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Resumen

El cerebro humano es probablemente uno de los sistemas más complejos a los que nos enfrentamos
en la actualidad, si bien es también uno de los más fascinantes. Sin embargo, la compresión de

cómo el cerebro organiza su actividad para llevar a cabo tareas complejas es un problema plagado
de restos y obstáculos.

En sus inicios la neuroimagen y la electrofisiología tenían como objetivo la identificación de
regiones asociadas a activaciones relacionadas con tareas especificas, o con patrones locales que
variaban en el tiempo dada cierta actividad. Sin embargo, actualmente existe un consenso acerca de
que la actividad cerebral tiene un carácter temporal multiescala y espacialmente extendido, lo que
lleva a considerar el cerebro como una gran red de áreas cerebrales coordinadas, cuyas conexiones
funcionales son continuamente creadas y destruidas. Hasta hace poco, el énfasis de los estudios de
la actividad cerebral funcional se han centrado en la identidad de los nodos particulares que forman
estas redes, y en la caracterización de métricas de conectividad entre ellos: la hipótesis subyacente
es que cada nodo, que es una representación mas bien aproximada de una región cerebral dada,
ofrece a una única contribución al total de la red. Por tanto, la neuroimagen funcional integra los
dos ingredientes básicos de la neuropsicología: la localización de la función cognitiva en módulos
cerebrales especializados y el rol de las fibras de conexión en la integración de dichos módulos.
Sin embargo, recientemente, la estructura y la función cerebral han empezado a ser investigadas
mediante la Ciencia de la Redes, una interpretación mecánico-estadística de una antigua rama de
las matemáticas: La teoría de grafos. La Ciencia de las Redes permite dotar a las redes funcionales
de una gran cantidad de propiedades cuantitativas (robustez, centralidad, eficiencia, . . . ), y así
enriquecer el conjunto de elementos que describen objetivamente la estructura y la función cerebral
a disposición de los neurocientíficos.

La conexión entre la Ciencia de las Redes y la Neurociencia ha aportado nuevos puntos
de vista en la comprensión de la intrincada anatomía del cerebro, y de cómo las patrones de
actividad cerebral se pueden sincronizar para generar las denominadas redes funcionales cerebrales,
el principal objeto de estudio de esta Tesis Doctoral. Dentro de este contexto, la complejidad
emerge como el puente entre las propiedades topológicas y dinámicas de los sistemas biológicos
y, específicamente, en la relación entre la organización y la dinámica de las redes funcionales



cerebrales. Esta Tesis Doctoral es, en términos generales, un estudio de cómo la actividad cerebral
puede ser entendida como el resultado de una red de un sistema dinámico íntimamente relacionado
con los procesos que ocurren en el cerebro. Con este fin, he realizado cinco estudios que tienen en
cuenta ambos aspectos de dichas redes funcionales: el topológico y el dinámico.

De esta manera, la Tesis está dividida en tres grandes partes: Introducción, Resultados y
Discusión. En la primera parte, que comprende los Capítulos 1, 2 y 3, se hace un resumen de
los conceptos más importantes de la Ciencia de las Redes relacionados al análisis de imágenes
cerebrales. Concretamente, el Capitulo 1 está dedicado a introducir al lector en el mundo de la
complejidad, en especial, a la complejidad topológica y dinámica de sistemas acoplados en red. El
Capítulo 2 tiene como objetivo desarrollar los fundamentos biológicos, estructurales y funcionales
del cerebro, cuando éste es interpretado como una red compleja. En el Capítulo 3, se resumen los
objetivos esenciales y tareas que serán desarrolladas a lo largo de la segunda parte de la Tesis.

La segunda parte es el núcleo de la Tesis, ya que contiene los resultados obtenidos a lo largo
de los últimos cuatro años. Esta parte está dividida en cinco Capítulos, que contienen una versión
detallada de las publicaciones llevadas a cabo durante esta Tesis. El Capítulo 4 está relacionado
con la topología de las redes funcionales y, específicamente, con la detección y cuantificación de
los nodos mas importantes: aquellos denominados “hubs” de la red. En el Capítulo 5 se muestra
como las redes funcionales cerebrales pueden ser vistas no como una única red, sino más bien
como una red-de-redes donde sus componentes tienen que coexistir en una situación de balance
funcional. De esta forma, se investiga cómo los hemisferios cerebrales compiten para adquirir
centralidad en la red-de-redes, y cómo esta interacción se mantiene (o no) cuando se introducen
fallos deliberadamente en la red funcional. El Capítulo 6 va un paso mas allá al considerar las redes
funcionales como sistemas vivos. En este Capítulo se muestra cómo al analizar la evolución de
la topología de las redes, en vez de tratarlas como si estas fueran un sistema estático, podemos
caracterizar mejor su estructura. Este hecho es especialmente relevante cuando se quiere tratar
de encontrar diferencias entre grupos que desempeñan una tarea de memoria, en la que las redes
funcionales tienen fuertes fluctuaciones. En el Capítulo 7 defino cómo crear redes parenclíticas a
partir de bases de datos de actividad cerebral. Este nuevo tipo de redes, recientemente introducido
para estudiar las anormalidades entre grupos de control y grupos anómalos, no ha sido implementado
nunca en datos cerebrales y, en este Capítulo explico cómo hacerlo cuando se quiere evaluar la
consistencia de la dinámica cerebral. Para concluir esta parte de la Tesis, el Capítulo 8 se centra en
la relación entre las propiedades topológicas de los nodos dentro de una red y sus características
dinámicas. Como mostraré más adelante, existe una relación entre ellas que revela que la posición
de un nodo dentro una red está íntimamente correlacionada con sus propiedades dinámicas.

Finalmente, la última parte de esta Tesis Doctoral está compuesta únicamente por el Capítulo 9,
el cual contiene las conclusiones y perspectivas futuras que pueden surgir de los trabajos expuestos.

En vista de todo lo anterior, espero que esta Tesis aporte una perspectiva complementaria sobre
uno de los más extraordinarios sistemas complejos frente a los que nos encontramos: El cerebro
humano.



Abstract

The human brain is probably one of the most complex systems we are facing, thus being a
timely and fascinating object of study. Characterizing how the brain organizes its activity to

carry out complex tasks is highly non-trivial. While early neuroimaging and electrophysiological
studies typically aimed at identifying patches of task-specific activations or local time-varying
patterns of activity, there has now been consensus that task-related brain activity has a temporally
multiscale, spatially extended character, as networks of coordinated brain areas are continuously
formed and destroyed. Up until recently, though, the emphasis of functional brain activity studies
has been on the identity of the particular nodes forming these networks, and on the characterization
of connectivity metrics between them, the underlying covert hypothesis being that each node,
constituting a coarse-grained representation of a given brain region, provides a unique contribution
to the whole. Thus, functional neuroimaging initially integrated the two basic ingredients of early
neuropsychology: localization of cognitive function into specialized brain modules and the role of
connection fibres in the integration of various modules. Lately, brain structure and function have
started being investigated using Network Science, a statistical mechanics understanding of an old
branch of pure mathematics: graph theory. Network Science allows endowing networks with a
great number of quantitative properties, thus vastly enriching the set of objective descriptors of
brain structure and function at neuroscientists’ disposal.

The link between Network Science and Neuroscience has shed light about how the entangled
anatomy of the brain is, and how cortical activations may synchronize to generate the so-called
functional brain networks, the principal object under study along this PhD Thesis. Within this
context, complexity appears to be the bridge between the topological and dynamical properties of
biological systems and, more specifically, the interplay between the organization and dynamics of
functional brain networks. This PhD Thesis is, in general terms, a study of how cortical activations
can be understood as the output of a network of dynamical systems that are intimately related with
the processes occurring in the brain. In order to do that, I performed five studies that encompass
both the topological and the dynamical aspects of such functional brain networks.

In this way, the Thesis is divided into three major parts: Introduction, Results and Discussion.
In the first part, comprising Chapters 1, 2 and 3, I make an overview of the main concepts of



Network Science related to the analysis of brain imaging. More specifically, Chapter 1 is devoted
to introducing the reader to the world of complexity, specially to the topological and dynamical
complexity of networked systems. Chapter 2 aims to develop the biological, topological and
functional fundamentals of the brain when it is seen as a complex network. Next, Chapter 3
summarizes the main objectives and tasks that will be developed along the forthcoming Chapters.

The second part of the Thesis is, in turn, its core, since it contains the results obtained along
these last four years. This part is divided into five Chapters, containing a detailed version of
the publications carried out during the Thesis. Chapter 4 is related to the topology of functional
networks and, more specifically, to the detection and quantification of the leading nodes of the
network: the hubs. In Chapter 5 I will show that functional brain networks can be viewed not as a
single network, but as a network-of-networks, where its components have to co-exist in a trade-off
situation. In this way, I investigate how the brain hemispheres compete for acquiring the centrality of
the network-of-networks and how this interplay is maintained (or not) when failures are introduced
in the functional network. Chapter 6 goes one step beyond by considering functional networks
as living systems. In this Chapter I show how analyzing the evolution of the network topology
instead of treating it as a static system allows to better characterize functional networks. This fact
is especially relevant when trying to find differences between groups performing certain memory
tasks, where functional networks have strong fluctuations. In Chapter 7 I define how to create
parenclitic networks from brain imaging datasets. This new kind of networks, recently introduced
to study abnormalities between control and anomalous groups, have not been implemented with
brain datasets and I explain in this Chapter how to do it when evaluating the consistency of brain
dynamics. To conclude with this part of the Thesis, Chapter 8 is devoted to the interplay between
the topological properties of the nodes within a network and their dynamical features. As I will
show, there is an interplay between them which reveals that the position of a node in a network is
intimately related with its dynamical properties.

Finally, the last part of this PhD Thesis is composed only by Chapter 9, which contains the
conclusions and future perspectives that may arise from the exposed results.

In view of all, I hope that reading this Thesis will give a complementary perspective of one of
the most extraordinary complex systems: The human brain.
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1 Complexity of Interconnected Systems

Regardless the success of reductionism in science, the later half of the previous century came with
the so called complexity paradigm, putting under the spotlight the perspective of "how we study"

nature, more than "what we study" in nature. This PhD Thesis is an illustration of how complexity
sciences can lead to the enhancement of our knowledge of, perhaps, the most extraordinary complex
system we are dealing with: The human brain.

In order to contextualize the reader, this first Chapter puts the emphasis on complexity as one
of the main and novel perspectives in science devoted to understand how systems in nature behave.
With this aim, I will develop an abbreviated summary of Complex Networks Theory (also known as
Network Science), which is concerned about the understanding of the organization of interacting
systems, being one of the most fruitful approaches in complexity sciences. In this way, this Chapter
reviews the basic models and main properties describing the topology of networked systems and
explains how the structural properties of networks are related to different dynamical aspects of the
dynamical units but also to the network as a whole. Nevertheless, even though it is necessary to
fathom the scaffolding of networked systems, it is also important to realize that nature, -specially
biological systems-, is in continuous evolution. This means that the time variable plays a crucial
role and, as a consequence, I will also overview some mathematical tools to evaluate the dynamical
properties of biological systems, specifically, those quantifying the amount of order/disorder of
their temporal evolution.

All of the above, with the aim of better understanding how brain works. Here we go.

