

Abstract

The marine radiocarbon reservoir effect is an offset of 14C age between terrestrial and marine samples of the same calendar age due to delay in atmosphere-ocean exchange of CO2 and dilution with older deep waters. Currently, the global average marine reservoir age of surface waters is ~400 radiocarbon years. However, this value can differ regionally based upon climate, ocean circulation, and coastal morphology. Accurate quantification of the local marine reservoir effect is crucial in determining precise chronologies in paleoenvironmental studies that rely heavily on marine samples. This also requires samples collected live prior to the onset of extensive nuclear testing in the 1950s, which greatly increased atmospheric radiocarbon. Regional marine reservoir offset values (ΔR) are poorly known for the U.S. mid-Atlantic. Currently, there are only three specimens from New Jersey to North Carolina for which ΔR values have been calculated. The average marine reservoir correction for these samples is $\Delta R = 142 \pm 34$ years. To extend this database, we obtained 19 live-collected marine mollusks spanning coastal areas from New York to North Carolina from museum collections and submitted them for AMS radiocarbon dating. The calibrated ¹⁴C ages will be compared to the date of collection, ranging from 1884 to 1945, in order to determine ΔR values for each specimen.

Background & Methods

What is the marine reservoir effect?

The marine reservoir effect is an offset in radiocarbon age between terrestrial and marine samples. The slow mixing of older deep water and younger surface water results in carbon deficiency in the ocean in relation to the atmosphere. Thus, organisms of terrestrial origin are more carbon-rich than their marine counterparts.

How does it vary regionally?

- Regional variation of the marine reservoir effect is heavily dependent on local ocean currents and climate.
- Warmer surface currents tend to have reduced reservoir ages, and are considered **younger**.

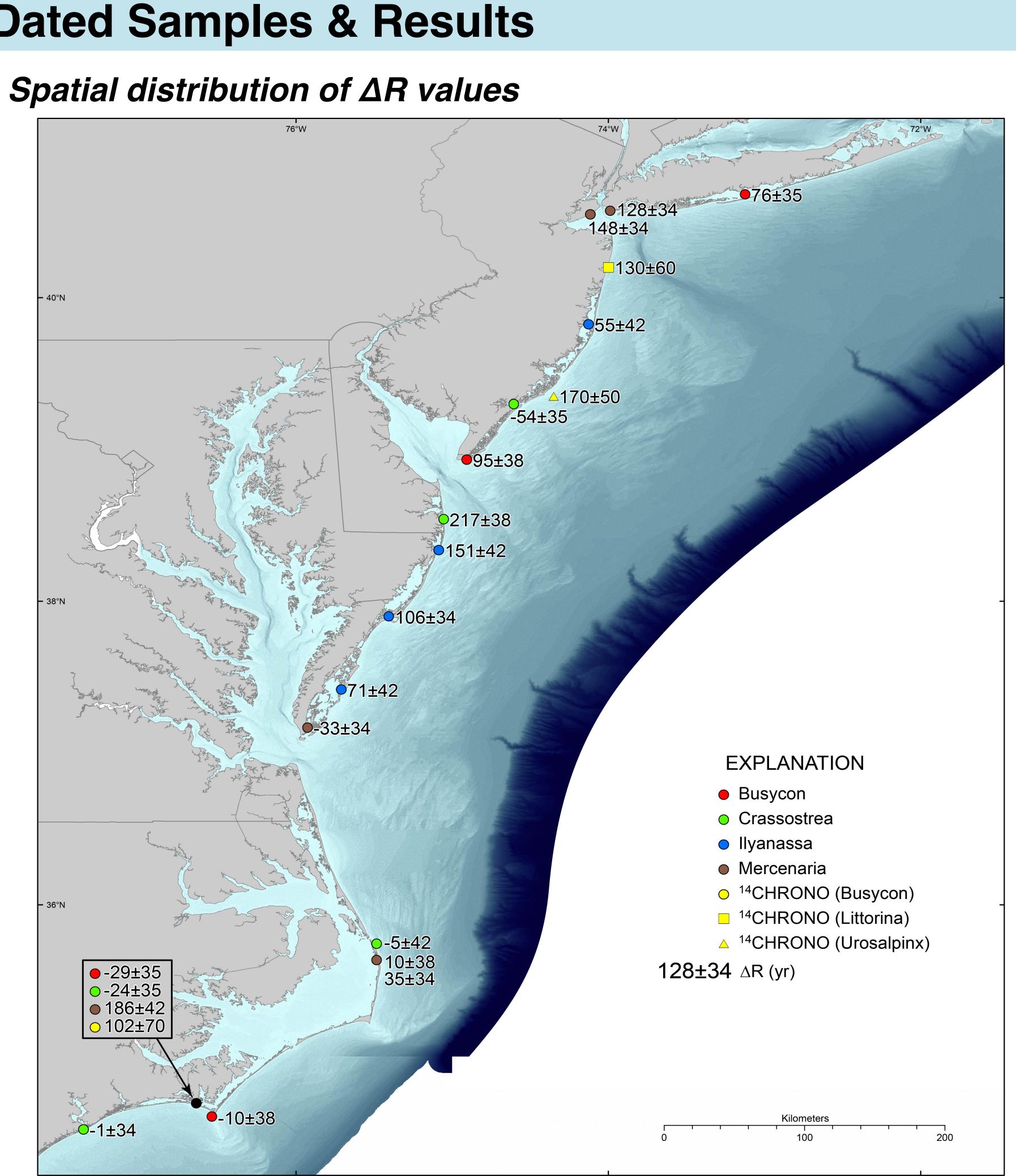
- **Regions of upwelling** present greater ΔR values due to the introduction of colder, deeper, older waters.

