From Nand to Tetris

Building a Modern Computer from First Principles

Chapter 3

Memory

These slides support chapter 3 of the book
The Elements of Computing Systems

By Noam Nisan and Shimon Schocken
MIT Press

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

—iive

Chapter 3: Memory

- Time matters

* Sequential logic
* Flip Flops

* Memory units

* Counters

* Project 3 overview

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 2

Time-independent logic

* So far we ignored the issue of time
* The chip’s inputs were just “sitting there” — fixed and unchanging

* The chip’s output was a pure function of the current inputs,
and did not depend on anything that happened previously

* The output was computed “instantaneously”
* This style of gate logic is sometimes called:
o time-independent logic

o combinational logic.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 3

Hello, time

Abstraction issues:

example:
* The hardware must support N
maintaining “state”
example:

e The hardware must support
computations over time

for 1 = 0 .. 99:

sum = sum + a[i]

Implementation issues:

AR il o
: N WY
] J%
) | A
{ A
1 '(
-

* The hardware must handle the
physical time delays associated
with calculating and moving
data from one chip to another.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 4

Physical time / clock time

physical
time:

clock:

time: 12 3 4 s

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Arrow of time:

Continuous

Discrete time:

State changes occur
only when advancing
from one time unit to
another

Slide 5

Chip behavior over time (example)

hysical . .
fini]e' ﬁ Arrow of time:
' Continuous
1
clock:
0 Discrete time:
State changes occur
only when advancing
time: P 2 CE 5 from one time unit to
: : : : : another
in: 1
(example) ©
in @ out
out: 1 ' ' T
(Not in) (%]
(example)

Desired / idealized behavior of the
in and out signals, as we want the
hardware to handle them

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 6

Chip behavior over time (example)

hysical > :
firr}lle' — Arrow of time:
' Continuous
1
clock:
0 : Discrete time:
State changes occur
only when advancing
time: o2 8 3 8 4085 from one time unit to
5 5 : another
in: 1]
(example) ©
in @ out
out: 1 : : :
(Not in) (%) _V_
: (example)
actual behavior of the
in and out signals, due
to physical time delays

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 7

Chip behavior over time (example)

hysical . .
p. y — Arrow of time:
time:
Continuous
1
clock:
9 Discrete time:
State changes occur
: only when advancing
time: 2 308 4 5 i L. from one time unit to
: another

1
in: 1 —\
(example) ©

in ® out
out: 1
(Not in) (%]
(example)
H_J

Time delays Clock cycle

* propagation delays * designed to neutralize the time delays

* computation delays cycle length: slightly longer than the time delays

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 8

Chip behavior over time (example)

hysical . .
fini,e' ﬁ Arrow of time:
' Continuous
1
clock:
° Discrete time:
State changes occur
only when advancing
time: 1y 2 8 3 8 4 5 from one time unit to
: : : : : another
in: 1
(example) ©
in @ out
out: 1 ' ' -
(Not in) (%]
(example)

Not: an example of a combinational chip:
* The gate reacts “immediately” to the inputs

* Well, not really, but the clock’s behavior creates this effect.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 9

Combinational logic / sequential logic

. . . clock:
Combinational logic:
The output is a pure function
of the present input only
clock:

Sequential logic:

The output depends on:
* the present input (optionally)
* the history of the input

(creates a memory effect).

time:

in:

out:

time:

in:

out:

a b c | d e

Ll

f@ f) flo f@ @ flo

\\\\

fl@ fB) fo)

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 10

Flip-Flop

in — P DFF - out

JAN
out(z) =in(z-1)

The simplest state-keeping gate:

* 1-bit input, 1-bit output

* The gate outputs its previous input: out(z) = in(¢-1)

* Implementation: a gate that can flip between two stable states:

“remembering 07, or “remembering 17

 (Qates that feature this behavior are called data flip-flops.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 11

Flip-Flop

in — P DFF - out

JAN
out(z) =in(z-1)

time: 1 2 3 4 5

in: 1

(example) g

out: \

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 12

Flip-Flop

in — P DFF - out

JAN
out(z) =in(z-1)

time: 1 2 3 4 5
in: 1
(example) g \
W
out: 1
0

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 13

Flip-Flop

in — DFF |) out
JAN The triangle icon indicates that the gate is:
out(?) =in(z-1) * clocked / sequential

» connected to a clock input
* designed to maintains state

time: 1 2 3 4 5

in: 1

(example) g

out:

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 14

DFF implementation notes

A DFF bi-state architecture can be built from Nand gates:

» step 1: create an input-output loop,
achieving a combinational (un-clocked) flip-flop

* step 2: isolate across time steps using a “master-slave” architecture

The resulting implementation 1s elegant, but conceptually confusing

Technical note

The implementation described above is impossible in our hardware simulator, since:
* The supplied simulator does not permit combinational loops

* A cycle in hardware connections is allowed only if the cycle passes through a
sequential (“clocked) gate

Implementing sequential chips

* The supplied simulator features a built-in DFF gate
* Sequential chips are implemented by using built-in DFF chip parts.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 15

Sequential chips

Sequential chips are capable of:

* maintaining state, and, optionally, state(r) = f (state(t-1), input(f))

* acting on the state, and on the current inputs

Example: DFF

* The DFF state: the value of the input from the previous time unit

* The simplest, most elementary sequential chip

Example: RAM

* The RAM state: the current values of all its registers

* given some address (input), the RAM emits the value of the selected register

Implementation note
* All combinational chips are constructed from Nand gates

* All sequential chips are constructed from DFF gates, and combinational chips.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 16

Sequential chips

input

state(t) = f (state(z-1), input(¢))

combinational
logic

f

DFF

DFF

output

DFF

Implementation note

* All combinational chips are constructed from Nand gates

* All sequential chips are constructed from DFF gates, and combinational chips.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 17

Sequential chip: 1-bit register

load

v

in —»

Bit

—» out

if load(?) then out(z+1) =in(¢)
out(f+1) =out(?)

else

* Designed to “remember”, or “store”, a single bit

e More accurately:

o Stores a bit until...

o Instructed to load, and store, another bit.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 18

1-bit register

load

v

in—» Bit —» out

if load(¢) then out(¢+1) =1in(1)
else out(ft+1) =out(?)

time: 1 2 3 4 5

$

load: 1
(example) 0

in: 1
(example) (%) \

out:

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 19

1-bit register

load

v

in—» Bit —» out

if load(¢) then out(¢+1) =1in(1)
else out(ft+1) =out(?)

time: 1 2 3 4 5

load: 1 i i

(example) 0

in:

(example) (%)

e NN,

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 20

1-bit register

load

v

in—» Bit —» out

if load(¢) then out(¢+1) =1in(1)
else out(ft+1) =out(?)

time: 1 2 3 4

$

load: 1
(example) 0

in:

(example) (%)

AN

out:

~\

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Resulting behavior:
Stores and emits a
value, until instructed
to load (and store) a
new value

Slide 21

1-bit register implementation — first attempt

Nand to Tetris / www.nand2tetri 1ocken Slide 22

1-bit register implementation

load

in
out

DFF » 1

time: 1 2 3 4 5

load: 1
(example) 0

in:

(example) (%)

out:

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 23

1-bit register implementation

load

out

DFF
) (\
time: 1 2 3
load: 1
(example) 0
in:
(example) (%)
1
out:
(%)
N/

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 24

1-bit register implementation

load

out

DFF
) (\
time: 1 2 3
load: 1
(example) 0
in:
(example) (%)
1
out:
(%)
N/

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 25

1-bit register implementation

in

time:

load: 1

(example) 0

in:

(example) (%)

out:

load
|
0
1 out
DFF > 1
)
2 3 5
—/

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 26

1-bit register implementation

in

time:

load: 1

(example) 0

in:

(example) (%)

out:

load
|
0
1 out
DFF > 1
SR
2 3 5
—

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 27

1-bit register implementation

in

time:

load: 1

(example) 0

in:

(example) (%)

out:

load
|
1
0 1 out
DFF > 1
)
2 3 4 5
—

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 28

1-bit register implementation

in

time:

load: 1

(example) 0

in:

(example) (%)

out:

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

load
|
0
out
DFF >
)
2 3 5
—/

Slide 29

1-bit register implementation

load
|
in 0 0
— 0 0 out
5] DFF » O
time: 1 2 3 4 5

load: 1
(example) 0

in:

(example) (%)

out:

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Resulting behavior:
Stores and emits a
value, until instructed
to load (and store) a
new value

Slide 30

Chapter 3: Memory

{ Time matters
/ Sequential logic

J Flip Flops

- Memory units

e (Counters

* Project 3 overview

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 31

Memory units

We’ll describe (and build) a progression of memory units:

{ 1-bit register:

Designed to store a single bit

m) Multi-bit register:
Designed to store, say, a 16-bit value

* Random Access Memory (RAM):

Designed to store n addressable 16-bit values,
each having a unique index, or address, ranging from 0 to n-1.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 32

Multi-bit register (also known as “register”)

load
in out
ﬁWL> Register ——
AN

(multi-bit register)

Word width (w):

* 16-bit, 32-bit, 64-bit, ...

