Why Use Hyperspectral Imagery?

by Peg Shippert

Introduction

While multispectral images have

been in regular use since the 1970s,

the widespread use of hyperspectral

images is a relatively recent trend.

Hyperspectral imaging, also known as im-

aging spectrometry, is now a reasonably fa-

miliar concept in the world of remote sensing.

However, for many remote sensing specialists who

have not yet had the opportunity to use hyperspectral imagery in

their work, the benefits of hyperspectral imagery may still be vague.

Through this article, I hope your interest in this promising technol-

ogy will be sparked as you learn about the fascinating detail available

in hyperspectral imagery; detailed information that is being har-

vested by an increasing number of investigators. Their stories will

likely persuade you that hyperspectral imagery is another power
tool that belongs in your own remote sensing toolbox.

What is Hyperspectral Imagery?

Hyperspectral images are spectrally overdetermined; they provide
ample spectral information to identify and distinguish between spec-
trally similar (but unique) materials. Consequently, hyperspectral
imagery provides the potential for more accurate and detailed infor-
mation extraction than is possible with other types of remotely
sensed data.

Most multispectral imagers (e.g. Landsat, SPOT, AVHRR) measure
reflectance of Earth’s surface material at a few wide wavelength
bands separated by spectral segments where no measurements are
taken. In contrast, most hyperspectral sensors measure
reflected radiation as a series of narrow and contiguous
wavelength bands. When the spectrum for a single pixel in
hyperspectral imagery is displayed (Figure 1), it appears
much like a spectrum measured in a spectroscopy labora-
tory. This type of detailed pixel spectrum can provide much
more information about a surface than is available in a tra-
ditional multispectral pixel spectrum.

Although most hyperspectral sensors measure hundreds

of bands, it is not the number of measured wavelength
bands that qualifies a sensor as hyperspectral but rather
the narrowness and contiguous nature of the measurements.
A hyperspectral sensor is one that oversamples the phe-
nomena of interest. Because of this, the number and spac-
ing of bands required to qualify a sensor as hyperspectral
somewhat depends on the spectral characteristics of the
materials under study. In general, hyperspectral sensors
measure bands at 10 to 20 nm intervals.

What Information Does
Hyperspectral Imagery Provide?

The task of distinguishing between spectrally similar materi-
als clearly illustrates the benefits of hyperspectral remote
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sensing. Figure 1 shows the spectra of kaolinite and alunite as mea-
sured by NASA’s hyperspectral AVIRIS sensor. Both minerals have
absorption features at about 2.2 pm. However, kaolinite displays a
double dip in the absorption feature, while alunite shows only a single
dip. The multispectral Landsat ETM sensor measures this entire spec-
tral region with one channel, and therefore does not provide sufficient
detail to distinguish the kaolinite double dip from the alunite single
dip. In contrast, many hyperspectral sensors measure the 2.2 pm
region with several narrow contiguous bands. These hyperspectral
sensors collect enough spectral detail to see the kaolinite double dip,
distinguishing between the two very similar minerals. Analogous
work using hyperspectral imagery has also been performed to distin-
guish vegetation species, vegetation condition, construction materi-
als, types of camouflage, and other spectrally similar materials.

How is Hyperspectral Imagery Analyzed?

Standard multispectral image processing techniques were generally
developed to classify multispectral images into broad categories of
surficial material or surface condition. Hyperspectral imagery pro-
vides an opportunity for more detailed image analysis. To fulfill this
potential, new image processing techniques have been developed.
Boardman (1993) and Boardman et al. (1995) were among the first to
develop and commercialize a sequence of algorithms specifically
designed to extract detailed information from hyperspectral imag-
ery. These tools, applicable to a variety of applications, distinguish
and identify the unique materials present in the scene and map them
throughout the image. They remain the most widely used image

analysis tools for working with hyperspectral imagery.
continued on page 379

Figure 1. Pixel spectra from an AVIRIS hyperspectral image. The red spectrum is
from a pixel filled with the mineral Alunite, and the white spectrum is from a

pixel filled with the mineral Kaolinite.
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by Clark et al. (1995, 2003) for the U.S. Geological Survey. Tetracorder
has been used to identify and map surface minerals, water, snow,
vegetation, pollution, human-made objects and other phenomena
through the analysis of hyperspectral data (Clark et al. 1995, 2003).
Another algorithm for identifying the unique materials within a
hyperspectral scene, known as Sequential Maximum Angle Convex
Cone (SMACCQC), has recently been developed by Spectral Sciences
Inc. (Gruninger et al. 2001). This approach will soon be included in
commercial software. Moreover, recent publications have suggested
algorithms specifically designed for studying vegetation with
hyperspectral imagery (e.g. Asner and Lobell, 2000; Blackburn, 1998).
Most commercial image processing software packages now include
tools for analyzing hyperspectral imagery. These tools are being
continually refined, expanded and simplified.

