
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	1

From	Nand	to	Tetris
Building	a	Modern	Computer	from	First	Principles

These slides support chapter 3 of the book
The Elements of Computing Systems

By Noam Nisan and Shimon Schocken
MIT Press

Chapter 3

Memory

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	2

Chapter 3: Memory

• Time matters

• Sequential logic

• Flip Flops

• Memory units

• Counters

• Project 3 overview

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	3

Time-independent logic

• So far we ignored the issue of time

• The chip’s inputs were just “sitting there” – fixed and unchanging

• The chip’s output was a pure function of the current inputs,
and did not depend on anything that happened previously

• The output was computed “instantaneously”

• This style of gate logic is sometimes called:

q time-independent logic

q combinational logic.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	4

Hello, time

• The hardware must support
maintaining “state”

x = 17

example:

• The hardware must handle the
physical time delays associated
with calculating and moving
data from one chip to another.

• The hardware must support
computations over time

for i = 0 … 99:

sum = sum + a[i]

example:

Abstraction issues:

Implementation issues:

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	5

Physical time / clock time

1

0
clock:

time: 1 2 3 4 5 . . .

physical
time: Arrow of time:

Continuous

Discrete time:
State changes occur
only when advancing
from one time unit to
another

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	6

Chip behavior over time (example)

1

0

0

1

clock:

time: 1 2 3 4 5 . . .

0

1

physical
time:

in:
(example)

(example)

out:
(Not in)

Desired / idealized behavior of the
in and out signals, as we want the
hardware to handle them

Arrow of time:
Continuous

Discrete time:
State changes occur
only when advancing
from one time unit to
another

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	7

Chip behavior over time (example)

1

0

0

1

clock:

time: 1 2 3 4 5 . . .

0

1

physical
time:

in:
(example)

(example)

out:
(Not in)

actual behavior of the
in and out signals, due
to physical time delays

Arrow of time:
Continuous

Discrete time:
State changes occur
only when advancing
from one time unit to
another

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	8

Chip behavior over time (example)

1

0

0

1

clock:

time: 1 2 3 4 5 . . .

0

1

physical
time:

Clock cycle
• designed to neutralize the time delays
• cycle length: slightly longer than the time delays

Time delays
• propagation delays
• computation delays

in:
(example)

(example)

out:
(Not in)

Arrow of time:
Continuous

Discrete time:
State changes occur
only when advancing
from one time unit to
another

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	9

Chip behavior over time (example)

1

0

0

1

clock:

time: 1 2 3 4 5 . . .

0

1

physical
time:

in:
(example)

(example)

Not: an example of a combinational chip:
• The gate reacts “immediately” to the inputs
• Well, not really, but the clock’s behavior creates this effect.

out:
(Not in)

Arrow of time:
Continuous

Discrete time:
State changes occur
only when advancing
from one time unit to
another

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	10

Combinational logic / sequential logic

Combinational logic:

Sequential logic:

The output is a pure function
of the present input only

The output depends on:
• the present input (optionally)
• the history of the input
• (creates a memory effect).

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	11

Flip-Flop

DFF outin

out(t) = in(t - 1)

The simplest state-keeping gate:

• 1-bit input, 1-bit output

• The gate outputs its previous input: out(t) = in(t - 1)

• Implementation: a gate that can flip between two stable states:
“remembering 0”, or “remembering 1”

• Gates that feature this behavior are called data flip-flops.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	12

Flip-Flop

time: 1 2 3 4 5 . . .

0

1

1

0

out:

in:
(example)

DFF outin

out(t) = in(t - 1)

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	13

Flip-Flop

time: 1 2 3 4 5 . . .

0

1

1

0

out:

in:
(example)

DFF outin

out(t) = in(t - 1)

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	14

DFF outin

out(t) = in(t - 1)

Flip-Flop

0

1

1

0

out:

time: 1 2 3 4 5 . . .