1.1 Complex Systems and the Brain
Imagine an airplane and the world wide web (WWW) network. Both of them are composed by a
extremely high number of composite elements. In turn, all these elements are, somehow, connected
with each other. In principle, one can think that they are not so different. Multiple routers or parts
connected with each other so as to a achieve a specific outcome evokes the idea of complicated
systems, but it is more than this. Although both systems seem not to be different, they have
fundamental differences: The airplane is an example of a complicated system, while the WWW is a
paradigm of complex systems [B1]. In this sense, complicated systems are, indeed, assembled by a
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high number of elements, but they are engineered in the sense that they are strategically organized
for a specific blueprint. On the other hand, complex systems functioning is based on the interactions
among their constituents (and the environment) generating a spontaneous organization that leads
to emergent behaviours with unexpected properties and regularities that, in turn, could never be
explained by the behaviour of their fundamental parts. This means that in complex systems the
interactions among elements are more important than the elements themselves, being useless to
analyze their fundamental units in isolation. Complex systems have self-organized principles that
rely on a collective behaviour and unsupervised dynamics, something different from the complicated
ones, where a supervised hierarchical organization is the responsible of the collective functioning.

Regarding to their output, complex systems live in-between ordered and random states and
also combine heterogeneous structures and fluctuations along different scales. They are capable
of exhibit critical behaviours, where microscopic and localized perturbations can propagate and
trigger a macro-rearrangement across the entire system. Those mechanisms entail certain processes
that are intimately linked to the complex systems nature, such as adaptation, evolution or robustness.
For example, imagine what would happen if some elements of the aforementioned systems were
randomly removed. The common sense would predict a malfunctioning both in a complicated
and a complex system, but only the first one (e.g., the airplane) contemplate the worst panorama,
while the latter can adapt to changes. We can randomly remove (or add) some routers and the
WWW network can still operate, but the absence of a part of an airplane not only may result in an
inoperative system, but in a dangerous one.

Complex systems are not only present in nature, they can be found in man-made systems like
the previously mentioned WWW, but also in economical systems or social interactions, among
others. The complexity of the interactions within these systems, no matter the type we are dealing
with, has been studied by several approximations and methodologies during the last years [B7],
[A37].

Although the classification of complex systems is out of the scope of this thesis, I would like
to call the attention of the reader to three kinds of dynamical systems that are related to the main
characteristics of the brain: Chaotic, stochastic and excitable systems.

Chaotic systems are characterized for being deterministic systems1 with a high sensitivity
to the initial conditions [B11]. Their dynamics, like complex systems in general, combine both
order and disorder. Interestingly, despite being deterministic systems, the high sensibility to the
initial conditions make chaotic systems to be highly unpredictable when found in nature, due to
the unavoidable presence of noise and external perturbations. Some classical examples of chaotic
systems in the literature are the Chua’s circuit, the double pendulum, the logistic map or the
Rössler attractor. Nevertheless, beyond theoretical models, chaotic behaviour has been reported in
a diversity of real systems and the brain is not an exception [A71].

On the other hand, stochastic systems are those susceptible to evolve according to random
behaviour. Their output can not be explicitly defined by equations like the deterministic ones, which
means that the response of those systems is not the same for a given input. In other words, the
output of a stochastic system not only depends on the previous states of the system but also on the
underlying random process. Stochastic systems present random delays in time, noise and different
levels of uncertainty about the values of their measured variables, something that is also typical in
the brain.

Finally, excitable systems are also fundamental to understand brain dynamics, since its funda-
mental bricks, the neurons, are a paradigmatic example of an excitable system. They are typically
characterized by a "rest" state, an “excited" (or “firing") state, and a “refractory" (or “recovery")
state. If unperturbed, the excitable system resides in the rest state. If a small perturbation is applied,
only a small-amplitude linear response is observed. For sufficiently strong perturbations, however,

1Systems whose behaviour in the past determines perfectly its future due to a definite rules.
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the system can leave the rest state, going through the firing and refractory states before it comes
back to rest again . This response is strongly nonlinear and accompanied by a large excursion of the
system’s variables through phase space, which corresponds to a “spike". The system is refractory
after such a spike, which means that it takes a certain recovery time before another excitation can
evoke a second spike. Neurons behave exactly in this way, generating short-length responses called
action potentials if the membrane potential is above a certain threshold, otherwise, they remain
intrinsically quiescent [B17], [B4].

1.1.1 Complexity in the brain
What can the academy say about the complexity of living systems, in special, the human brain?
Among the diversity of approaches to understand human brain complexity, it is worth to highlight
the early works developed by Scott Kelso in the upper middle of the 80s and the decade of
90s. His works were focused on the dynamics of pattern formation in the brain [B12]. Kelso
and collaborators analysed the behavioural patterns observed in neuronal, electromyographic or
kinematic recordings, by means of microscopic collective variables that could be lumped together
in high dimensional mathematical objects. In his arguments, those mathematical objects depended
exclusively on nonlinear functions of microscopic states and noise [A197].

In a similar way, other approximations that involved the fundamental role of noise in the
brain were put forward around the 90s by Deco. He defended the idea of a noisy brain that
can be modelled by means of mean-field approximations, bifurcation analysis and, in general,
mathematical tools that belong to nonlinear dynamics and statistical physics [B20]. The basis of
Deco’s works are the relative random activation times of neurons, and how these random excitations
lead to stochastic dynamical effects that are relevant for brain functioning [A63].

On the other hand, since the beginning of the first decade of the XXI, the paradigm of the
brain complexity has been analyzed under the scope of an early and influential branch of graph
theory, namely, the complex networks theory [B23]. In this case, the complexity of the brain,
again, does not rely on the complicatedness of million of neural components apparently working
in independent ways. If the existence of either structural, behavioural, or dynamical patterns is
one of the fingerprints of complex systems, in the brain, the existence of hierarchical, structural
and functional patterns reveals part of its complexity. Those patterns are relevant since they can
conform associations of groups of neurons regarding to specific functions by means of cooperative
processes. At the same time, a great variety of dynamics and different kind of relations between the
brain and its environment leads to enhanced functional characteristics like flexibility and robustness
under different circumstances. Furthermore, the complexity of the brain goes beyond spatial and
temporal scales, showing a hierarchical organization that, among other mechanisms, is fundamental
to simultaneously segregate and integrate the information a brain deals with. This particular
approach is the one I will consider along this PhD Thesis and, as we will see, will give us important
information about how the brain operates.

1.1.2 Why networks?
To understand the brain, it is important to know what happens at the local scale of neuronal units,
but also to comprehend the way in which those components interact between each other forming
different patterns of connectivity which, in turn, occur at different spatial and temporal scales.
Brain patterns are the result of structured and self-organized couplings of excitable systems in a
series of networked representations that deserve quantitative analysis and sophisticated statistical
techniques that only Network Science can offer through a combination of nonlinear dynamics,
statistical physics and graph theory. In this context, Network Science is able to characterize the
topological features of brain regions organization, as well as to provide fundamental insights about
how dynamical patterns arise. On the other hand, if one contemplates the idea that thoughts,
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reasoning, behaviour, memories, even consciousness are consequences of collective actions of
individual neuron units, Network Science comprises a series of methodologies that could be an
adequate approach to understand how these units correlate regarding to different cognitive or motor
processes.

Furthermore, this new approach can be useful to understand interactions from a microscale
level of few individual cells and their synapses up to a macroscale state of correlated cortical areas .
In sum, the connectivity of brain structures plays an important role in many branch of neuroscience
and, for this reason, this PhD Thesis deals with the use of Network Science as a mathematical tool
to address different open questions about how the brain is organized.

In view of all and taking into account the brain as a complex system, the goal of this PhD Thesis
is to further analyze the classical problem of the brain dynamical and topological aspects and their
possible correlation. In what follows, I will overview several fundamental aspects of complex
networks theory, since part of the methodology introduced in this Chapter will be used along the
PhD Thesis. Finally, I will give a brief explanation about time varying networks and time series
analysis and enumerate a series of measures to evaluate the dynamical complexity of a system.

1.2 What is a Network?
Historically, Network Science is associated to the mathematical branch of graph theory founded
by Leonhard Euler. Euler solved the seven bridge problem, one of the defiant problems for
mathematicians of the XVIII century, through a mathematical demonstration that proved the
impossibility of crossing all bridges just once (See Box 1).

Box 1: The Seven Bridge Problem

The seven bridge problem consists on answering if it were possible to walk across the seven
bridges of the city of Könisberg (nowadays Kaliningrad, Russia), which was divided by

the river Pregel into four parcels, just crossing one time over each bridge. Euler transformed
each of the four parcels of land into nodes of a network where a moving agent could depart-
from/arrive-to. Likewise, each of the bridges of the city was considered as a link connecting
two nodes of the network. This simplistic model of vertices (nodes) connected through
edges (links) is basically the sketch of a graph. At the end, Euler computed all possible paths
among nodes that accomplished the situation of "once at time" and, obtained the necessary
condition to find such a path. The condition was that the network must (i) be connected (no
isolated nodes are permitted) and (ii) only two nodes could have odd number of links. Since
the Könisberg had three end-points, then such a route did not exista [B9].

aThe interested reader can find an extended explanation of this solution in the book of E. Estrada [B9].

Mathematically speaking, a network, also known as a graph G on its mathematical side, is
defined as a finite set of nodes (or vertices) N combined with another finite set of links (or
edges) L , such that L ⊆N ⊗N . This way, a network, G , is the combination of both sets
G = {N ,L }. G is defined symmetric if any element (vi,v j) ∈L ⇐⇒ (v j,vi) ∈L , otherwise is
defined nonsymmetric. Nodes vi, v j, ∈N , can be joined by edges from L forming undirected
networks if L is bidirectional and directed ones if L has direction [B16] [B9].

In order to analyze the properties of networks, the former definitions allow to implement the
use of matrix algebra so as to simplify and manage the information contained in the network. A
formal matrix definition of a network stands for the adjacency matrix A = (ai j):

ai, j =

{
1, if i links j
0, otherwise

(1.1)
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Figure 1.1: Schematic representation of networks based on their kind of links. A, Binary
network with all links equal to one. B, Undirected weighted network with the links width according
to their value. C, Directed weighted network where links indicate the direction and level of
causality.

The adjacency matrix A = {ai, j} fully characterizes the structural properties of a binary graph
of N nodes and L links (See, Fig. 1.1A) .

In the absence of self-cycling nodes, the maximum amount of possible links is obtained as
N(N−1)

2 [A22], and the network is said to be complete. The application and significance of those
elements can be translated into several contexts, e. g., in physics, nodes are sites and links are bonds,
meanwhile in social sciences are called actors and ties, respectively. In this way, it is possible to
find analogies between connected systems thanks to the matrix representation.

On the other hand, if we are concerned about the level of interaction two systems have, say, the
correlation between their dynamics, the adjacency matrix is not enough. In this case, we can assign
the links a weight wi, j that quantifies the amount of coordination and the adjacency matrix becomes
a weighted connectivity matrix (ci, j):

ci, j =

{
wi, j, if i links j have a certain interaction, with wi, j ∈ R
0, otherwise

(1.2)

This matrix is also symmetric but, instead of being binary, each element can have different
values quantifying the importance of the edges (see Fig. 1.1B for a representation of a weighted
network). But correlation does not necessarily imply causality. This is the case of directed
networks, in which a link indicates the level of influence a node has onto another. The mathematical
representation of a directed network, usually named digraph, is a nonsymmetric matrix. In other
words, the existence of a weighted link wi, j, from node i to node j, does not necessarily imply the
presence of the reverse edge w j,i from j to i (see Fig. 1.1C).

Finally, it is important to remark that not necessarily all networks are complex. A complex
network is any networked system whose topology is neither purely ordered, -as rectangular grids-,
nor completely random.

1.2.1 Structural Network Parameters
Networks are much more than a visual representation of interconnections. It is in their topology
where the information about the network properties lies. The properties a network has are related
to different quantifications of the connectivity, importance of nodes and edges (See Fig. 1.2),
formation of segregating groups, flux mobility among links, distances of connections, preferences
in connectivity nodes, robustness, etc... In general, there are plenty of topological features that
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provide different kind of information from one node to the whole network, as well as information
at different scales.