Applications of Hyperspectral Remote
Sensing

Projects utilizing hyperspectral imagery usually have one of the fol-
lowing objectives:

® target detection

® material mapping

® material identification

® mapping details of surface properties
In these cases, the additional information provided by hyperspectral
imagery often provides results not possible with multispectral or other
types of imagery.

In target detection projects, investigators are generally trying to
locate known target materials. This can sometimes involve distin-
guishing targets from very similar backgrounds, or locating examples
of targets that are smaller than the nominal pixel size. For example,
hyperspectral imagery has been used by military personnel to de-
tect military vehicles under partial vegetation canopy, and to detect
small military objects within relatively larger pixels. Vegetation sci-
entists have also successfully used hyperspectral imagery to iden-
tify vegetation species (Cochrane, 2000), and to detect vegetation
stress and disease (e.g. Merton, 1999).

Another interesting example of a target detection project is Jim
Ellis” work using hyperspectral imagery to detect oil seeps and oil-
impacted soils (Ellis, 2003). The spectral characteristics of oil seeps
and oil-impacted soils are generally too subtle to be detected by
traditional multispectral sensors. In addition, oil seeps are limited in
areal extent, and are usually mixed on the surface with other mate-
rials. Under these difficult conditions, hyperspectral sensors have
sufficient spectral resolution to identify even small amounts of hy-
drocarbon-based material through their spectral signatures.

In a material identification project, investigators do not know which
materials are present in the scene. Under this scenario, the analysis
is designed to use hyperspectral imagery for identifying the un-
known materials. This analysis may also be accompanied by material
mapping in which the identified materials are geographically located
throughout the image. Material mapping is also performed with
hyperspectral imagery when the materials present in the scene are
known beforehand. For example, hyperspectral images have been
used by geologists for mapping economically interesting minerals
(e.g. Clark et al. 1995, 2003). They have also been used to map heavy
metals and other toxic wastes within mine tailings in active and
historic mining districts including superfund sites.
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Hyperspectral images are sometimes referred to as “image cubes”
because they have a large spectral dimension as well as the two
spatial dimensions. This cube shows an AVIRIS hyperspectral image of
the Leadyville mining district in Colorado, with the spectral dimen-
sion shown as the top and right faces of the cube. The front of the
cube is a true color composite, with areas containing secondary
minerals from acid mine drainage highlighted in red, orange and

yellow. This cube was processed using ENVI.

A project in Sydney, Australia provides another example of mate-
rial identification and mapping. In this application, hyperspectral
imagery was used to identify roofs susceptible to hail damage
(Bhaskaran et al. 2001). The spectral differences in roofing materials
with different hailstone resistances are very subtle, precluding the
use of multispectral sensors for their identification. However, imag-
ery from the hyperspectral Hymap sensor was used to detect the
overall shape of the spectral curve and the position and strength of
distinguishing absorption features in these roofing materials. These
spectral characteristics were used to identify locations that were
more susceptible to hail damage.

Hyperspectral imagery has also been used to study details of
surface properties that are undetectable using other types of imag-
ery. For example, hyperspectral images have been used to detect
soil properties including moisture, organic content, and salinity (e.g.
Ben-Dor, 2000) as well as study plant canopy chemistry (e.g. Aber

and Martin, 1995).
continued on page 380
continued from page 379
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continued from page 379

Special Issues When Working With
Hyperspectral Imagery

Although the potential of hyperspectral remote sensing is exciting,
there are special issues that arise with this unique type of imagery.
For example, many hyperspectral analysis algorithms require accu-
rate atmospheric corrections to be performed. To meet this need,
sophisticated atmospheric correction algorithms have been devel-
oped to calculate concentrations of atmospheric gases directly from
the detailed spectral information contained in the imagery itself
without additional ancillary data. These corrections can be performed
separately for each pixel because each pixel has a detailed spectrum
associated with it. Several of these atmospheric correction algo-
rithms are available within commercial image processing software.
However, several image analysis algorithms have been successfully
used with uncorrected imagery. For example, the BandMax tool owned
by the Galileo Group has been widely used with radiance imagery.

Many hyperspectral analysis approaches require the use of known
material spectra. Known spectra can guide spectral classifications or
define targets to use in spectral image analysis. Some investigators
collect spectral libraries for materials in their field sites as part of
every project. Several high quality spectral libraries are also publicly
available. Some investigators derive spectral libraries from the im-
age to be analyzed using specially designed algorithms available in
commercial software. This approach ensures that the spectra will
always be exactly comparable to the image pixel spectra.