The triangle icon indicates that the gate is:
• clocked / sequential
• connected to a clock input
• designed to maintains state

in:
(example)

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	15

DFF implementation notes
A DFF bi-state architecture can be built from Nand gates:
• step 1: create an input-output loop,

achieving a combinational (un-clocked) flip-flop
• step 2: isolate across time steps using a “master-slave” architecture
• The resulting implementation is elegant, but conceptually confusing

Technical note
The implementation described above is impossible in our hardware simulator, since:
• The supplied simulator does not permit combinational loops
• A cycle in hardware connections is allowed only if the cycle passes through a

sequential (“clocked”) gate

Implementing sequential chips
• The supplied simulator features a built-in DFF gate
• Sequential chips are implemented by using built-in DFF chip parts.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	16

Sequential chips
Sequential chips are capable of:
• maintaining state, and, optionally,
• acting on the state, and on the current inputs

Example: DFF

• The DFF state: the value of the input from the previous time unit

• The simplest, most elementary sequential chip

Example: RAM

• The RAM state: the current values of all its registers

• given some address (input), the RAM emits the value of the selected register

Implementation note

• All combinational chips are constructed from Nand gates

• All sequential chips are constructed from DFF gates, and combinational chips.

state(t) = f (state(t-1), input(t))

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	17

Sequential chips

state(t) = f (state(t-1), input(t))

Implementation note

• All combinational chips are constructed from Nand gates

• All sequential chips are constructed from DFF gates, and combinational chips.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	18

Sequential chip: 1-bit register

• Designed to “remember”, or “store”, a single bit

• More accurately:

q Stores a bit until...

q Instructed to load, and store, another bit.

load

in outBit out

load

in

if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

. . .Bit

w-bit register

out

load

binary cell (Bit)

in
w w

if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

Bit Bit

if load(t) then out(t +1) = in(t)
else out(t +1) = out(t)

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	19

1-bit register

time: 1 2 3 4 5

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

Bit out

load

in

if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

. . .Bit

w-bit register

out

load

binary cell (Bit)

in
w w

if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

Bit Bit

if load(t) then out(t +1) = in(t)
else out(t +1) = out(t)

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	20

1-bit register

time: 1 2 3 4 5

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

Bit out

load

in

if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

. . .Bit

w-bit register

out

load

binary cell (Bit)

in
w w

if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

Bit Bit

if load(t) then out(t +1) = in(t)
else out(t +1) = out(t)

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	21

1-bit register

time: 1 2 3 4 5

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

Resulting behavior:
Stores and emits a
value, until instructed
to load (and store) a
new value

Bit out

load

in

if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

. . .Bit

w-bit register

out

load

binary cell (Bit)

in
w w

if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

Bit Bit

if load(t) then out(t +1) = in(t)
else out(t +1) = out(t)

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	22

1-bit register implementation – first attempt

in out

DFF
in

out

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	23

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out
1

time: 1 2 3 4 5

load

in
out

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	24

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out
1

time: 1 2 3 4 5

load

in
out?

1
1

?

1

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out

time: 1 2 3 4 5

1

load

in
out?

1
1

?

1

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	26

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out1
1

0
1

1

time: 1 2 3 4 5

0

load

in
out

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	27

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out1
1

0
1

1

time: 1 2 3 4 5

0

load

in
out

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	28

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out1
1

0
0

1

time: 1 2 3 4 5

1

load

in
out

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	29

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out0
0

0
0

0

time: 1 2 3 4 5

0

load

in
out

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	30

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out0
0

0
0

0

time: 1 2 3 4 5

0

load

in
out

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

Resulting behavior:
Stores and emits a
value, until instructed
to load (and store) a
new value

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	31

Chapter 3: Memory

• Time matters

• Sequential logic

• Flip Flops

• Memory units

• Counters

• Project 3 overview

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	32

Memory units

We’ll describe (and build) a progression of memory units:

• 1-bit register:
• Designed to store a single bit

• Multi-bit register:
• Designed to store, say, a 16-bit value

• Random Access Memory (RAM):
• Designed to store n addressable 16-bit values,

each having a unique index, or address, ranging from 0 to n-1.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Multi-bit register (also known as “register”)

(multi-bit register)

Word width (w):

• 16-bit, 32-bit, 64-bit, …

• We will focus on 16-bit registers, without loss of generality.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	34

Register: abstraction

To read a Register:
probe out

To set Register = v
set in = v
set load = 1

Result:
out emits the Register’s state

Result:
q The Register’s state becomes v;
q From the next cycle onward,

out emits v

(multi-bit register)

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	35

Register: implementation

(multi-bit register)

A w-bit register can be created from an array of w 1-bit registers.