We can roughly classify the different node and network parameters according to the kind of
information needed to compute them. In this way, we can define the local parameters as those that
require information at node level without the need to analyze the whole network connectivity. For
example, this is the case of the degree (k(i)), a local feature that measures the number of links
attached to each node, which, in turn, is used as a primary estimation of the level of importance of
a node in the network.

On the other hand, global parameters are defined as those that need the topology of the whole
network for being calculated. An example of a global parameter is the eigenvector centralityec(i),
which is obtained from the eigenvector associated to the largest eigenvalue of the adjacency matrix,
and it is commonly used as a proxy to determine the importance of a node within the network. In
order to obtain ec(i), it is mandatory to know, not only the number of links attached to each node,
but also to whom each node is connected to.

Another way of classifying network metrics is to consider the topological scale in which these
metrics are calculated, no matter if they require local or global information. In this way, we can
call microscopic metrics to those that give information at the level of nodes, e.g., the degree a node
has. In contrast, the macroscopic metrics account for information about the whole network as, for
example, the average shortest path (d), measuring the number of steps, in average, to go from one
node of the network to any other. Finally, it is also possible to define mesoscopic metrics, which
coexist in-between the previous scales and give information at the level of small-to-intermediate
groups of nodes. That is the case of the modularity (Q), which gives the information about the
existence of groups of nodes tightly linked between them.

In what follows, I will summarize the definitions of the main and most common network
parameters, their corresponding equations and their underlying concepts (the reader can find a more
exhaustive summary in [A22], [A161] or [A49]) .

1.2.2 “Microscale" network parameters
I will use the term “microscale" when referring to parameters at the lowest scale of the network: the
nodes. Note, that the most typical microscale parameters can also be translated into a “macroscale"
version just by averaging over all nodes. If it is the case, parameters will be highlighted with the
symbol (‡M). Although there are extensions to directed networks, in the following definitions I
will be restricted to undirected networks with N number of nodes:

Definition 1.2.1 — (‡M) Degree k(i) and Strength s(i). Number of links a node has, and total
sum of link’s weights wi j arriving to a certain node, respectively [A160]:

k(i) = ∑
j∈N

ai, j (1.3)

s(i) = ∑
j∈N

wi, j (1.4)

Definition 1.2.2 — (‡M) Outhreach o(i). Sum of the link’s weights wi j multiplied by the link
Euclidean lengths li, j [A29]:

o(i) = ∑
j∈N

li, jwi, j (1.5)

Definition 1.2.3 — (‡M) Clustering C(i). Percentage of neighbours of a certain node that, in
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turn, are neighbours between them [B16, A246]. The clustering reads, in its weighted version:

C(i) =
∑ j,k wi jw jkwik

∑ j,k wi jwik
(1.6)

Figure 1.2: Node strength s(i) and eigenvector centrality ec(i). In this example, all links have
the same weight. In A, the node with the highest strength is highlighted. In this case the “hub"
(i.e., the most important node) is the one that accumulates the highest strength. In B, the node
with highest eigenvector centrality is highlighted in yellow. Note that it does not coincide with the
node in A, since now, the importance of the node’s neighbors (the red ones) is taken into account.
Nodes with the highest centrality are said to be “central" while nodes with low centrality are called
“peripheral".

Definition 1.2.4 — Eigenvector Centrality ec(i). A measure of node centrality (importance)
that takes into account the importance of all neighbours a node has. It is obtained from the
eigenvector associated with the largest eigenvalue of the connectivity matrix [B16]. See Fig. 1.2
for a qualitative comparison between two measures of node importance: The strength and the
eigenvector centrality.

Definition 1.2.5 — Betweenness Centrality b(i). Also known as node betweenness, it mea-
sures the percentage of shortest paths between any node i and k that cross through node i. n jk is
the number of shortest paths between nodes j and k and n jk(i) is the number of these paths that
go through node i [B16]:

b(i) = ∑
j 6=k

n jk(i)
n jk

(1.7)

Definition 1.2.6 — Node Closeness Cn(i). It is defined as the mean of the inverse of the
geodesic paths di j between node i and the rest of the nodes of the network. The more central
a node is, the lower its average distance to the rest of the nodes and, as a consequence, its
closeness [B16]:

Cn(i) =
1
li
=

n
∑ j di j

(1.8)
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Definition 1.2.7 — Within-Module Degree z(i). It measures the importance of a node inside
its community [A94]:

z(i) =
ki(mi)−〈ki(mi)〉

σk(mi)
(1.9)

where k(mi) is the degree of node i inside its community, and 〈ki(mi)〉 and σk(mi) are the average
and the standard deviation of the degree inside the community, respectively.

Definition 1.2.8 — Participation Coefficient p(i). Percentage of links of a node that reach
other communities [A94]:

p(i) = 1−∑
m

(
ki(m)

ki

)2

(1.10)

where ki(m) is the degree of node i inside community m.

1.2.3 “Mesoescale" network parameters

Although not all of the following parameters were used in this work, here we summarize those
network parameters that lie between the microscale (i.e., at the level of nodes) and the macroscale
(at the level of the network). The mesoscale parameters refer to low-to-intermediate number of
nodes.

Definition 1.2.9 — Motifs. Subgraphs or topological patterns that appear overrepresented in
real networks when compared to their random counterparts. They are considered as the building
blocks of complex networks and classified into classes, according to the number of nodes
forming the motif, e.g. class 3 (formed by three nodes) or class 4 (formed by four nodes). After
the paper by Milo et al [A151] introducing the concept of network motifs, different methods to
measure its presence in a network have been proposed such as in [A167] and [A49]. Here, we
show a representation of the 13 possible class-3 motifs:

Definition 1.2.10 — Modularity Q. Modularity has been classically used as a benchmark to
evaluate the output of network partition algorithms. Specifically, modularity measures how
good a given partition of the network into communities is when compared to the case of random
reshuffling of the links [273], [A86], [A162]:

Q =
Nc

∑
c=1

[
lc
L
− (

dc

2L
)2] (1.11)

The sum is over the number of clusters Nc, lc is the number of links joining nodes of module c
and dc is the sum of the degrees of the nodes of c. See Fig. 1.3 for an example of a network
divided into communities
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Figure 1.3: Network communities and modularity. Personal Facebook network of the author
of this PhD Thesis. Five important communities are detected and highlighted in different colors.
Nevertheless, different partition algorithms can lead to the detection of different communities. The
network modularity Q allows to objectively asses which of the algorithms leads to the best partition,
at least when compared with the randomized version of the network (still maintaining the number
of communities).

1.2.4 “Macroscale" network parameters

Definition 1.2.11 — Average Shortest Path d. Average of the minimum number of nodes to
be visited when going from i to j. First, we need to weight the distance between nodes Di j,
usually as the inverse of the elements of the connectivity matrix wi j, i.e. Di j =

1
wi j

. Next, we
calculate the shortest-path distance between every pair of nodes based on Di j using, for example,
the Dijkstra’s algorithm [A65]. This way, we obtain the shortest-path matrix disi j [B16], and
finally the average shortest path d is obtained as the average of the distance of each node to the
rest of the network:

d =
1

N(N−1) ∑
i6= j

disi j (1.12)

Definition 1.2.12 — Global Efficiency Eg. Latora et al. introduced the global efficiency to
overcome the fact that certain nodes of a network could be isolated from the others, thus leading
to infinite distance between them [A131]. Mathematically, Eg is defined as the harmonic mean
of the inverse of the shortest paths between all nodes of the network, with disi j being the shortest
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path between nodes i and j:

Eg =
1

N(N−1) ∑
i6= j

1
disi j

(1.13)

Definition 1.2.13 — Local Efficiency El(i). It accounts for the inverse of the shortest path
within the neighbourhood of node i when node i has been deleted (see definition of global
efficiency [A131]). Despite measuring different things, it is strongly related to the clustering
coefficient.

Definition 1.2.14 — Assortativity r. The assortativity parameter measures the degree-degree
correlation of the whole network. Assortative (disassortative) networks are those with positive
(negative) degree correlations [A86]:

r =
L−1

∑i jiki− [L−1
∑i

1
2( ji + ki)]

2

L−1 ∑i
1
2( j2

i + k2
i )− [L−1 ∑i

1
2( ji + ki)]2

(1.14)

where ji and ki are the degrees of the nodes at the end of the ith link, with i = 1, ...,L. The
assortativity parameter r is bounded between the interval (−1≤ r ≤ 1).

Definition 1.2.15 — Small-Worldness Sw. It measures the ratio between the normalized clus-
tering coefficient and the normalized shortest path [A112]:

Sw =
C/Crand

d/drand
(1.15)

where Crand and drand are the clustering and shortest path of an ensemble of randomized versions
of the original network. In principle, the highest the value of Sw, the more “small-world" a
networks is.

Definition 1.2.16 — Synchronizability r and λ2. Both the r and λ2 parameters evaluate the
linear stability of the synchronized state of a diffusively coupled network of identical oscillators,
according to the class the dynamical systems are. Dynamical systems can be classified as
class I, II or III [A22], depending on the number of zeros that the Master Stability Function
(MSF) has [A172]. This way, the MSF of class I systems does not have negative values and the
synchronized state is always unstable. Class II systems have one zero, which leads to a stable
synchronized state beyond a critical value of the coupling strength. Finally, the MSF of class III
systems has two zeroes and the synchronization manifold of the network is only stable when the
eigenvalues λ2 and λN of the Laplacian matrix are bounded within an interval defined by the
MSF. In view of all, the r parameter (obtained from the eigenvalues of the Laplacian matrix) and
λ2 (also from the Laplacian matrix) are fundamental to asses whether a network can synchronize
or not, depending on the type of dynamical system:

r =
λN

λ2
Class III (1.16)

r = λ2 Class II (1.17)

Network parameters are summarized in the Tab. 1.1. The meaning of the aforementioned
metrics and the optimized ways to compute them is just a part of the Network Science. Another
important branch of Network Science is the study of the different network models that explain the
topology and dynamical processes reported in real systems. This is what will be developed in the
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Microscale Mesoscale Macroscale

Local
k(i)

Motifs
〈k(i)〉

s(i) 〈s(i)〉
o(i)

Q

〈o(i)〉
C(i) 〈C(i)〉

Global

ec(i) N/A

b(i) N/A

Cn(i) 〈Cn(i)〉
z(i) N/A

p(i) N/A

El 〈El(i)〉
〈Eg(i)〉

d

r

Sw

r and λ2

Table 1.1: Classification of Networks Parameters according to the “topological" scale.
Columns indicate the classification associated to the topological scale. Rows distinguish between
local and global parameters. 〈•〉 refers to those parameters whose average leads to a macroscale
representation. Specifically: Degree k(i), Strength s(i), Outreach o(i), Clustering C(i), Eigenvec-
tor Centrality ec(i), Betweennes Centrality b(i), Node Closeness Cn(i), Within Module Degree
(z-score) z(i), Participation Coefficient p(i), Modularity Q, Average Shortest Path d, Assortativity
r, Small-Worldness Sw, Synchronizability r and λ2. N/A refers for those microsccopic features that
does not have a macroscopic representation.

next Section where I will overview the most common network structures and models.

1.3 Networks Structures

Networks can be statistically characterized by studying how some of their topological features can
be described by means of the adequate network models. In this Section, I will introduce the way
connections lead to: Random networks (in particular using the Erdös-Rényi model), Small-world
networks, scale-free networks (associated to the Barabási-Albert model) and the way we can
construct different kind of networks while maintaining a specific degree distribution (using the
configuration model).