What data exists for the Mid-Atlantic?

- From ¹⁴CHRONO Database:

Species	Location	Lat.	Long.	ΔR	(+/-)	
Busycon sp.	Beaufort, NC	37°40'54.95"N	76°40'32.16"W	102	70	Γ
Littorina littorea	Shark River, NJ	37°40'54.97"N	74°0'0.00"W	130	60	N
Urosalpinx cinerea	Atlantic City, NJ	37°33'16.33"N	74°20'60.00"W	170	50	N

How is the marine reservoir effect measured?


- Collect samples from marine species with known date and location of **collection** from museum archives
 - Must be **pre-1950** due to introduction of "bomb-carbon" through atmospheric nuclear weapons testing which almost doubled atmospheric $14\mathbf{C}$
 - Assume that samples are **collected live**
- Determine **radiocarbon ages** of samples through AMS radiocarbon data. Samples in this study processed at NOSAMS
- Determine **model age** by converting actual age in BP to age in radiocarbon years using **MARINE09** calibration curve.
- Compare **modeled age** of sample to **radiocarbon age** in radiocarbon years.
- The **difference** between **the radiocarbon age and the model age** yields the marine reservoir correction, or ΔR value in radiocarbon years

Quantifying the marine radiocarbon reservoir effect for U.S. mid-Atlantic coastal waters

Claire Masteller¹ (cmast@sas.upenn.edu), E. Robert Thieler², Benjamin Horton¹, Candace Grand Pre³

I. Earth & Environmental Science, University of Pennsylvania, 2. USGS, Woods Hole, MA, 3. Earth & Environment, Franklin & Marshall College