1-bit
Register

(1-bit register)

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	36

Register chip in action

For the demo, we use a built-in
16-bit register from the Hack chipset,
named Dregister, or simply D.

Set in to 17

Inspect the
register’s output

Inspect the
register’s contents

Run the clock

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	37

Register chip in action
Run the clock

Inspect the
register’s contents

Inspect the
register’s output

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	38

Register chip in action

Set in to 17
Set load to 1

Run the clock

Inspect the
register’s contents

Inspect the
register’s output

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	39

Register chip in action

Inspect the
register’s contents

Inspect the
register’s output

Run the clock

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	40

Memory units

We’ll describe (and build) a progression of memory units:

• 1-bit register:

• Multi-bit register:

• Random Access Memory (RAM)
•

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	41

RAM

Architecture:
A sequence of n addressable registers,
with addresses 0 to n-1

Address width:
k = log2n

Word width:
No impact on the RAM logic
(Hack computer: w = 16]

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	42

RAM: abstraction

To read Register i :
set address = i
probe out

Result:
out emits the value of Register i

At any given point of time:

q one register in the RAM is selected

q all the other registers are irrelevant

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	43

RAM: abstraction

To set Register i to v :
set address = i
set in = v
set load = 1

Result:
• The state of Register i becomes v
• From the next cycle onward, out emits v

At any given point of time:

q one register in the RAM is selected

q all the other registers are irrelevant

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	44

RAM: abstraction

Why “Random Access Memory”?

Irrespective of the RAM size (n),
every randomly selected register can be accessed “instantaneously”,
at more or less the same time.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	45

A family of 16-bit RAM chips

chip name n k

RAM8 8 3

RAM64 64 6

RAM512 512 9

RAM4K 4096 12

RAM16K 16384 14

Why these particular RAM chips?
Because that’s what we need for building the Hack computer.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	46

RAM chip in action

HW Simulator

RAM chip demo

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	47

Chapter 3: Memory

• Time matters

• Sequential logic

• Flip Flops

• Memory units

• Counters

• Project 3 overview

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	48

Where counters come to play

• The computer must keep track of which instruction should be fetched and executed
next

• This control mechanism can be realized by a register called Program Counter
• The PC contains the address of the instruction that will be fetched and executed next

• The PC is designed to support three possible control operations:

q Reset: fetch the first instruction

q Next: fetch the next instruction

q Goto: fetch instruction n

PC = 0

PC++

PC = n

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	49

Program Counter

/**
* A 16-bit counter with load and reset control bits.
* if reset(t) out(t+1) = 0
* else if load(t) out(t+1) = in(t)
* else if inc(t) out(t+1) = out(t) + 1 (integer addition)
* else out(t+1) = out(t)
*/

CHIP PC {
IN in[16],load,inc,reset;
OUT out[16];

PARTS:
// Put your code here:

}

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	50

Counter chip in action

HW Simulator

PC chip demo

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	51

Chapter 3: Memory

• Time matters

• Sequential logic

• Flip Flops

• Memory units

• Counters

• Project 3 overview

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	52

Project 3

Given:
q All the chips built in Projects 1 and 2
q Flip-Flop (built-in DFF gate)

A family of sequential chips, from
a 1-bit register to a 16K RAM unit.

q Bit

q Register

q RAM8

q RAM64

q RAM512

q RAM4K

q RAM16K

q PC

Goal: Build the following chips:

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	53

1-bit register

/**
* 1-bit register:
* If load(t) then out(t+1) = in(t)
* else out(t+1) = out(t))
*/

CHIP Bit {
IN in, load;
OUT out;

PARTS:
// Put your code here:

}

Bit.hdl

Implementation tip:
Can be built from a DFF
and a multiplexor.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	54

16-bit Register

Implementation tip:
Can be built from an array
of sixteen 1-bit registers.