1.3.1 Degree Distribution
Before describing the most common network structures and models, it is important to define what
the degree distribution is together with their implications. As mentioned before, the degree of a
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Figure 1.4: Cummulated distribution functions for large scales networks. γ is the slope of
dashed lines. A. Actor collaboration networks (γA = 2.3), B. WWW graph (γB = 2.1), C. Power
grid data (γC = 4). [A16]

node is the number of links a node has. Thus, degree distribution p(k) quantifies the probability of
finding a node with a certain degree k. Formally, this probability can be featured as p(k) = M(k)/N,
where M(k) is the number of nodes with degree k and the probability distribution can be traced just
by plotting p(k) against k. Real networks, both natural or man-made, can have many different types
of degree distributions, nevertheless there are two kinds that seem to be pervasive, i.e., according to
the shape of the distribution, exponential and power law. As we will see, the former distribution is
normally attributed to a random process while the second one is related to a preferential attachment.
Eventually, it may happen that the degree distribution of a real network is very noisy because
the data finiteness. In these cases, one might calculate the Cumulative Degree Distribution as
P(k) = p(k ≥ ki) (e.g., see Fig. 1.4). P(k) represents the probability of finding a node with a
value greater or equal to k. In this way, the distribution is smoothed, specially at its tail, where the
probability of finding nodes with high degree is low and the effects of noise are important [A161].

1.3.2 Random Networks
Random networks were one of the first classes of networks largely studied in the academic literature.
The basic idea behind random networks is that their nodes are randomly connected. Despite there
are many types of models to generate random networks, the most extended was introduced by Paul
Erdös and Alfred Rényi around the 50s and 60s. Erdös-Rényi (ER) graphs are very practical for
their simplicity, which allows different analytical treatment. But the importance of this kind of
networks comes from their use as benchmarks for real networks, specifically to the construction
of null cases for comparing realistic models. The simplest model starts from a finite number of
disconnected nodes N that are randomly connected through a fixed set of links L. An alternative
version introduces a probability p, such as 0≤ p≤ 1, of connecting all pair of nodes.

In an ER random network the associated probability of attaching any pair of nodes follows
a binomial distribution. As it is well known from probability theory, for large N and fixed 〈k〉,
this degree distribution tends to a Poisson distribution and, therefore this kind of networks are
commonly called Poisson random graphs or homogeneous networks:

p(k) = e−〈k〉
〈k〉k
k!

(1.18)

ER graphs have been exhaustively studied and their main statistical properties have been fully
characterized (see [A22, B16]).
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1.3.3 Small-World Networks
The idea that any individual is connected to any other through a few number of steps, no matter
what the size of the population is, was first introduced in 1929 in a short story called Láncszemek
(Chains), written by the Hungarian author Frigyes Karinthy. Later, in the 60s, this idea was made
famous by Stanley Milgram through his experiment testing the concept of Six Degrees of Separation
[A150]. Milgram carried out an experiment showing that the average number of steps a letter
should follow to arrive to a target (unknown) person through successive acquaintances was close to
six. This property, where nodes within a large network are virtually connected through a very low
number of steps, is called the Small-World property.

This type of social experiments, were the inspiration to what Watts and Strogatz defined as
Small-World networks (SW) [A246]. In SW networks two, supposedly, independent features are
present, i.e., a high level of clustering C and small average path length d. Watts and Strogatz
proposed a model to generate this kind of networks: departing from a perfect ordered structure a
random rewiring of few of its connections led to a drastic reduction of the shortest path, while the
clustering coefficient was still maintained at high levels. The rewiring process introduces shortcuts
near the ordered state reducing the distance between nodes and leading the average shortest path d
to scale with the logarithm of the network size N. Interestingly, the probability of rewiring a link
does not need to be high, as shown in Fig. 1.5.

Figure 1.5: From the regular to random networks. Watts-Strogatz model: Average shortest
path and clustering coefficient as a function of the rewiring probability p. Small-world networks,
obtained with the WS model, arise at low values of the rewiring probability p. The fingerprint of a
SW network combines a high clustering coefficient with a low shortest path. (Taken from [A246])

SW networks have shown its importance in biological and technological fields and have been
investigated in terms of, among others, efficiency, robustness, integration/segregation of information
[A225], [A130], [A28].

1.3.4 Scale-Free Networks and the Barabási-Albert Model
A diversity of real networks have a degree distribution that can not be explained by means of a
random model, i.e. they do not have a degree distribution with an exponential decay. Among them,
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distributions following power law functions in the form of p(k)∼ k−γ have been widely reported
in a diversity of social, biological and technological systems [A160]. Networks having a power law
dependence in their degree distribution are commonly called Scale-Free (SF) networks, because the
power law distribution guarantees the existence of nodes with a high heterogeneity in the number
of connections, thus making the average value of the degree not representative (i.e., it makes no
sense to talk about a particular scale, at least in terms of degree). The Barabási-Albert model (BA)
is the most extended model to generate scale-free networks [A16]. Such a model relies on the
growth of a network departing from m0 nodes (connected through l0 links) and then, sequentially,
nodes are attached to the existing ones by means ofm links. Crucially, the probability of attaching
a new node to the existing ones is dependent on the degree, following what is known as preferential
attachment. This kind of attachment promotes connections to the nodes with higher degree k thanks
to a probability of attachment β that is proportional to the degree a node has. In this way, the
probability of attaching a new node j to an existing node i is given by:

β ( j→ i) =
ki

∑l kl
(1.19)

After adding a number of n nodes to the initial set of m0, the network will have m0 +n nodes and
mn+ l0 links and will follow a degree distribution close to p(k)∼ k−γ . It can be proved analytically
that, when n→ ∞, the average degree will be 〈k〉 → 2m and the exponent γ → 3 [A5].

1.3.5 Configuration Model
Consider the possibility to compare a real-world network to another artificial one that holds some
characteristics of the former one, say, the degree distribution. Such comparison can be advantageous
if, for example, one is interested in reaching some generalizations of real networks, which are
unaffordable to reconstruct, may be because of the cost of collecting the data.

B

A 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 5 5 6 7

1 4|1 2|2 3|2 5|1 2|3 7|3 4|3 5|1 1|4 6

Figure 1.6: Configuration model example. A, degree sequence for 7 nodes. B, permuted matched
spokes vector of the generated graph. Adapted from [C1].

In those cases, the existence of models available to obtain networks that follow non-Poisson
degree distributions becomes useful. The most accepted model to create such a network is known as
the configuration model. The idea behind this model is to assume a degree distribution p(k), from
which one can choose a certain degree sequence~k = {k1,k2, ...,ki, ...,kn}, with n as the number of
nodes of the future network. This vector contains the available “spokes" or accessible edges to each
node ni, in order to be randomly matched with the stubs of the other nodes in the network. Next,
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this vector is randomly permuted (see Fig. 1.6), leading to a random network that has a specific
degree distribution. The configuration model, in principle, can admit the creation of self-loops
and multi-edge graphs, but one can reject those kind of connectivities by adding some particular
requirements to the linking algorithm.

1.4 Dynamics in/of Networks

While it is clear that the word “dynamics" implies the temporal evolution of a certain variable, the
prepositions in/of importantly determine what the variable under study is. Dynamics in networks
refers to the activity of the dynamical systems within the network (i.e., the dynamics of the nodes),
while dynamics of the networks refers to the evolution of the network itself, in terms of how its
topology changes in time.

Regarding to the dynamics occurring inside a network, there are different kinds of dynamical
processes that are strongly influenced by the topology of the networks, such as, for example,
spreading, traffic or synchronization.

Spreading processes mainly refer to both epidemic and rumour propagation, and Network
Science is one of the fundamental methodologies to study both kind of processes. One example is
the implementation of the most basic model of epidemiology, the susceptible-infected (SI) model,
in which nodes (individuals) can be in two states: susceptible or non infected, and infected. Other
models, such as the Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-Removed
(SIR,) have also been studied assuming the nodes as dynamical entities that can adopt three states:
susceptible (S), infected (I), and removed (R) (or vaccinated in the SIR).

In parallel, rumour spreading is based on the study of how individuals can adopt, create
and optimize the way in which a rumour spreads over a network, and the influence of external
perturbations such as marketing campaigns or propaganda actions. Models are similar to those of
disease spreading [A22], [A160], but the target is basically the oposite because in epidemiology
the aim is to eradicate the transmission, while in rumour spreading the goal is to improve such
transmission of information. This kind of processes underlay on the individual propensity to acquire
and diffuse knowledge, ideas or habits in social networks. In the case of opinion formation, the
voter model [A37], is the simplest one in which an agent posses a unique opinion that can take two
discrete values. Different models have been developed to take into account the possibility of having
a variability of choices (trends) due to shared cultural features as it is the case of the Axelrode
model [B1], and other approaches take into account even the circumstances in which agents can
collaborate or cooperate, as in the prisoner dilemma [A160], [B1].

On the other hand, traffic processes are related to problems of real communication networks
that take into account routing dynamics and strategies for enhancing transport efficiency based on
the network topology. An example of these systems is the Internet dynamics, where packages of
information flow among different nodes (routers). Another example is the problem of vehicular
mobility, congestions and the development of new pathways in cities [A39]. The main aim of these
models is to give insights about the physical substrate enhancing the flow of information of physical
quantities [B1].

Parallel to the previous processes, the dynamics of a node, no matter what the system is, is
strongly determined by the topology of the underlying networks. For example, the dynamical
state of the nodes can synchronize in several ways namely, complete synchronization, phase
synchronization, lag synchronization or even anti-synchronization, among many others. Beyond
the synchronization properties, there are many other processes associated to complex networks like
percolation, phase transitions, resilience and robustness2, but with the aim of focusing on the scope

2The interested reader can find a detailed summary of the different dynamical processes in the works by Barrat [B1],
Newman [A160] and Boccaletti [A22]
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of this PhD thesis I will concentrate around synchronization in networks, the content of information
in the dynamics of a system and the evolution of the network topology, since they are the main
topics related to the methodologies used here to analyze brain networks.

In this sense, in the following Sections I summarize how one can track the synchronization
in complex networks using the Kuramoto model, one of the simplest toy-models to describe
the transition from an asynchronous state to a complete synchronous state. Likewise, it will be
described how to extract temporal patterns from real-data signals in order to evaluate the dynamical
complexity of networked systems. More precisely, a theoretical framework will be developed to
explain how to capture the amount of information in those signals by the use of the permutation
entropy and the statistical complexity. Finally, I will describe how time-varying networks can be
used to track the evolution of the nodes’ synchronization.

1.4.1 Synchronization in Complex Networks
There are a diversity of examples about the emergence of synchronization in social, biological
and technological systems. For instance, under certain conditions women can synchronize their
menstrual cycles, yeast cell population exhibits synchronization of glycolytic oscillations, the
existence of coordinated hand clapping of an audience, breathing in mammals, predator-prey cycles
in ecosystems, synchronization of neural systems, as well as lighting synchronization of fireflies
swarms [B17]. Synchronization is one of the emerging dynamical processes whose understanding
has benefited the most from Network Science. For example, in identical systems diffusively coupled,
the spectral analysis of the Laplacian matrix of a network allows to evaluate the synchronization
properties of the whole network and quantifying the stability of the synchronized state [A22], [272].

But synchronization goes beyond identical systems. In general, synchronization is a time
dependent phenomenon based on the adjustment of rhythms of oscillating objects due to a weak
interaction. In principle, dynamical systems may have different rhythms but it is possible to define
their angular displacement through a variable called φ , the phase of the system. In other words, the
phase can be defined as a wave-sinusoidal angle elapsed respect its origin, which increases by 2π

within one cycle. Finally, the interaction (coupling strength) of such oscillating objects determines
if there will be synchronization and how fast it can occur.