Dated Samples & Results

Radiocarbon data and calculated ΔR values

Sample Number	Species	Location	Lat.	Long.	Coll. Year	¹⁴ C Age	(+/-)	δ ¹³ C	Model Age	(+/-)	ΔR	(+/)
ERT-2011-023	Busycotypus canaliculatus	Great South Bay, NY	40°40'44.23"N	73° 7'23.50"W	1949	545	25	0.7	469	24	76	35
ERT-2011-018	Mercenaria mercenaria	Coney Island, NY	40°34'15.90"N	73°59'11.31"W	1936	585	25	0.65	457	23	128	34
ERT-2011-019	Mercenaria mercenaria	Staten Island, NY	40°32'52.30"N	74° 6'51.09"W	1934	605	25	-0.02	457	23	148	34
ERT-2011-027	Ilyanassa obsoleta	Barnegat, NJ	39°42'28.40"N	74° 7'48.42"W	1938	515	35	1.43	460	23	55	42
ERT-2011-021	Crassostrea virginica	Great Egg Harbor, NJ	39°18'12.72"N	74°31'59.04"W	1884	415	25	-0.04	469	24	-54	35
ERT-2011-024	Busycotypus canaliculatus	Cape May, NJ	38°55'54.86"N	74°54'20.09"W	1892	560	30	0.45	465	23	95	38
ERT-2011-022	Crassostrea virginica	Bethany Beach, DE	38°32'23.49"N	75° 3'12.89"W	1914	665	30	-2.01	448	23	217	38
ERT-2011-025	Ilyanassa obsoleta	Ocean City, MD	38°20'11.41"N	75° 5'5.66"W	1945	615	35	1.74	464	23	151	42
ERT-2011-026	Ilyanassa obsoleta	Chincoteague, VA	37°53'56.20"N	75°24'16.21"W	1932	560	25	2.08	454	23	106	34
ERT-2011-020	Ilyanassa obsoleta	Hog Island, VA	37°24'46.57"N	75°41'35.87"W	1884	540	35	1.58	469	24	71	42
ERT-2011-017	Mercenaria mercenaria	Magothy Bay, VA	37° 7'1.50"N	75°54'25.01"W	1916	425	25	0.71	458	23	-33	34
ERT-2011-003	Crassostrea virginica	Pea Island, NC	35°41'1.78"N	75°28'57.14"W	1938	455	35	-1.9	460	23	-5	42
ERT-2011-006	Mercenaria mercenaria	Pea Island, NC	35°41'1.78"N	75°28'57.14"W	1938	470	30	0.705	460	23	10	38
ERT-2011-009	Mercenaria mercenaria	Pea Island, NC	35°41'1.78"N	75°28'57.14"W	1938	495	25	1.27	460	23	35	34
ERT-2011-002	Crassostrea virginica	Beaufort, NC	34°41'34.40"N	76°38'16.47"W	1884	445	25	0.11	469	24	-24	35
ERT-2011-004	Mercenaria mercenaria	Beaufort, NC	34°41'34.40"N	76°38'16.47"W	1887	655	35	0.75	469	24	186	42
ERT-2011-013	Busycotypus canaliculatus	Beaufort, NC	34°41'34.40"N	76°38'16.47"W	1884	440	25	1.44	469	24	-29	35
ERT-2011-014	Busycotypus canaliculatus	Cape Lookout, NC	34°36'19.09"N	76°32'11.93"W	1939	450	30	0.58	460	23	-10	38
ERT-2011-001	Crassostrea virginica	Sneads Ferry, NC	34° 31.199'N	77°21'37.25"W	1926	450	25	-1.19	451	23	-1	34

Reference D.H. Thomas, (2008) McNeely et al., (2006) McNeely et al., (2006)

Discussion **Potential Sources of Error:**

$-\delta^{13}C$

- Offers insight regarding the for a sample
- Purely marine samples are (Southon et al. 2002)
- δ^{13} C was used to aid in understanding the local

B. canaliculatus

Regional Variation:


We see clear regional variations that can be divided into three sub- 40.5 regions:

- south and east. We speculate reflect influx and subsequent mixing and dispersal of plume.
- Bay and decline along the Delmarva coast, similar to observations along the New influx of freshwater from the moves south as a coastallytrapped plume. average age) from the Gulf Stream.

Right: Satellite temperature image of the Gulf Stream passing along the coast of North Carolina. Warmer colors correspond to higher water temperature. Our results suggest that the Gulf Stream influences ΔR values along the NC coast, making them similar to the global ocean (i.e., $\Delta R \sim 0$ yr).

Smithsonian NMNH collections.

amount of **freshwater influence**

assumed to have a value of zero interpreting the ΔR values and environmental conditions

– Species Selection

- Ideal species for a true marine reservoir correction are subtidal filter feeders such as Mercenaria mercenaria

Sea Level Research

University of Pennsylvania

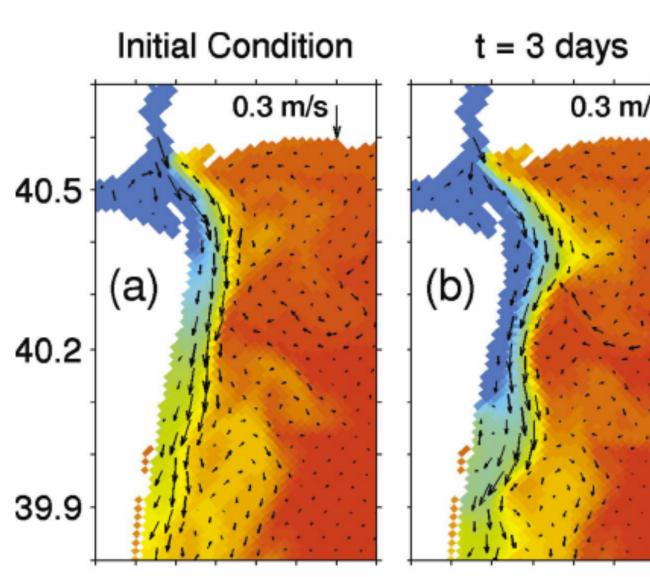
- Ilyanassa obsoleta is a mud snail that mostly inhabits estuaries. Since it is not a purely marine species,
- **freshwater influx** may influence ΔR values – however, can provide a correction for estuarine areas