* We will focus on 16-bit registers, without loss of generality.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 33

Register: abstraction

load

l

in
ﬁWL> Register
A\

out

(multi-bit register)

To read a Register:

probe out

To set Register = v
setin=v
set load = 1

Result:
out emits the Register’s state

Result:
O The Register’s state becomes v;

o From the next cycle onward,
out emits v

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 34

Register: implementation

load

!

in
ﬁWL> Register
AN

out

—7

(multi-bit register)

-

in
—_—

load

l

Bit
VAN

out

(1-bit register)

A w-bit register can be created from an array of w 1-bit registers.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 35

Register chip in action

Run the clock Format: View:

Fast : | rrogram flow $| | D.. %[| Secr..

Slow

m>d>uL

Chip Nam... DRegister (Clocked)

Input pins Output pins
Name Value Name Value
in[16] 17 | T ST I Inspect the
toad 0 register’s output
Set into 17
HDL Inspect the

= bl
* This built-in chip implemente register’s contents

* providing a GUI representatic
* called "D register" (typicall

*/
CHIP DRegister {
D:
IN in[16], load; For the demo, we use a built-in
OUT out [16]; 16-bit register from the Hack chipset,
BUILTIN DRegister; named Dregister, or simply D.

CLOCKED in, load;

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 36

Register chip in action

ﬁi Run the clock Format: View:
: Fast . | rfogramflow 3| | D.. 5| | Scr. ¢

Chip Nam... DReagister (Clocked)

Input pins Output pins
Name Value Name Value
in[16] vyl outizél | 0 Inspect the
toad 0 register’s output
— Inspect the

register’s contents

* This built-in chip implement:
* providing a GUI representatic
* called "D register" (typicall
*/

CHIP DRegister {

IN in[16], load;
OUT out[16];

BUILTIN DRegister;
CLOCKED in, load;

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 37

Register chip in action

- —=' Run the clock Format: View:

islow Fast : | rroygram flow = | |

Chip Nam... DReaqister (Clocked)

Input pins Output pins
Name Value Name Value
in[16] vl outiz6l | 0 Inspect the
Load 1

register’s output

Setinto 17
Set load to 1

Inspect the
register’s contents

HDL

* This built-in chip implement:
* providing a GUI representatic
* called "D register" (typicall
*/

CHIP DRegister {

IN in[16], load;
0UT out[16];

BUILTIN DRegister;
CLOCKED in, load;

17

INAITU WU TEUTS 7 WWW.ITAdTTUZLTUTS.UTE /7 CITdPLlET S 7 CUPYITEITU & TNUdTTIT INTSATT al U ST TuTT SUTTULRETT

Slide 38

Register chip in action

~ = Runtheclock Format: View:

 Slow Fast . | rrowramflow 3| | D.. &| | scr.

Chip Nam... DReagister (Clocked)

Input pins Output pins
Name Value Name Value
in[16] 17 out[16] 17 Inspect the
Load 1 .
oa register’s output
— Inspect the

. 2
* This built-in chip implement: I‘CngtCI‘ s contents

* providing a GUI representatic
* called "D register" (typicall
*/

CHIP DRegister {

IN in[16], load;
OUT out[16];

BUILTIN DRegister;
CLOCKED in, load;

17|

Nand 1o Tetrls / www.nandZtetris.org /7 Lhapter 3 7/ Lopyright W Noam NIsan ana Snimon SCnocken

Slide 39

Memory units

We’ll describe (and build) a progression of memory units:

J 1-bit register:

J Multi-bit register:

- Random Access Memory (RAM)

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 40

RAM

load
l Architecture:
RAMS _
A sequence of n addressable registers,
in ¢ e with addresses 0 to n-1
16 1 Register out
R Address width:
address ‘e 16 _
k=log,n
+>
k n-1 Register
Word width:
d'reﬁ;giicess No impact on the RAM logic
a\ (Hack computer: w = 16]

