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Two-sided matching models were introduced in the

literature by Gale and Shapley in 1962, as a rare instance of

an exercise in “pure” mathematics (combinatorial theory of

ordered sets).

Along the last two decades, the two-sided matching

models have moved from being an interesting set of pure

mathematical models to being an important part of the

emerging field of market design. Through these models a variety

of markets has reached a better understanding, what has

considerably contributed to the organization of such markets.

TWO-SIDED MATCHING MARKETS.
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Firm- worker 

labor markets

cooperative game

structure

competitive market

game structure

buyer-seller  markets
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How does the competitive equilibrium concept, closely 

related to the traditional concept of equilibrium from

standard microeconomic theory, compare with the

cooperative equilibrium concept? 
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If b and q become partners, they undertake an activity

together that produces a gain vbq, which is split between 

them the way both agree: 

ubq0  for  b and  wbq=vbq-ubq0 for  q.

The game is described by  (B,Q,v,r,s).

B, Q – sets of players

A player of a set may form more than one partnership with

different players of the other set.

Quota –r(b), s(q) - maximum number of partners.

MANY-TO-MANY MATCHING GAME WITH ADDITIVELY SEPARABLE UTILITIES
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{wbq, wb’q} {wbq’, wb’q’} {wb’q”, wb”q”} {wb”q''', w0q’’’}

q q’ q” q’’’

:

b b’ b” 0

{ubq, ubq’} {ub’q, ub’q’, ub’q”} {ub”q”, ub”q’’’}

ubq+ wbq= vbq ubq0, wbq0

Outcome =matching + payoffs  ubq's,  wbq's. 

Assignment Game of Shapley and Shubik (1972)  - a special case
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INTERPRETATION 1: B= set of firms; Q= set of workers.

quota of a firm: the maximum number of workers it can hire;

quota of a worker: the maximum number of jobs he/she can take.

vbq: productivity of worker q in firm b.

INTERPRETATION 2: B= set of buyers;  Q= set of sellers.

Each seller owns a set of identical objects; each buyer is interested in a set 

of objects of different sellers; 

quota of a buyer: number of objects he is allowed to acquire; 

quota of a seller: number of identical objects he owns. 

vbq: maximum amount of money buyer  b considers to pay for an object of 

seller   q.

{wbq,wb’q} {wbq,wb`q}

q q’ q” q   q    q’   q’    q”   q”

: :

b             b’                b”                      b      b’      b”

INTERPRETATION 1                              INTERPRETATION 2

feasible matching                                   feasible allocation
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(u,w; ) is unstable:    2= ub'0 + wbq< vb'q=3

EQUILIBRIUM CONCEPTS

1. Labor market

Setwise-stability concept  pairwise-stability concept

(Sotomayor, 1999)

The outcome  x=(u,w;)

will be called unstable if 

there are agents b and q

that do not form a 

partnership at x, but that can 

increase their total payoff, 

becoming partners and at 

the same time keeping 

and/or leaving some of their 

old partners, if necessary, in 

order to remain within their 

quotas. The outcome  

(u,w;) is stable if it is not 

unstable.

{2}                 {1, 2}                           

q q' 0

:

b                  b'

{1, 1}                {1,0}              vb’q=3
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For some markets, instabilities can be restricted

to pairs of agents of opposite sides and then

setwise-stability is equivalent to pairwise-

stability. For some other markets the setwise-

stability concept is given by corewise-stability.

Sotomayor (1999) proved that setwise-stability is

a new cooperative equilibrim concept, stronger

than pairwise-stability plus corewise-stability.

The main point however is that any stable

outcome must be in the core.
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Shapley and Shubik proved that the core of the one-to-one buyer-seller 

market coincides with the set of stable payoffs.

Stability 

concept

≠ 

Core 

concept

Example 1. (a core payoff that is not stable)

Firms: b, b'; quotas of both firms: 2.

Workers: q, q'; quota of q: 1; quota of q': 2.

Dummy worker: 0

q q' 0

v: b 3 2 0

b' 3 3 0

{3}        {1, 2}                           

q q‘ 0

: .

b           b'

{0, 1}     {1,0}

It  is stable

{2}        {1, 2}                           

q q‘ 0

: .

b           b'

{1, 1}     {1,0}

It  is unstable

However both outcomes are in the

core!
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EQUILIBRIUM CONCEPTS

2. Buyer-seller market: competitive equilibrium

wbq wb’q wbq’ wb’q’ wb’q” wb”q’’’

q q q’ q’ q” q’’’

:

b                  b’ b” 

vbq – wbq > vbq’ – wbq’ = vbq” -wb’q” > vbq’’’ - wq’’’

Buyer b, with quota 2, wants to buy any of the

sets

{q,q’} and {q,q”}.
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EQUILIBRIUM CONCEPTS