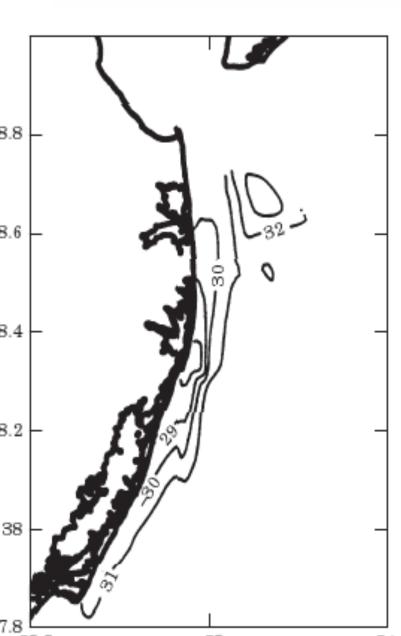
Ilvanassa obsoleta

- New York & New Jersey: ΔR values are high near the mouth of the Hudson and decline to the freshwater from the Hudson River

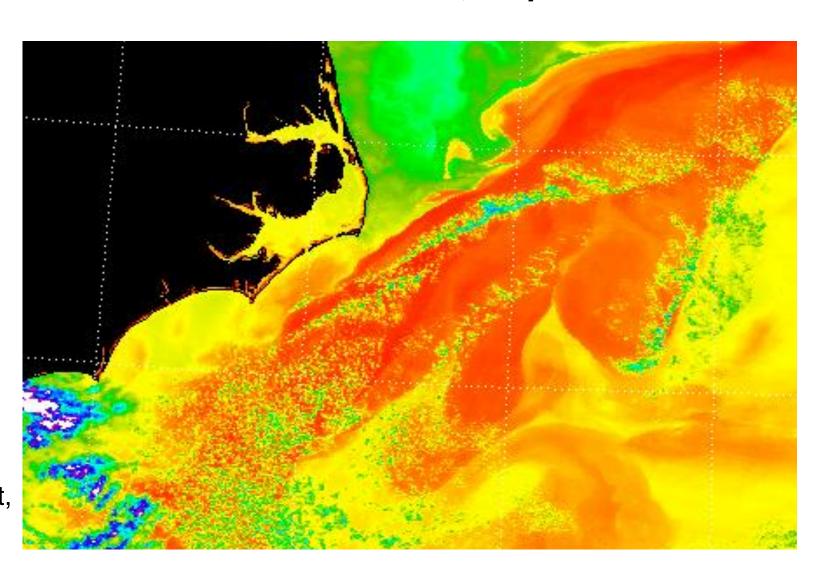
Delmarva peninsula: ΔR values are high at the mouth of Delaware Jersey coast. We speculate that the Delaware River introduces ¹⁴Cdepleted water to the coast as it

North Carolina: Low ΔR values that we speculate reflect influx of relatively ¹⁴C-rich surface waters (i.e., close to the ~ 400 year global


We gratefully acknowledge the Greg and Susan Walker Endowment for partial funding of this research. Dr. J. Wehmiller aided in sample preparation. Dr. J. Harasewych provided access to



Mercenaria mercenaria


0.3 m/s

Above: Model results showin Hudson river outflow behaving as a trapped coastal plume along the New Jersey coast. Our ΔR results appear t track the southward decline in fluvial sourced carbon as well as the eastward limit of this plume. [Choi and Wilkin 20071.

Left: Map of surface salinity expression of the Delaware Coasta Current (DCC) along the Delmarva coast during a field survey. Like the Hudson, the DCC is a coastally-trapped coastal plume under common oceanographic conditions. Similar to our ΔR results along the New Jersey coast, our results along the Delmarva coast appear to reflect the southward decline in fluvial-sourced carbon as the plume dissipates. [Epifanio and ^{LD} Garvine, 2001]