One of the most renowned synchronization models applied to networks is known as the
Kuramoto model [A1, B13]. In general, the Kuramoto model implemented into a network reads:

φ̇k = ωk +λ

N

∑
j=i

ai j sin(φ j−φk) (1.20)

where ai j are the elements of a connectivity matrix and λ = K
N , being K and N the coupling strength

and the number of nodes, respectively (see Fig, 1.7). One of the advantages of the Kuramoto model
is that it is possible to define an order parameter r(t)eiψ(t) = (1/N)∑

N
j=1 eiφ j(t). Taking into account

that ψ(t) is the average phase, the modulus of r(t) directly measures the level of phase coherence
among dynamical systems, ranging between phase locking (1) and de-coherence behaviour (0).

1.4.2 Content of Information in Natural Systems
From laser dynamics [A231] or biological data [A187], to chaotic systems [A186] or statistical
physics [A270], there has been an important need of quantifying the stochasticity and the random-
ness of dynamical systems. Nevertheless, one of the main problems is to differentiate whether
patterns appearing along time series show an exclusive random-like demeanour or are in a state
between order and disorder.

For this reason, a typical way to distinguish noise from chaos in natural signals is the so-called
Signal to Noise Ratio analysis (SNR). Nevertheless, in the framework of complex systems, the SNR
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the phases. The radius r(t) measures the phase coherence, and ψ(t) is the

average phase. The values r ' 1 and r ' 0 describe the limits in which all

oscillators are either phase locked or move incoherently, respectively. Another

interesting property of Kuramoto model is that it exist a critical value of the

coupling Kc, above which the long-term behavior of the system corresponds to

the phase locked state, and below which we observe incoherence. Such critical

value can be derived analytically (for the complete derivation, the interested

reader could look at [19]) and it is equal to:

Kc =
2

π g(0)
; (2.33)

where g(0) is the distribution of the natural frequencies ω calculated in ω = 0.

Figure 2.11: (panels a to d) Geometric interpretation of the order parameter r. The

phases θj are plotted on the unit circle as a function of the coupling K, and their

centroid is given by the complex number r eiψ. (panel e) Order parameter r as a

function of the coupling K. (panel f) Distribution of the natural frequencies g(ω).

From [114].

Kuramoto model on complex networks

So far we have commented on coupled oscillators where each element �feels�

the presence of all the other ones. Of course, we know that such assumption

is no longer valid in real systems and that the pattern of interaction among

elements is better described in terms of a complex network. Thus, a question

arise: what are the e�ects of considering an underlying topology on the onset

of synchronization? Various attempts have been made through the years and

Figure 1.7: Phase synchronization, order parameter r, coupling strength K and distribution
of natural frequencies g(ω). The upper panel (a to d) shows the evolution of the phase synchro-
nization as function of coupling factors K. Phases are plotted in a complex unitary circle centered
in the phasor reiψ . Panel e: Order parameter r as a function of the coupling strength K. Panel f:
Distribution of the natural frequencies g(ω) of the oscillators (figure adapted from [A107]).

is not enough to capture the interplay between stochasticity and determinism within a given time
series {Xt}. To overcome this issue, several alternatives have been proposed, e.g., the calculation
of the entropy or complexity of a signal, among others.

Between the several ways of accounting for these two features of time series (entropy and
complexity) in this PhD Thesis I am going to focus on a recently developed methodology based on
specific partitions of time series, which are used to build up an associated symbol sequence {St} in
order to evaluate the information content via a Probability Distribution Function (PDF) of {St}.

Specifically, I am going to apply the methodology developed by Bandt and Pompe [A15], which
is known as the BP method. The BP method accounts for arbitrary real-world data time series with
certain characteristics: low SNR, weak stationary behaviour (mandatory in stochastic process), and
continuous distributions that attest the temporal evolution of the system. This methodology is based
on the use of symbolic dynamics applied to time series, without further assumptions concerning
the system under study. The BP methodology, successful for its simplicity, robustness and fast
calculation, is based on a comparison of the neighbouring samples of a time series, extracting
ordinal patterns whose probability of appearance will characterize the dynamical properties of the
system.

In the following Subsections I will summarize how to obtain the ordinal patterns and their
associated probability distributions from real-data time series [A180]. These ordinal patterns are
useful to measure the entropy and complexity of a system. In this way, I will describe how to obtain
the normalized permutation entropy [A185], the statistical disequilibrium [A128] and the statistical
complexity of a system [A138].

Ordinal Patterns and Stochastic Analysis

In the matter of dynamical complexity, information plays an important role as a feature that
describes the outermost bounds of periodicity, chaos and complexity. The information content
of a natural signal is obtained by a largely tantamount way of characterize the PDF of real-data
time series. In this sense, the BP method obtains the intrinsic temporal symbol sequences {St}
from the neighbouring steps of a time series. This symbol sequences depend on an embedding
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dimension D = 3,4,5, ..., which represents the amount of past information, being D the number of
neighbouring samples. In this way,D characterizes each {Xt} along t = 1,2, ...,M samples. To do
that, {Xt} is partitioned into (M−D) overlapping vectors of dimension D.

Figure 1.8: Overlapping vectors for the case D = 3. D! is the number of patterns. This way 3!
different types π of accessible states are presented. The probability of appearance of the ordinal
patterns is contained in P. If an ordinal pattern never appears, it is called a forbidden pattern.

Clearly, the greater the dimension D, the more information about the past state of our system,
and the longer the vectors are (containing the ordering of a set of D samples). Each of the vectors are
assigned to a time t, sliding the vector at every time step, to get a total of (M−D+1) overlapping
vectors. Hence, for each (M−D) vector, the position of the lowest value will be assigned the
ordinal value zero. The position of the highest value will correspond to (D−1) ordinal value (the
highest in the ranking). Thus, the following positions in-between the assigned zero and (D−1) will
be assigned by rating the positions of the remaining samples in the respective ordinal values. When
all (M−D+1) different order types in {St} are calculated, it is possible to obtain the PDF P(π),
quantifying the probability of finding a certain order pattern associated to {Xt}:

P(π) =
#{t|t ≤M−D,(xt+1, ...,xt+D) has a type π}

M−D+1
(1.21)

In equation 1.21, π is a possible ordinal pattern presented in the sequence {St} and # is its
number of appearances. Note that each ordinal pattern is a permutation of π = (0,1,2, ...,D−1).
In other words, D! represents all possible permutations π of order D of the number of acces-
sible states (M −D). As an example, consider the case of D = 3 in Fig. 1.8. The num-
ber of patterns or accessible states will be D! = 3! = 6 and the possible patterns π will be:
{(012),(021),(102),(201),(120),(210)}. From the former ones, vectors that appear in {St}
are called ordinal patterns of {Xt}, those that do not appear in {St}, but belong to the possible
accessible states are called forbidden patterns. Finally, the discrete PDF of the ordinal patterns
P = p j, ∀ j = 1,2, ...,N ∧ N = D! is calculated. This PDF obtained from BP method carries the
temporal information of {Xt} by comparing consecutive samples. In other words, this symbolic
technique incorporates the causality effects of a short-memory (of D steps) a time series has.

1.4.3 Statistical Complexity Measures
Entropy

As it was mentioned before, the information contained in the time series has been translated
into a PDF. Now, if we want to deal with the computation of the uncertainty associated in a
physical process described by the PDF, we need to calculate the so-called entropy. There are many
interpretations for this quantity depending on the field of application: for example, one can consider
the entropy as the level of disorder in a system or the lack of information, or can be either defined in
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processes of cooling and heating. In its fundamentals, entropy is defined as an extensive functional
form that stands for:

S[P] =−k
N

∑
j=1

p j log(p j) (1.22)

Here N is the total number of accessible states j, p j is the probability of finding a state j,
k is the Boltzman constant for physical systems (in Boltzman-Gibbs entropy form): log(2) for
binary-information systems (in Shannon-Tukey form) or it is omitted for natural dimensionless
systems (Shannon entropy), which is the case of this PhD Thesis.

When dealing with information content from dimensionless systems, Shanonn’s entropy is often
the most natural choice to quantify the level of uncertainty of a physical process. In turn, the amount
of information is related to the level of order of the system. Thus, the lower amount of information,
the higher order in the system. Here, the Shannon’s entropy (S) is useful to measure the intrinsic
order-disorder behaviour as a dynamical parameter of a complex system. Specifically, it measures
the uncertainty of {Xt} and ranges between zero and log(N): Zero if {Xt} is perfectly predicable
and depicts a perfect ordered system, meanwhile log(N) stands for the case in which samples in
{Xt} are independent between them. In this way, the amount of information is obtained as the
logarithm of the number of available choices,‘The most freedom to choose, the more information
you might convey" [B21]. In a more general framework, the amount of information is a qualitative
construct, consisting on the number of discriminable ordered sequences of symbols required to
communicate the state of an uncertain event that can be encoded into signs transmitted via signals
[A244].

It is worth noting that this methodology also presents some drawbacks. To begin with, this
measure neglects the existence of temporal relationships among samples in time series. For instance,
let X1 = {0,0,1,1} and X2 = {0,1,1,0} be two time series. If we do not assign a symbol sequence
for each time point, then it holds that S[P(X1)] = S[P(X2)], which means that the order relations in
the time scales would be lost. In addition, the measure assumes a prior knowledge about the system
in terms of the absence of generalization of the associated PDFs, and finally, this measure suffers
from size effects. Nonetheless, taking into account the BP method, it is possible to capture the
temporal relationships among time series elements, as well as it is feasible to measure the entropy
of any system regardless the type of the associated PDF.

Therefore, Bandt and Pompe, use the PDF of the ordinal patterns to define the Normalized
Permutation Entropy H [A15]:

Definition 1.4.1 — Normalized Permutation Entropy H[P]. It is given by the ratio between
the entropy S[P] of the ordinal patterns and Smax = S[Pe], being Pe the uniform probability
distribution:

H[P] =
S[P]
Smax

(1.23)

The normalized permutation entropy H[P] is bounded between 0≤ H[P]≤ 1.

Regarding the finite size effects, the normalized permutation entropy H allows to include a
uniform distribution Pe = {1/N,1/N, ...,1/N} making H to be an intensive property. This uniform
distribution Pe, also maximizes the associate-system information entropy S[P], i.e., Smax = log(N) =
log(D!). This way, the amount of disorder H[P] based on the information measure S[P] associated
to P is defined as the Permutation Entropy [A185] because it runs over all D! permutations π of
order D [281].
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Disequilibrium
On the other hand, the insertion of ‘a priori" equilibrium distribution {Pe} as a correction for the
associated entropy, leads to a discrimination between two populations. In other words, we need to
evaluate the distance between both distributions P and Pe. This fact makes S[P] not being enough to
effectively characterize {Xt} because there could be some ordinal patterns that belong to P as well

as to Pe. This distance accounts for the “order" of the system when one of the few ordinal patterns
emerge as the preferred ones [A200]. The disequilibrium between statistical populations will be the
measure to distinguish this non-Euclidean distance. We quantify the disequilibriumQ by adopting
some statistical distance D betwen the possible and accessible states of the systems in P and the
equilibrium distribution Pe.

Definition 1.4.2 — Disequilibrium Q[P]. It evaluates the distance between P and Pe as:

Q[P] = Q0D[P,Pe] (1.24)

where Q0 is a normalization constant leading to 0≤ Q[P]≤ 1. A Q 6= 0 indicates the existence
of preferred states among the accessible ones.