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 41

RAM: abstraction

in

— A

16

address

k

To read Registeri :

load
RAMS8
0 Register
1 Register

n-1 ‘ Register

direct access
logic
JAN

out

16

set address =1

probe out

At any given point of time:

o one register in the RAM is selected

o all the other registers are irrelevant

out emits the value of Register i

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 42

RAM: abstraction

in

— A

16

address

k

To set Registerito v :

load
RAMS8
0 Register
1 Register

n-1 ‘ Register

direct access
logic
JAN

out

16

set address =i

set in=v
set 1load =1

Result:

At any given point of time:

o one register in the RAM is selected

o all the other registers are irrelevant

* The state of Register i becomes v

* From the next cycle onward, out emits v

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 43

RAM: abstraction

load
RAMS8
in 0 Register
+>
16 1 Register out
address ere 16
—
K n-1 Register
direct access
logic
AN

Why “Random Access Memory”?

Irrespective of the RAM size (n),
every randomly selected register can be accessed “instantaneously”,
at more or less the same time.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 44

A family of 16-bit RAM chips

load
RAMS8)
chip name n k
in 0 Register RAMS 8 3
—F .
16 1 Register out RAM64 64 6
address o 16 RAM512 512 9
: k . RAM4K 4096 12
n-1 Register
RAM16K 16384 | 14
direct access
logic
N\

Why these particular RAM chips?

Because that’s what we need for building the Hack computer.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 45

RAM chip in action

HW Simulator

RAM chip demo

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 46

Chapter 3: Memory

l Time matters
/ Sequential logic

J Flip Flops
{Memory units
- Counters

* Project 3 overview

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 47

Where counters come to play

The computer must keep track of which instruction should be fetched and executed
next

This control mechanism can be realized by a register called Program Counter
The pc contains the address of the instruction that will be fetched and executed next

The PC is designed to support three possible control operations:

Reset: fetch the first instruction PC =0

Next: fetch the next instruction PC++ I

Goto: fetch instruction n

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 48

Program Counter

load inc reset
in out
—~ > PC —
16 16
AN

/**
* A 16-bit counter with load and reset control bits.
* if reset(t) out(t+l) = ©
* else if load(t) out(t+1l) = in(t)
* else if inc(t) out(t+l) = out(t) + 1 (integer addition)
* else out(t+l) = out(t)
*/
CHIP PC {

IN in[16],1lo0ad,inc,reset;
OUT out[16];

PARTS:
// Put your code here:

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 49

Counter chip 1n action

HW Simulator

PC chip demo

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 50

Chapter 3: Memory

/ Time matters
/ Sequential logic

J Flip Flops
{Memory units
l Counters

- Project 3 overview

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 51

Project 3

Given:
o All the chips built in Projects 1 and 2
o Flip-Flop (built-in DFF gate)

Goal: Build the following chips:

2 Bit A
o Register

o RAMS A family of sequential chips, from

o RAM64 > a 1-bit register to a 16K RAM unit.
2 RAM512

o RAM4K

o RAM16K
o PC

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 52

1-bit register

load
in out
—_— Bit —
AN
Bit.hdl
/**

* 1-bit register:

* If load(t) then out(t+l) = in(t)
* else out(t+1) = out(t))
*/ Implementation tip:
CHIP Bit { Can be bul.lt from a DFF
IN in, load; and a multiplexor.
OUT out;
PARTS:

// Put your code here:

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 53

16-bit Register

load
in out
Register —
16 ?\ 16

Register.hdl

/**
* 16-bit register:
* If load(t) then out(t+1) in(t)
* else out(t+1) out(t))

*/ Implementation tip:

CHIP Register { Can be built from an array
IN in[16], load; . . .
OUT out[16]; of sixteen 1-bit registers.

PARTS:
// Put your code here:

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 54

8-Register RAM

load
RAM8
in Register
7
16 Register
address
+.
k Register

Implementation tips:

direct access
logic
N\

out

16

RAM8. hd1

/*

* Let M stand for the state of the

* register selected by address.