2. Buyer-seller market: competitive equilibrium

The outcome (u,w;) is a competitive 

equilibrium outcome if   

  is a feasible matching;

 each  active buyer receives one of 

her demanded sets of items at prices  

w (i.e. a set of items that, given prices, 

maximizes her additive utility payoff);

 every inactive buyer has zero 

payoff;  every unsold object has zero 

price.
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wbq wb’q wbq’ wb’q’ wb’q” wb”q’’’

q q q’ q’ q” q’’’

:

b                  b’ b” 

{ubq, ubq’} {ub’q, ub’q’,ub’q”} {ub”q’’’}

In fact, if  a seller has two identical objects,  q  and  q',  and  pq>pq' for some price 

vector  p,  then no buyer  b  will demand, at prices  p, a set  S of objects that 

contains object  q.  This is because, by replacing  q with  q'  in  S, b  gets a more 

preferable set of objects. But then,  q will remain unsold with a positive price.

= =

Unlike the cooperative model, every seller sells all of his items at the 

same price.
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PARTIAL ORDER RELATION

It is implied by Theorem 1 of Sotomayor (1999) that we can represent

the array of individual stable payoffs of a player as a vector in an

Euclidean space, whose dimension is the quota of the given player.

This representation is 

independent of the matching. 

For example,  if player  b has 

quota  5  and forms 

partnerships with  q1,  q2,  q3,  

q4 and  q5 under some 

stable outcome  (u,w;), then 

the array of payoffs of  b is 

given by 

{ub1, ub2, ub3, ub4, ub5}.

Now, suppose  ’  is another matching that is compatible with 

some other stable payoff: 

q1 q2 q3 q4   q5              q1 q2 q6 q7 q8

:                                              ’:

b                                             b 

{ub1, ub2, ub3, ub4, ub5}                 {u’ b1, u’ b2, u’ b6, u’ b7, u’ b8}

ub3 = ub4 = ub5=ub(min)≡λ.       u’b6 = u’b7 = u’b8=u’b(min)≡λ’.

ub= (ub1, ub2, λ , λ , λ)              u’b= (u’b1, u’b2, λ’ , λ’ , λ’). 
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Therefore, by ordering the players in  B (respectively, Q),  we can 

immerse the stable payoffs of these players in an Euclidean space, 

whose dimension is the sum of the quotas of all players in  B  

(respectively,  Q).  Then, the natural partial order relation of this 

Euclidean space induces the partial order relation 

B (respectively  Q) 

in the set of stable payoffs. 

(u,w)B(u',w') if and only if  ub  u’b ,  for all bB. 

(u,w)Q(u',w') if and only if  wq  w’q ,  for all qQ. 

Observe that  B

(respectively  Q)  does 

not correspond to the 

preferences of the buyers 

(respectively, sellers).
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P1. The set 

of stable 

payoffs is a

non-empty 

convex and 

complete 

lattice under 

B and  Q.

PROPERTIES OF THE STABLE PAYOFFS

(Sotomayor, 1992, 1999)

P2. There exist 

one and only 

one B-optimal 

stable payoff

and one and 

only one Q-

optimal stable 

payoff.

There exist one and only one maximal element and one 

and only one minimal element in the set of stable payoffs. 
Although the preferences of the players do not define the 

partial orders  B and  Q,  the maximal element under B

(respectively , Q)  is the  B-optimal (respectively  Q-optimal) 

stable payoff. The best for one side is the worst for the other 

side.
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Unlike the one-to-one case, the set of stable payoffs and the set of 

competitive equilibrium payoffs are distinct: 

The set of competitive equilibrium payoffs can be obtained by 

“shrinking” the set of stable payoffs through an isotone function  f. 

For each stable outcome,  f reduces the total payoff to every seller by 

reducing the price of each of his items to his minimal individual payoff,

to create a competitive equilibrium.

ALGEBRAIC STRUCTURE OF THE SET OF COMPETITIVE EQUILIBRIUM PAYOFFS

The competitive equilibrium payoffs are exactly the fixed points of  f.

However, the function f is not the identical map, so there are 

stable  payoffs that are not fixed points, and so there are stable 

payoffs that are not competitive. Hence the set of competitive 

equilibrium payoffs is a proper subset of the set of stable payoffs.
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Teorema (Sotomayor, 2006). The set of competitive 

equilibrium payoffs is a

non-empty complete sub-lattice of the set of stable payoffs. 

In addition, it reflects the same kind of polarization of

interests that characterizes the stable payoffs. 