The normalization constant is obtained as Q0 = {N+1
N log(N +1)−2log(2N)+ log(N)}−1. On

the other hand, the statistical distance D= J[P|Pe] is defined in terms of the Jensen-Shannon diver-
gence as J[P|Pe] = (K[P|Pe]+K[Pe|P])/2, with K[P|Pe] as the mean information for discriminating
between P and Pe per observation p j, also known as the symmetric form of the Kullback-Leibler
relative entropy [A128]:

K[P|Pe] =−
N

∑
j=1

p∗ log(pe)+
N

∑
j=1

p∗ log(p)

= S[P,Pe]−S[P] (1.25)

Where S[P|Pe] is the Shannon cross entropy. As a consequence,J[P,Pe] can be defined in terms of
S as:

J[P|Pe] = S[(P+Pe)/2]−S[P]/2−S[Pe]/2 (1.26)

In this way, the disequilibrium Q[P], discriminates ordinal patterns in P from the uniform
distribution Pe. The zero limit or the minimum disequilibrium, implies that the lowest separation
of both populations does not distinguish between ordinal patterns coming from both populations.
Meanwhile the upper limit, with a high disequilibrium, is related to the fact of the existence of
some privileged ordinal patterns in P.

Statistical Complexity
Hitherto, both H and Q give some sense of the understanding of what the dynamical properties
of the system are. Nevertheless, we are concerned on evaluating the interplay between the order
and disorder of a system. Therefore, it is also desirable to complement these measures with some
metric quantifying the complexity of the system. In this sense, there exists an intense debate about
what would be the better way of quantifying the complexity of a system. In fact, there are several
definitions of complexity, which can be roughly classified into three main categories. The first one
relates complexity to a sort of function that monotonically increases with the amount of disorder
[A125], [B21]. A second category claims that complexity is a convex function of disorder. In
other words, it is defined as a function with zero value as the minimum of complexity in either
complete ordered and disordered states, while a maximum of complexity lays in some intermediate
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level in-between those states [B18], [A138], [A200]. Finally, the last type of definitions assumes
complexity to be loosely the level of self-organization of a system [A146].

Figure 1.9: Statistical measures based on ordinal patterns. Schematic representation of the
interplay between the normalized permutation entropy H[P], disequilibrium Q[P] and the statistical
complexity C[P], in terms of a system that range from complete order to complete disorder.

Regardless many for-and-against discussions about these three categories, the results of this
PhD Thesis require from a complexity measure that accomplishes the following characteristics: (i)
it must be independent of size effects, since the complexity should not increase just because the
system becomes larger and (ii) for non equilibrium systems, it must take into account both levels of
disorder and order of the system.

In this way, Bandt and Pompe define the statistical complexity of a system as:

Definition 1.4.3 — Statistical Complexity C[P]. This complexity mesures is defined as the
product between the permutation entropy H and the disequilibrium Q:

C[P] = H[P] ·Q[P] (1.27)

With this definition, the statistical complexity C accomplishes the first requirement since H
and Q are intensive quantities. The second requirement is also achieved since, by means of H and
Q, we are measuring the disorder of a system and its distance from the equilibrium. Note that the
statistical complexity vanishes either if the system is at equilibrium (maximum disorder) or if it is
completely ordered (maximal distance from the equilibrium). Figure 1.9 shows a qualitative plot
indicating the intreplay between the three measures.

The previous definitions of H, Q and C are usually known as Generalized Statistical Com-
plexity Measures (SCM). SCM capture either, the essential details of the dynamics that allow to
discern among different degrees of periodicity and randomness, as well as all possible degrees of
stochasticity when the information of {Xt} is extracted via the BP method. SCM, not only compute
randomness, but a wide range of correlation structures, not already offered by a simple entropy
analysis.

1.4.4 Evolving Networks
To conclude the overview of the main properties a complex network has, I am going to recall the
importance of time when analyzing the topology of networks. Instead of assuming the classical
approach where a network is considered as a static entity, one can choose a more realistic point
of view, where network properties change along time according to the evolution of the processes
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occurring inside the networks.

Figure 1.10: Networks may evolve in time. In this qualitative example, each time tn represents
the evolution of a given network Gn. Each time step, the properties of the network can change,
highlighting the importance of studying of how these changes arise.

This approximation leads to what is known as time-varying networks or evolving networks
(EN). In these networks, the links and the nodes change in time (see Fig. 1.10) and the connectivity
matrix is defined as a time aggregated graph:

ai, j(t) =

{
1, if i links j at time t
0,otherwise

(1.28)

Arriving to this point it is reasonable to ask in what cases the use of EN offers better options
than the static viewpoint? The answer is related to the time scales of both the dynamical systems
and the topology of the network: if the dynamical systems evolve in a time scale much faster than
that of the network evolution, it is not necessary to use the EN approach [A82].

Regarding the topological properties, there are several extensions of the parameters of static
networks to the case of EN [A110]. As an example, let me take the temporal clustering3, a
measure of clustering along several “snapshots" of a EN, where certain persistence of connections
is computed:

Definition 1.4.4 — Temporal clustering Ci. (0 ≤ Ci ≤ 1). A measure of persistence of the
interactions of node ith. Ci approaches to one when the clustering remains fixed andCi tends to
zero if the clustering parameter is volatile [A45, A227]:

Ci =
1

T −1

T−1

∑
t=1

∑ j at
i ja

t+1
i j√

kt
ik

t+1
i

(1.29)

Where T = nt, is the total time, and t is the exact time step with kt = ∑ j at
i j representing the

degree of node i at the specific time t.

Finally, regarding the paths existing in the network, temporal paths are usually named as
“sequences of contacts with non-decreasing times that connect sets of vertices" [A109, 275]. The
fact that time introduces causality, divides the nodes between the source set and set of influence of a
node i. The former set contains the nodes that, in a time lapse, can reach the node i, while the latter
set reflects those nodes that can be reached from node i [A41]. In general, for EN, the “duration"
or ‘temporal path length" relates to a measure of elapsed time during the first and the final contact
of both set of nodes, but still, it is important to remark that static path lengths and temporal path
lengths are not transitive [A170].

3This metric was not used in this work, notwithstanding I consider as relevant to mention the existence of this metric.
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1.5 Final Remarks
In this Chapter I have overviewed the main topics of Network Science that are related to the results of
this PhD Thesis, in particular, those that quantify the topology and dynamics of networked systems.
I highlighted the importance of studying the brain as, "par excellence", the most sophisticated
complex system and I enumerated the ways Network Science can help in the understanding of the
brain behaviour.

First, I summarized the most common network metrics, which extract information about the
topological organization of a network and I explained some of the most studied models in Network
Science. Likewise, I described the most relevant dynamical processes occurring in networks, which,
in turn, have some connections with the brain, such as synchronization.

Next, I over-viewed the so-called statistical complexity measures SCM via the BP methodology.
This methodology has been previously applied to the analysis of brain signals, more precisely
to electroencephalographic (EEG) recordings [A180]. Notwithstanding, the application of this
methodology to other kind of brain signals, such as Magnetoencephalography (MEG), has not been
documented yet (until this PhD Thesis). In this context, I remarked the importance of a detailed
study of the brain that takes into account two properties of networks: the dynamics of networks
as the evolution of the network topology, and the dynamics in networks as the inner and temporal
dynamical processes of the network’s nodes.

Finally, I discussed about the importance of taking into account the time variable to understand
the past, present and future states of networks, the majority of them being “living systems" whose
properties may evolve in time. In view of all, the topology of the complex networks, its evolution
and the dynamical properties of the nodes, are proposed as candidates to analyze the properties of
brain activation patterns. In this way, the following Chapter will be devoted to define what a brain
network is, what kind of brain networks I will deal with, and what does the emergent properties of
human brain mean.
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Solomon Shereshevski, a journalist with the ability to remember and recall long lists of data,
numbers, names even entries in books, was diagnosed with Synaesthesia, a complex pathology

that makes the bearer interchanges senses (coupled senses), so he was able to hear colors, see
sounds, and taste objects just by touching them [276]. Unfortunately, this mnemonic "gift" led him
difficulties in his everyday life, because he could not differentiate events from minutes to years
(what is known as Telescoping effect).
Phineas Gage, was a rail-road worker who suffered a brain injury because an accident. A 1 meter
long iron bar passed through his brain damaging his frontal lobe. Since then, he intensified his
bad mood with many negative changes in his personality. Subsequent studies demonstrated that
emotion, as a feature of mind, is enclosed in the brain [A51][280].
Henry Molaison, best known as the H.M. patient, suffered from epilepsy since an accident he had
with a bicycle. During a surgery, his hippocampus was functionally removed and then he was
unable to learn new things because his long time memory was affected (Anterograde amnesia)
[A48].

As these people, many other subjects in the neuropsychological literature reveal the astonishing,
complicated and, in some cases, strange responses of the brain under different situations. The
evidences found in brain injuries and other neuronal phenomena have shed conjectures about
how intangible elements, such as consciousness, perception, mind, will or thoughts could be in
connection with brain processes.

An example of the first attempts to unveil this interrelation was exposed by Rene Descartes
in 1637. In his treatise "Les passions de l’âme", he declared the pineal gland as the key structure
where the soul was attached to the body and the only link between the "thinking substance" and the
corporeal entity. He considered that this substance was associated with the substrate of passions,
which nowadays are named emotions [B5]. Descartes established the basis of what is currently
known as the dualism branch of the philosophy of mind, a perspective that demands a relationship
between mind and matter despite of belonging to two different ontological categories.

Since then, several perspectives have focussed on how the brain works from interdisciplinary



28 Chapter 2. Brain Networks

angles. Nevertheless, it has not been an easy enterprise and it will not be during much time.
Notwithstanding, with the use of new technologies to record brain signals combined with new
mathematical approaches under the paradigm of complexity and interdisciplinary perspectives, it is
possible to address new studies of the brain’s nature. These studies already take into account the
inner dynamics and the nonlinear features of the brain to undermine a little bit more our ignorance
about the unknown entity the human brain is.

Thus, this Chapter is devoted to introduce the key topics about the brain’s nature, experimental
methods related to brain signals and how to construct brain networks. Specifically, I will briefly
describe some of the brain features from the neuroanatomical viewpoint. Then, a short summary
of functional properties will be exposed in following Sections. I will complement the previous
descriptions touching slightly the brain-mind problem, the neural correlates, the mental states and
how they relate as the result of neural coding. A simple revision of some of the main research fields
devoted to the study of brain, and their relation with what is known as cognitive sciences will also
be exposed. Next, a Section will be devoted to brain signaling, and how to gather those signals so
as to built brain networks. The representation and classification of brain networks and paradigmatic
examples extracted from the scientific literature will be treated at the closing sections.

2.1 The Structural and Functional Brain
From the structural point of view, the brain can be understood as a network of cells forming a
massively parallel system, organized to carry out three major functions: computation, information
storage and transport, and communication among computational structures. Brain tissue can be
separated into (i) grey matter (neurons, unmyelinated fibers) surrounding the deeper (ii) white matter
fibers connecting neurons (glial cells, myelinated axons and dendrites). The human brain consists of
roughly 1010−1011 neurons. Each neuron has approximately 104 synapses, which directly connect
to other neurons. The total wiring in human cortical grey matter is of the order of 105−106 km,
resulting in an overall neuronal potential band-width of the order of Terabits/second [C4]. The
cortical membrane surface is about 25000 m2, the equivalent of 4 soccer fields. Furthermore, the
brain performs an estimated of 1015, synaptic operations per second, but only consumes around
12 W , thus achieving an operation/joule ratio several orders of magnitude higher than the fastest
available microprocessor [T5].

On the other hand, powering the human adult brain drains∼ 20% of resting energy consumption
(∼ 60% in infants). Neuronal signal transmission through axons and synapses accounts for about
50% of the brain’s overall consumption [A132], and due to the dense interconnected structure of
its axons and synapses, cortical gray matter uses more than 75% of the total energy consumption
for signalling. The energy supply limits both the total size and the amount of information that
can be transmitted within the brain at a time. The brain achieves these impressively high levels
of computational efficiency by adopting energy efficient architectures, involving trimming of su-
perfluous signals and the representation of information with energy-efficient codes, distributing
signals appropriately in space and time. The brain can also be seen as a two-fold trait of structure
plus function, organized at different spatio-temporal scales in hierarchical dynamical modules
of neurons that process information [B3]. Neurons represent the building-blocks of the nervous
system, in which their spatio-temporal scales for synaptic processing ranges between ( µm−mm)
and (ms− s), respectively [B8].