/**
* 16-bit register:
* If load(t) then out(t+1) = in(t)
* else out(t+1) = out(t))
*/

CHIP Register {
IN in[16], load;
OUT out[16];

PARTS:
// Put your code here:

}

Register.hdl

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	55

8-Register RAM

Implementation tips:

q Feed the in value to all the registers, simultaneously

q Use mux / demux chips to select the register specified by address.

/*
* Let M stand for the state of the
* register selected by address.
* if load(t) then {M=in(t), out(t+1)=M}
* else out(t+1)=M
*/

CHIP RAM8 {
IN in[16], load, address[3];
OUT out[16];

PARTS:
// Put your code here:

}

RAM8.hdl

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	56

Project 3

Given:
q All the chips built in Projects 1 and 2
q Flip-Flop (DFF gate)

q Bit
q Register
q RAM8
q RAM64
q RAM512
q RAM4K
q RAM16K
q PC

Goal: Build the following chips:

Our next task

✓

✓

✓

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	57

RAM8, RAM64, … RAM16K

Implementation tips
• A RAM unit can be built by grouping smaller RAM-parts together
• Think about the RAM’s address input as consisting of two fields:

– one field can be used to select a RAM-part;
– the other field can be used to select a register within that RAM-part

• Use mux/demux logic to effect this addressing scheme.

RAM8

RAM64

RAM512

…
Same technique
can be used to
implement RAM4K
and RAM16K

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	58

Project 3

Given:
q All the chips built in Projects 1 and 2
q Flip-Flop (DFF gate)

q Bit
q Register
q RAM8
q RAM64
q RAM512
q RAM4K
q RAM16K
q PC

Goal: Build the following chips:

✓

✓

✓
✓

✓

✓

✓

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	59

Program Counter

Implementation tip:
Can be built from a register,
an incrementor, and some
logic gates.

/**
* A 16-bit counter with load, inc, and reset control bits.
*
* if reset(t) out(t+1)=0 // resetting: counter = 0
* else if load(t) out(t+1)=in(t) // setting counter = value
* else if inc(t) out(t+1)=out(t)+1 // incrementing: counter++
* else out(t+1)=out(t) // counter does not change
*/

CHIP PC {
IN in[16], load, inc, reset;
OUT out[16];

PARTS:
// Implementation comes here.

}

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	60

Project 2 resources

www.nand2tetris.org

All the necessary project 3
files are available in:
nand2tetris /	projects /	03

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	61

More resources

• HDL Survival Guide

• Hardware Simulator Tutorial

• nand2tetris Q&A forum

All available in: www.nand2tetris.org

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	62

Best practice advice

• Try to implement the chips in the given order
• If you don’t implement some of the chips required in project 3, you can

still use them as chip-parts in other chips. Just rename the given stub-
files; this will cause the simulator to use the built-in versions of these
chips

• You can invent new, “helper chips”; however, this is not required: you
can build any chip using previously-built chips only

• Strive to use as few chip-parts as possible.

• You will have to use chips from Projects 1 and 2

• Best practice: use their built-in versions

• For technical reasons, the HDL files of this project are organized in two
directories named a and b

• This directory structure should remain as is.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	63

Chapter 3: Memory

• Time matters

• Sequential logic

• Flip Flops

• Memory units

• Counters

• Project 3 overview

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	64

From	Nand	to	Tetris
Building	a	Modern	Computer	from	First	Principles

These slides support chapter 3 of the book
The Elements of Computing Systems

By Noam Nisan and Shimon Schocken
MIT Press

Chapter 3

Memory