Finally, hyperspectral imagery is often not as readily available as
other types of remotely sensed data. In particular, there are few
spaceborne hyperspectral sensors. Nevertheless, several recently
launched hyperspectral sensors are acquiring imagery from space,
including the Hyperion sensor on NASA’s EO-1 satellite, the CHRIS
sensor on the European Space Agency’s PROBA satellite, and the
FTHSI sensor on the U.S. Air Force Research Lab’s MightySat Il satel-
lite. The EROS Data Center is currently providing Hyperion imagery
at a relatively low cost to the general public (http://edc.usgs.gov/
products/satellite/eo1.html). Many airborne hyperspectral sensors,
including NASA'’s AVIRIS sensor, are also available to collect data. A
more comprehensive list of current hyperspectral sensors is avail-
able on www.RSInc.com.

Summary

Hyperspectral imagery provides opportunities to extract more de-
tailed information than is possible using traditional multispectral data.
The availability of commercial hyperspectral analysis tools is good,
and these tools are continually becoming easier to use and more
effective. Many airborne hyperspectral sensors are currently operat-
ing, and at least one spaceborne hyperspectral sensor is providing
imagery for the general public. The future of hyperspectral remote
sensing is promising. As newly commissioned hyperspectral sensors
provide more imagery alternatives, and newly developed image pro-
cessing algorithms provide more analytical tools, hyperspectral re-
mote sensing is positioned to become one of the core technologies for
geospatial research, exploration, and monitoring.

380  April 2004

References

Asner, G.P. and D.B. Lobell. 2000. AutoSWIR: A general spectral
unmixing algorithm based on 2000-2400 nm endmember
datasets and Monte Carlo analysis. Proceedings of the 9th
Annual JPL Airborne Earth Science Workshop, Pasadena.

Bhaskaran, S. Forster, B. Neal, T. 2001. Integrating airborne
hyperspectral sensor data with GIS for hail storm post-disas-
ter management. Proceedings of the 22nd Asian Conference
on Remote Sensing, Singapore November 5-9.

Blackburn, G. A. 1998. Quantifying chlorophylls and carotenoids
at leaf can canopy scales: an evaluation of some
hyperspectral approaches. Remote Sensing Reviews, 66:273—
285.

Boardman, J. W. 1993. Automated spectral unmixing of AVIRIS
data using convex geometry concepts: in Summaries, Fourth
JPL Airborne Geoscience Workshop, JPL Publication 93-26,
1:11-14.

Boardman, J. W., Kruse, F. A., and Green, R. O. 1995. Mapping
target signatures via partial unmixing of AVIRIS data: in Sum-
maries, Fifth JPL Airborne Earth Science Workshop, JPL Pub-
lication 95-1, 1:23-26.

Clark, R.N. and Swayze, G.A. 1995. Mapping minerals, amor-
phous materials, environmental materials, vegetation, water,
ice and snow, and other materials: The USGS Tricorder Algo-
rithm. Summaries of the Fifth Annual JPL Airborne Earth Sci-
ence Workshop, January 23- 26, R.O. Green, Ed., JPL Publica-
tion 95-1, p. 39-40.

Clark, R.N., Swayze, G.A. Livo, K.E. Kokaly, R.F. Sutley, S.].
Dalton, J.B. McDougal, R.R. and Gent, C.A. 2003. Imaging
Spectroscopy: earth and planetary remote sensing with the
USGS Tetracorder and expert systems, Journal of Geophys
Research, 18(E12):5131.

Cochrane, M.A. 2000. Using vegetation reflectance variability
for species level classification of hyperspectral data. Interna-
tional Journal of Remote Sensing, 21(10):2075-2087.

Ellis, J. 2003. Hyperspectral imaging technologies key for oil
seep/oil-impacted soil detection and environmental
baselines. Environmental Science and Engineering. Retrieved
on February 23, 2004 from http://www.esemag.com/0503/
index.html.

Gruninger, J., Sundberg, R. L., Fox, M. ]., Levine, R.,
Mundkowsky, W. F., Salisbury, M. S. and Ratcliff, A. H. 2001.
Automated Optimal Channel Selection for Spectral Imaging
Sensors”, Proceedings SPIE 4381, Algorithms for Multispec-
tral and Hyperspectral Imagery VI, 4381-07.

Author

Peg Shippert is a Remote Sensing Specialist for RSI (www.RSInc.com),
the makers of ENVI image analysis software and IDL data analysis and
visualization software. ENVI is widely known as a software tool for
hyperspectral image analysis. Shippert earned a Ph.D. in physical
geography from the University of Colorado and has more than 14
years of experience analyzing multispectral and hyperspectral imag-
ery in a wide variety of applications.

4+

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