The human brain anatomy is also characterized by networks of coupled neural systems across
different spatial scales (see Fig. 2.1). Vertical structures divide the cortex into six main layers
perpendicular to the pia matter, within them basic computational units, encoding similar features,
can heuristically be defined as minicolumns, consisting of dense local interconnections between
excitatory cells and inhibitory interneurons. Couplings between these local regions arise through
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Figure 2.1: Scales of structural brain networks. Brain networks range between the organized
interconnected systems from the microscale to the macroscale, passing through different mesoscales.
Microscale: Functional groups of neurons depict the microscale interconnectivity, Mesoscales:
From large functional neuron groups to cortical interconnected regions. Macroscale: In the context
of neuroscience, this scale accounts for the large-nerves interconnections like the central nervous
systems. In the plot, from left to right, we show networks of molecules (taken from [A259]), cultured
networks in microscales (taken from [T2]), a brain network in one of the different mesoescales
(Drawing using toolkit [A252]) and the macroscale representation of the central nervous system.

sparse long-range excitatory projections, such as cortico-cortical fibres. These couplings facilitate
large-scale integrative processes involving coordination between specialized networks. In sum,
there are two important facts around hierarchical modularity that are associated to the brain. First,
the modules can change their functions without adversely perturbing the remainder of the system
and, second, hierarchical modularity facilitates behavioural adaptation [A123].

2.1.1 Functional Background

Functional brain activity consists of transient episodes of synchronized/unsynchronized activity
between different parts brain regions [A24]. Synchronization facilitates integrative functions, by
transiently binding together spatially distributed neural populations in parallel networks during
sensory perception and information processing [A201], [A152]. Desynchronization allows the
brain to flexibly switch from one coherent state to another [A183]. Asynchronous (non-linear)
couplings may also play an important role in functional integration, facilitating the creation of
transient context-sensitive coherent neural assemblies between distant brain regions [A77]. On the
other hand, plasticity, as a temporal functionality, occurs over multiple temporal scales, a short one
in the order of seconds to minutes (related to learning and memory), and a long one that requires
from days to months (related to ageing and recovery).

In this context, neurons represent the basic functional units of the brain. What actually dis-
tinguish neurons from other kinds of cells is their time-dependent fluctuations of the membrane
potential. They behave like nonlinear excitable entities thanks to the dynamics of their membrane
potentials, which allow the propagation of fluctuations in space. This propagation is called Action
Potential or, more commonly, Spikes. They are produced near the soma when an ion imbalance
appears in the membrane cell or an external stimulus affects the polarization of the neuron. The
resting potential is around ∼−70 mV . If the membrane potential slightly overcomes differences
higher than a threshold, that is about 20− 30 µV higher than the resting potential, the action
potential appears and travels along the dendrite. Its all-or-none characteristic defines the spikes
as the elementary packages of information in nervous systems, in other words, the units of neural
code.
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Neural communication is based on the so-called synapses, which are specific inter neuronal
junctions. There exist chemical and electrical synapses. In the first group, predominant in ver-
tebrates, the separation between neurons, known as the Synaptic Cleft, is around tenths of nm.
The spike, which arrives at the end of the presynaptic cell, provokes a release of thousands of
neurotransmitters through a diffusion process due to the higher concentration of presynaptic vesicles
filled of such neurotransmitters. Neurotransmitters released in the synaptic cleft induce chemical
channel excitations in the postsynaptic neuron opening its ionic receptors and producing a new
depolarization of the membrane potential. In this way, the electrical signal is transferred from
one cell to another by means of neurotransmitters. Ramon y Cajal, defined the phenomenon of
chemical synapses as the neuron doctrine, which characterizes the neurons as discrete entities
because the intermittent character of the signal propagation. On the other hand, electrical synapses
are based on the fact that there are cell membranes that are directly connected through specialized
channels called Gap Junctions. In this case, ionic particles can cross this gap enabling bidirectional
current flow between both cells, and the transferred signal to the postsynaptic cell underlays without
neurotransmitters as mediators of signal propagation. This quality claimed the reticular hypothesis
of Camillo Golgi, in which neural tissue is rather continuous [C2].

Anyhow, discrete and continuous phenomena leads the postsynaptic cells to reproduce large
amount of spikes from different sources (∼ 104 exchanges of information per second and per
neuron) [B10]. The oscillatory activity can be summed up creating what is called a bursting in
postsynaptic cells. Bursting acts in short periods of time and then decays into quiescent periods.
This superposition of contributions from neighbouring neurons serves as an information media that
evolves multi-rhythmically along time in localized groups of neurons with more than one natural
frequency [B2]. The synchrony of these rhythms drives the extracellular potentials. These potentials
are associated to distinct cognitive functions as well as the healthy functioning of the brain along a
wide spectrum of frequency scales, that range almost four order of magnitude (0.05 − 500 Hz)
characterized by several frequency bands [A33]. These brain signals carry the information about
the functional demeanour of the brain and the intangible features of mind, like consciousness and
cognition. Hence, albeit structure and function are important to characterize the brain behaviour,
the study of such intangible features of mind is also crucial to better understand the brain and its
interplay with the so-called mind.

In this sense, this interrelation accounts for intangible features like mental states. Mental
states play an important role in neuroscience because refer to the way the individual feels and
thinks [C5], [B15], i.e., the person’s conscious experiences. The mental states associate cognitive
functions that delineate what people can do with their minds, e.g. perception, memory, ideation,
imagination, belief, reasoning, desire, volition, emotion, sensation, consciousness demeanour or
language. Hence, mental manifestations like cover attitudes, lies, visual perception [A102], memory
tasks or even introspection, among others, are also a representation of different mental states.

In summary, when one looks at the brain as a complex system, mental states arise by the hand
of the brain emergent properties. These states generally identify certain neural correlates, that
account for the minimal physical arrangement of constituents (neurons) and events (processes) that
crucially correlate with a specific context of experience. In other words, the minimal set of neurons
performing a task regarded with some conscious percept, for example, γ oscillations related to
visual awareness [A50].

Finally, these emergent properties result from information processing of the neural activity, but:
What does information processing mean? In fact, what does information mean? The next Section
is devoted to discuss about the information sources in the brain and its interplay with the neural
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coding.

2.2 Brain Information Sources
Information processing has been widely studied from different angles encompassing classical or
quantum mechanics. In the same way, the conveyed neural information has been investigated
at different levels that span from the quantum and molecular level of neurons up to different
microscales, as far as cortical mesoscales in brain networks, even from the most challenging field
of philosophy of mind.

Sataric et al, developed linear models in classical mechanics to explain the transfer of informa-
tion at molecular level [A192], and the information velocity using Kink-type Solitons has given
the nonlinear mechanics explanation to this phenomenon [279], [278]. Collective behaviours of
proteins in the presence of Landau-Ginzburg energy functions [A235], and polymerization of neural
organelles with solitary waves dynamics[A42] have been used by Tuszynski and Chou to give
appropriated physical-chemical explanations. In the case of quantum approximations,Hameroff et
al have worked on information quantum biology [274]. Electrostatic properties at quantum level in
neural organelles [A236] have also been described, and biological quantum computations, where
conformational states of proteins behave akin to "qbits" have been successful models in quantum
information theory [A100]. Regarding to the philosophy of mind, Díaz et al have developed what
is defined as the "Living consciousness" [B6], the pattern-process theory in aggression behaviour
[A155] and the works of Churchland have been another attempts to associate the body-mind
problem with proposals coming from mathematical models [B3]. Likewise, in microscopic and
mesoscopic scales Kostal et al. and Butts et al. have been working on neuronal coding in spike
trains [A126] and temporal precision in neural code for visual system [A32], respectively. The
effects of conveyed "neural noise" to other neurons, as a part of neural signals, have been exposed
by Stein [A219], the responses of stimuli encoded in neuron spikes for visual cortex have been
also studied by Monterruno et al [A154]. Finally, Wu et al. have focussed on the coding of neural
populations for biological computation [A251] and the structural complexity at brain mesoscale
has been also investigated by Young et al [A255], just to name a few.

Among all of these valid approximations, one can say that there are a variety of information
sources ranging from single neurons, passing through oxygen/blood dynamics and arriving to
bursting groups of neurons, mesoscopic inner regions of the brain and pyramidal cortical neurons.
These sources offer a wide range of brain signalling that can be acquired by different invasive
and non invasive techniques, which take into account anatomical and functional information of
the brain. Among these techniques, Post-Mortem Dissection and Positron Emission Tomography
(PET) belong to invasive methodologies that achieve anatomical data, meanwhile intra-cranial Elec-
troencephalography (iEEG) represents and example of an invasive technique that gives functional
information. In contrast to the previous ones, the noninvasive methods accounting for functional
information can be divided into two main groups: the ones that gather data coming from metabolic
processes and those that are involved with the electromagnetic responses of the brain.

2.2.1 Metabolic Sources
The first group comprises the family of the Magnetic Resonance Imaging techniques (MRI)1.
The structural MRI (sMRI) is one of the brain imaging techniques that focuses in the anatomical
information. In addition, several variations like the Diffusion Tensor Imaging (DTI)2, and Diffusion
Spectrum Imaging (DSI)3 are based on the trace, in a three dimensional space, of the course of the

1Also known as nuclear MRI (nMRI) or Magnetic Resonance Tomography (MRT)
2DTI is not enough to obtain an anatomical reconstruction in sites where neurons fibers bundles cross one into

another.
3DSI solves the problem of DTI by assuming several diffusion directions in each white matter representation.
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Figure 2.2: Different techniques and their spatio-temporal resolutions. Resolution ranges are
shown in logarithmic scales. Here it can be seen how the EEG and MEG techniques guarantee
the best temporal resolution at the level of mesoscales in contrast with fMRI. This way, EEG and
MEG capture information about mental states and cognitive functions. The others tow methods
with higher temporal resolution (Optical imaging and Patch clamp) only can be applied at the level
of microscale. Figure modified from Churchland [B3]

oxygen through myelinated fibers [A242].
In parallel to these methods, functional MRI (fMRI) records hemodynamic-based brain ac-

tivity by measuring blood and oxygenation fluxes. More exactly, fMRI records Blood-Oxygen-
Level-Dependent signals (BOLD), which account for magnetic susceptibility changes in brain
tissue. This information is coded in three dimensional pixels called voxels, which contain local
changes of the oxygenated hemoglobin levels as consequence of brain activity [A175] [A102]. The
main characteristic of these signals is its high (low) spatial (temporal) resolution (see Fig. 2.2).
Hemodynamic-based signals do not really measure neural events, informing only metabolic pro-
cesses in conglomerates of brain structures. In other words, the sources of MRI information-types
remain in oxygen and hemoglobin changes of deeper brain tissues, allowing complex relation-
ship with what is deduced from neuronal activity and pointing higher difficulties to extrapolate
conclusions about the real neuronal responses. In this context, the second group of techniques
offers an affordable frame to get a bit closer to the real neural activity, taking into account the
electromagnetic responses of single neurons or groups of cortical neurons.

2.2.2 Electromagnetic Sources
In contrast with metabolic sources, imaging techniques based on the electromagnetic activity offer
higher (lower) temporal (spatial) resolution. Here, the sources of information are groups of neurons.
More exactly, the spatio-temporal superposition of many spikes at the level of cortical columns that
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create variations of the electromagnetic activity.
These sources (the neurons) use the spike trains as transmitters, conveying information into

a receiver, that is not much than a capture device. Nevertheless, in the time lapse required by the
information to travel from one site to the other, different noise sources are present. However, the
resulting information4, recorded from the conglomerate of neurons, associates some emergent prop-
erty of brain and carries information of action potentials, which are thought to be the information
of brain in the context of neural dynamics [B4], [B21]. This information may elucidate some
neural correlates and evidence different mental states. In this sense, cognitive, linguistic, perceptual,
emotional and motor processes are associated to fast signals, so this means that techniques with
high temporal resolution are the most adequate to analyze these kind of processes.

