KA$(x) is V-homogenous of order a,
and so we have KA$(x) =c-A$(x), for some constant c. Therefore,

/Vk(x, VP WA () dy < c- (Kf(x))y - AX P (x),

and then we have (4).
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Using (4), we have that
[ sk sy dx
1 4
>c- /V AP (x)(A% (x))P1P ( fV k(x,y)fp(y)A;“"/”’(y)dy> dx

= [ o o) ([ 87 ke, v) dx ) dy.

Note that, because of (2), K*Al” +@p/P) () is ¥-homogeneous of degree

7y —p + (ap/p'), and hence we have K*A},’,_”“L("”/”')(y) = cA{,_"J'(""’/”’)(y), for
some constant c¢. Therefore,

[ rome o ( [ s ok, y)dx) dy
Vv |4

=c /Vf”(y)AyV'”(y)dy,
and thus (3) holds.

Let Z = {x € V : |x| = 1}. Define go(V) = inf{a € R : [{A$(t)dt < o0}
and o(V)=max{-1, gp}. Itis known (see [2]) that if a > o(V), then
Jo.x A3 (»)dy < oo for x € V.

We have the following generalization of Hardy’s inequality in the case 0 <
p<l.

Theorem 3. Let V be a domain of positivity in R" and 0 <p < 1. If y >
(I+o(V*)Yp-1)+a(V)+p, then

[ ( / f(y)A;‘(y)dy) dxzec [ s dx.
|4 {x,00) v

Proof. Let k(x,y) =A;1(y)x(x,°o)(y) for x,y € V. Clearly, k(x,y) is (V x
V)-homogeneous of order —1. Let y be given so that y > (1 + o(V*)) x
(p-1)+a(V)+p. It follows that (p'/p)(y —a(V)—-p) < 1 +a(V*). Let «
be a number so that a < —1 — g (V*).

Since V' is a domain of positivity, x <y y & y* <p. x*. Note that Ay(y) =
c- A;I (y*) and 0.y =c- A;?(y*). So if we introduce a change of variable
z =y*, then we have that

KA (x) = /V AT ) Xix ooy (0)AS () dy

= [ spmdy=c[ sz
(x,00) (0, x*)

By the choice of a the last integral is finite for any x € V.
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We also have that
K87 ) = [ A7 0187 (0) 1 o ()
—850) [ A ax,
(0,y)
Note that since —(p’/p)(y —a(V)—p) > a and p’' <0, we have y > o(V) +

D — (ap/p’). Thus the last integral above is finite for any y € V.
By Theorem 2, we conclude that

14
/ AP (x) ( / f(y)A;‘(y)dy) dx>c / fP(X)AL P (x) dx.
4 {x,00) 14

Theorem 4. Let V be a domain of positivity in R® and 0 <p < 1. If y <
(I=a(M))p-1)—a(V*), then

P
y=p 1 > / v y=p
J a7 ( 5@ Lo f(y)a'y) dxzc [ feouy? () dx.
Proof. Let k(x, y) = Ay (x)x0,x () for x,y € V. Clearly, k(x,y) is (V x
V)-homogeneous of order —1. Let y be given so that y < (1 — a(V)) x
(p—1)—=0c(V*). It follows that (p’'/p)(-y+p—0(V*)—1)<a(V). Let a bea
number so that a > a(V). Then it follows that —y +p — (ap/p’) — 1 > a(V*).

Since V is a domain of positivity, x <y y & y* <p. x*. Note also that
Ay(x) = c- Ayl (x*) and 8x-x = c-Ay%(x*). So if we introduce a change of
variable z = x*, we then have that

K‘Ai'/—p+(ap/l’ )(y) — /I./A;_/I(X)X(O,x) (y)A},'/—p+(ap/P )(X) dx
_ / ALPHEI) =N 0y g — / ATH=plP)=1 () g7
(y,00) 0.5%)

Because —y+p — (ap/p’)— 1> a(V*), the last integral is finite for any y € V.
We also have that

KA3(x) = 47! (x) /(0 A5 )dy.

Because a > g(V), the integral above is finite for any x € V.
By Theorem 2, we conclude that

_ 1 ? _
/VA% P(x) (Ay(x) 00 f(}’)d}’) dx > C/yf”(x)A{, P(x)dx.
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