* if load(t) then {M=in(t), out(t+1)=M}
* else out(t+1l)=M

*/

CHIP RAM8 {
IN in[16], load, address[3];

OUT out[16];

PARTS:
// Put your code here:

o Feed the in value to all the registers, simultaneously

o Use mux / demux chips to select the register specified by address.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 55

Project 3

Given:

o All the chips built in Projects 1 and 2

o Flip-Flop (DFF gate)

Goal: Build the following chips:

v o Bit

v o Register

v/ o RAM8
o RAM64
o RAM512
o RAM4K
o RAM16K
o PC

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

~N

> Our next task

/

Slide 56

RAMS, RAMO64, ...

RAMI6K

RAM8

I Register]

I Register]

(Register |

RAM512
RAM64
RAM64
SAMS RAM64
RAM8
RAM64
RAMS
A A

Implementation tips

e A RAM unit can be built by grouping smaller rRam-parts together

Same technique
can be used to
implement RAM4K
and RAM16K

* Think about the RAM’s address input as consisting of two fields:

— one field can be used to select a RaM-part;

— the other field can be used to select a register within that RAM-part

* Use mux/demux logic to effect this addressing scheme.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 57

Project 3

Given:
o All the chips built in Projects 1 and 2
o Flip-Flop (DFF gate)

Goal: Build the following chips:

v/ o Bit

v o Register
v/ o RAMS

v’ o RAM64

v/ o RAM512
v/ o RAM4K

v/ o RAM16K

a PC

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 58

Program Counter

load inc reset : :
l l l Implementation tip:
_ Can be built from a register,
N out .
: e an incrementor, and some
16 16 logic gates.
VAN
/x5
* A 16-bit counter with load, inc, and reset control bits.
k
* if reset(t) out(t+1)=0 // resetting: counter = ©
* else if load(t) out(t+1l)=in(t) // setting counter = value
* else if inc(t) out(t+1l)=out(t)+l // incrementing: counter++
* else out(t+1)=out(t) // counter does not change
*/
CHIP PC {

IN in[16], load, inc, reset;
OUT out[16];

PARTS:
// Implementation comes here.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 59

Project 2 resources

www.nandZ2tetris.org

Project 3: Sequential Chips

| Background

The computer's main memory, also called Random Access Memory, or RAM, is an addressable sequence of n-bit
registers, each designed to hold an n-bit value. In this project you will gradually build a RAM unit. This involves two
main issues: (i) how to use gate logic to store bits persistently, over time, and (ii) how to use gate logic to locate
("address”) the memory register on which we wish to operate.

| Objective

Build all the chips described in Chapter 3 (see list below), leading up to a Random Access Memory (RAM) unit. The
only building blocks that you can use are primitive DFF gates, chips that you will build on top of them, and chips
described in previous chapters.

| Chips
Chip (HDL) Description Test script Compare file
DFF Data Flip-Flop (primitive)
Bit 1-bit register Bit.tst Bit.cmp All the necessary pI'OjGCt 3
Register 16-bit register Register.tst Register.cmp . .
RAMB 16-bit / 8-register memory RAMB.tst RAM8.cmp filCS arc avallable m:
RAM64 16-bit / 64-register memory RAM64.tst RAM64.cmp nand2tetris / projects / 03
RAM512 16-bit / 512-register memory RAM512.tst RAM512.cmp
RAM4K 16-bit / 4096-register memory ~ RAM4K.tst RAM4K.cmp
RAM16K 16-bit / 16384-register memory RAM16K.tst RAM16K.cmp
PC 16-bit program counter PC.tst PC.cmp

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 60

More resources

e HDL Survival Guide
e Hardware Simulator Tutorial

* nand2tetris Q&A forum

All available 1n: www.nand2tetris.org

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 61

Best practice advice

* Try to implement the chips in the given order

 If you don’t implement some of the chips required in project 3, you can
still use them as chip-parts in other chips. Just rename the given stub-
files; this will cause the simulator to use the built-in versions of these
chips

* You can invent new, “helper chips”; however, this 1s not required: you
can build any chip using previously-built chips only

* Strive to use as few chip-parts as possible.
* You will have to use chips from Projects 1 and 2
* Best practice: use their built-in versions

 For technical reasons, the HDL files of this project are organized in two
directories named a and b

* This directory structure should remain as is.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 62

Chapter 3: Memory

{ Time matters
/ Sequential logic

J Flip Flops
/Memory units
/ Counters

/ Project 3 overview

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 63

From Nand to Tetris

Building a Modern Computer from First Principles

Chapter 3

Memory

These slides support chapter 3 of the book
The Elements of Computing Systems

By Noam Nisan and Shimon Schocken
MIT Press

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

—iive v