Then, the B-optimal and the Q-optimal competitive equilibrium

payoffs exist.
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Theorem  (Tarski, 1955). Let  E  be a complete lattice 

with respect to some partial order  ,  and let  f  be an isotone 

function from  E  to  E.  Then the set of fixed points of  f  

is non-empty and is itself a complete lattice with respect to the

partial order  .
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Theorem (Sotomayor, 2006) The function f maps the extreme

points of the lattice of stable payoffs to the corresponding

extreme points of the lattice of competitive equilibrium

payoffs. In addition, the B-optimal stable payoff is equal to the

B-optimal competitive equilibrium payoff.

f: {stable payoffs}                 {stable payoffs}

B-optimal stable payoff B-optimal competitive equilibrium            

payoff

Q-optimal stable payoff Q-optimal competitive equilibrium 

payoff.
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EXAMPLE.

Wq’ = wbq’ + wb’q’

5 P'

4 P

3 (2,3)

C(W)

O

2 (3,0) Wq=wbq

C(W) – set of the sellers total

payoffs which can be derived

from any core payoff.

OP' – set of sellers total payoffs

which can be derived from any

stable payoff.

OP- set of sellers total payoffs

which can be derived from any

competitive equilibrium price.

The set of sellers core payoffs is bigger than the set of  sellers stable payoffs 

and is not a lattice.

The best core payoff for players in B

is not the worst core payoff for

players in Q.

Indeed, there is no minimum core

payoff for the sellers.

The Q-optimal stable payoff is not a

competitive equilibrium payoff:

P’=(3,5) corresponds to (wq= 3; wbq’=2,

wb’q’=3).
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P1. A 

matching is 

compatible 

with a 

stable 

payoff if 

and only if 

it is 

optimal.

P2.  If  (u,w)  

and  (u',w')  

are stable 

payoffs then

(u,w) B

(u',w') if 

and only if  

(u’,w’) Q

(u,w). 

P3. The set 

of stable 

payoffs is a

non-empty 

convex and 

complete 

lattice under 

B and  Q.

PROPERTIES OF THE STABLE PAYOFFS

(Sotomayor, 1992, 1999)

P4. There exist 

one and only 

one B-optimal 

stable payoff

and one and 

only one Q-

optimal stable 

payoff.

If a seller has some unsold object under a stable 

outcome, then one of his individual payoffs will be zero 

under any other such outcome.

There is a conflict of interests between the two sides of 

the market with respect to two comparable stable 

payoffs. 

There exist one and only one maximal element and one 

and only one minimal element in the set of stable payoffs. 

Although the preferences of the players do not define the 

partial orders  B and  Q,  the maximal element under B

(respectively , Q)  is the  B-optimal (respectively  Q-optimal) 

stable payoff. 
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Let the game in coalitional function form  (N,v)  such that  N=BQ  and 

(a) v()=0, (b) v(S)=0  if  SB  or  SQ,  (c) v(S)≤v(T)  if  ST.                                                                                 

Let  r(b)  be the smallest integer number such that, for all sets  SQ  with  |S|≥r(b), 

(d) v(b S)=max{ v(b S’);  S’  S   and   |S’|=r(b) }. 

(c)  and  (d)  imply that for all sets  SQ  with  |S|≥r(b), 

v(b S)=v(b S’)  for some  S’  S   with   |S’|=r(b) 

Analogously define  s(q). 

For every coalition  S=RT,  RB  and  TQ, define an  S-feasible assignment  x as a 

|R|x|T|-matrix of zeros and ones such that  

∑qT xbq≤r(b) and ∑bR xbq ≤s(q). 

The  S-feasible assignment  x  is optimal for  S  if 

∑(b,q)RxT xbq  ≥ ∑(b,q)RxT x’bq for every  S-feasible assignment  x.

For  S=RT, 

(e) v(RT) = ∑(b,q)RxT xbq.v(b,q),  where  x  is an S-feasible assignment that is optimal 

for  S. 

Consequently, for all SQ  with  |S|≤r(b) and for all SB  with  |S|≤s(q), 

v(b S) = ∑qS v(b,q)   and v(q S) = ∑bS v(b,q).  

t
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Example. q1 q2 q3 {q1,q2} {q1,q3} {q2,q3} {q1,q2,q3}

b1 3 2 1 5 4 3 5 r(b1)=2

b2 2 1 2 3 4 3 5 r(b2)=3

{b1,b2} 5 2 2 7 7 4 9

s(q1)=2 s(q2)=1 s(q3)=1

v(b1,b2,q1,q2)=max{v(b1,q1,q2)+v(b2,q1), v(b1,q1)+v(b2,q1,q2), v(b1,q2)+v(b2,q1)}=7

The game (N,v) defines the many-to-many Assignment game (B,Q,r,s,(vbq)),

and vice-versa, where (vbq) is the mxn-matrix of the numbers v(b,q)’s.