Electromagnetic Techniques

It is possible to measure the activity of neuron cultures at the microscale level using Micro-Electrode-
Arrays (MEA). Nevertheless, when capturing brain rhythms, the most extended techniques are
non invasive, and electroencephalography (EEG) or Magnetoencephalography (MEG) are the
two that are most extended [A242], [B19]. In particular, EEG and MEG favour the extraction of
sensory information, meanwhile metabolic signals can not witness these events because its temporal
resolution is around two orders of magnitudes below the typical EEG or MEG accuracy [T3], [A13].
EEG and MEG measure different physical variables. On the one hand, EEG measures the electrical
activity (at the scalp) in the order of µV , due to the difference of extracellular potential from cortical
groups of pyramidal neurons. On the other hand, MEG measures the magnetic activity (also at the
scalp), in the scale of f T , of large axons in this same group of neurons. They allow to differentiate
into several frequencies that have been associated to particular cognitive events, occurring from
hundreds of millisecond to periods of few seconds (see Tab. 2.1 [A191].

Band Band Width (Hz) Associated Events

δ < 4 Deep dreamless sleep, Loss of proprioception, Unconsciousness
θ 4−7 Memory, Non-REM sleep, Deep meditation, Hypnosis
α 8−13 Relaxation, Resting state, Pree-Sleep(wake)-drowsiness, REM
β 14−29 Active concentration, Anxious, thinking, Arousal, Paranoia
γ 30−80 Perception, Problem solving, fear, Consciousness

Table 2.1: Most Common Cognitive Band Frequencies. There is no agreement in the literature
about the exact frequency band limits, but certainly these frequency bands have been reported in
association with several cognitive phenomena.

In this way, one can obtain information about cognitive processes by means of experiments
that account for that cognitive functions and, then, filtering the obtained signals in the respective
band. Moreover, one can also get another type of information about a specific stimulus response.
For example, in some experiments individuals usually perform motor tasks like pressing a button
or finger tapping [B14], then one can be interested in signals associated to these specific events.
The Event-Related Potential (ERP) and the magnetic counterpart, Event-Related Field (ERF), are
waveforms associated to such events that come from some all-trial5 average of time series in the
same cortical regions [A21]. Likewise, one can also be interested in provoking an explicit response
in the brain due to a well-known stimulus. For instance, subjects may be submitted to a known
visual stimulus (flashes or visual patterns), auditory excitations (clicks and tones), somatosensory

4In terms of Shannon’s definition "information processing is regarded to a conversion of latent information into a
detectable manifest information gathered by an observer".

5Trial is the fraction of a time series that contains the temporal lapse in which a complete experiment occurs.
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stimulus (skin punctures) or motors stimulus like electromagnetic stimulations [A137], [A166],
[A105]. In this case, the Evoked-Potential (EP) provides information about the function of that
respective sensory system.

In general, EEG and MEG are the most common techniques to dig into the brain information
sources, since they directly reflect the neural activity [A102], [A191]. The quality of the recorded
data depends on the experimental set up and the preprocessing step, which is an important bridge
between collecting and analyzing the data. It allows to pass from raw to clean data. In a rough
view, the simplest preprocessing is the Epoching, which consists of a reorganization of the data
into segments associated to the same response, including the removal of artifacts. In this way,
preprocessing increases the SNR associated to the recorded signals. All in all, the final goal of
these experiments is to gather the most cleaned brain signals possible, which includes the highest
possible amount of information associated to an explicit cognitive process. Thus, these signals can
be correlated in order to figure out what neural correlates and neuromarkers could be associated to
these cognitive processes.

In the case of brain complex networks, the search of such signal interdependencies is the back-
bone in the construction of different brain networks. Specifically, the metrics of interdependencies
among signals are fundamental to evaluate the interconnectivity among brain sites associated to
specific signals. In the next Section, I will develop a short summary of the signal interdependencies
as the way for the obtaining functional brain networks.

2.3 Measuring Coordination Between Brain Sites

Signals recorded from cortical regions can be correlated in order to extract the connectivity pattern
among these regions. There are plenty of different correlations that make use of statistical analysis,
extracting linear and non linear interdependencies. Some of them look at interdependencies in time,
others in frequency and other in phase and/or amplitude. Likewise, some of them are based on
information theory, i.e., they do not explore similar behaviours in signals, but their search is based
on the amount of information that one signal can convey to another. This way, taking into account
those interdependencies, one may ask: What measure of coordination between brain sites is the
most adequate?

This is one of the most common question about brain signals analysis. In principle, there is
not a correct, perfect or better connectivity method [A265]. However, this is not necessarily bad
news, in fact, it opens the doors to a wide spectrum for custom-tailoring analyses regarding specific
research questions. Based on that, this section is devoted to summarize the principal methods to
evaluate the coordination between brain signals. They will be presented in a simple organization
based on the type of features that can be extracted for each pairwise correlation, i.e., linear or non
linear ones. Additionally, I will also present those measures that account for time series associations
from the perspective of the frequency domain.

2.3.1 Linear Methods

In time domain, one of the most extended measures to evaluate correlation between time series is the
Cross-Correlation (C(τ)XY ), measuring linear interdependencies between zero-mean normalized
{Xt} and {Yt}, for now on, X(t) and Y (t) signals. It ranges between 1 and−1 and is able to extract
correlations in the presence of a time lag τ . CXY > 0 quantifies the amount of direct correlation
between the two signals, while negative values reveal the existence of an anti-correlated behaviour.
The renowned Pearson Correlation (PC) is subcategory of this measure, consisting on the case of
C(τ = 0)XY .

Previous indexes only give information about dependencies but there is no information about
whether one source influences the behaviour of the other. To do that, causality indexes, as Granger
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Causality (GC) quantify this kind of directed interdependencies. The idea behind GC is that if X(t)
influences Y (t), the addition of past terms of X(t) to the regression of Y (t) should yield accuracy in
its prediction of Y (t) [A93].

2.3.2 Non Linear Methods
The use of nonlinear time series analysis in brain signals goes back around three decades ago with
the works of Babloyantz [A12]. Regarding those non linear indexes, Non-Linear Correlation (NLC)
is a non parametric and nonlinear regression coefficient that measures the dependency of signals.
The underlying idea is that each point in Y (t) given X(t) can be predicted based on a nonlinear
regression curve. In addition, Synchronization Likelihood Algorithm (SL) is useful in cases where it
is important to find temporal patterns among signals. SL, which is bounded between [0,1], identifies
temporal patterns in X(t) that arise within a fixed time window, then it looks at signal Y (t) to find
the existence of coordinated (not necessarily similar) patterns within the same window, evaluating
how this co-ocurrence of patterns is maintained along the whole time series [A214].

Likewise, Information-theory based indexes have arisen as parallel tools to correlate signals.
Among them, Mutual Information (MI) is a non causal index defined as the common relative
amount of information that we get from X(t), knowing the past of Y (t) [A267]. The analogue form
of causality is the Transfer Entropy (TE), which gives clues about the mean information between
the previous state Yn−1 and the next state of Xn [A164].

Another domain where one can find out correlations is in the phase of the signals. In that respect,
one first must estimate the instantaneous phases. For continuous time series like those obtained in
EEG or MEG, one can use the analytic concept of Hilbert transform [A229], or alternatively, by
convolution of a complex wavelet [A129]. For discrete neural signals, like spikes, they can also
be transformed to get instant phases by linear interpolation [B17]. Thereafter, correlations of the
respective phases can be estimated by the Stroboscopic Approach (SA), which is an information-
theory based index [A184]. Nonetheless, the Mean Phase Coherence and Phase Locking Value
(PLV) are the most common indexes to measure how the mean phase or phase differences are
distributed along the unit circle. In the case of PLV, the tendency of the relative different phases to
be distributed uniformly leads to low values of the index. On the contrary, when phase differences
tend to be maintained within a certain threshold along the time, the PLV is close to 1 [A129].

On the other hand, although the concept of Complete Synchronization can only be applied to
identical systems [A80], something difficult to accomplish in natural systems, its relation with chaos
synchronization has been the reason to its application in neuronal systems [T4], [B17]. Generalized
Synchronization (GS) represents another kind of nonlinear coordination that assumes the existence
of chaotic oscillators. In particular, GS claims for the existence of certain functional dependency
between systems, which can be quantified using different nonlinear techniques [A189].

2.3.3 Spectral Methods
Coherence (Coh), also known as Coherence Spectrum [A174] is the most extended indicator of
coordination based on the spectral properties of time series. Coherence is defined as the square
module of a coherence function F . This function F is based on either: the Cross-Spectral Density
(also called cross power spectrum) function, that is simply the Fourier transform of the classical
Cross-Correlation function of X(t) and Y (t); or the power spectral densities of each signal. It
has a zero value when both signals are linearly independent at a certain frequency, and 1 for the
maximum correlation of the spectra. There is another extension of the Coherence that takes into
account just the imaginary part [A165]. This Imaginary Coherence has proved to be successful at
the time of extracting dependencies in brain signals based on their frequencies, avoiding the field
spread residual effects due to the volume conduction [A81], [A56].

Another example of frequency based correlation is the Partial Coherence (PC) and Partial
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Directed Coherence (PDC). The former captures the fractional coherence between X and Y , which
is not shared with another signal Z under the assumption of linearity, meanwhile the latter extracts
causality as the relative strength correlation a signal X has with respect to Y , as compared with all
correlations of Y with the other signals in the channels [A173].

In short, let us return to the initial question about what measure is the most adequate to evaluate
coordination between signals. Although the brain is a non linear system and, at least, one may have
strong reasons to believe that the recorded signals contain some nonlinear interdependencies, the
nonlinear methods do not necessary overcome the linear indexes. In fact, a good strategy could
be to start the analysis with a linear measure, and then use some of the nonlinear methodologies
in order to capture all possible correlations of the system. At the end, it depends on the kind of
data and the aims of the research. For example, if we are interested on the amplitude of the signals,
nonlinear Granger causality and GS are good candidates, otherwise PS indexes give correlations
independently of the signal amplitudes. In this work, we have used the Synchronization Likelihood,
the imaginary Coherence and the Phase Locking-Value in order to evaluate coordination in the time,
frequency and phase domains.

Finally, once correlations between brain sites have been obtained, it is time to focus on the
resulting functional network, which will be the target of the next section.

2.4 The Brain as a Complex Network

A network representation arises naturally both for the brain’s anatomy and its functional activity.
Brain networks can be defined at different scales, from the microscale up to several mesoscales of
centimeters of system-level neural assemblies, corresponding to the spatial resolution of the brain
imaging technique used to define them. For anatomical brain networks, it is straightforward to
identify nodes with neurons or cortical areas and edges with axons or fibre tracts, in general, using
the signals obtained from the MRI techniques. On the other hand, when considering functional
connectivity, networks are defined as those whose edges correspond to statistical correlated activity
at different brain regions using any of the correlations showed in the previous Section. The effective
connectivity, goes one step beyond, leading to networks with directed edges whenever the activity
at one node modulates the activity of another node [A210].

A B C

Figure 2.3: Different perspectives for analyzing the brain activity. A, Initially, studies of brain
activity were concerned on the activation of single regions and its relation with different brain
activities. B, Next, studies on brain segregation/integration evaluated the interrelation between few
brain regions involved in the performance of a single task. C, Finally, network science focuses on
the complex interactions between brain regions.

The classical view of brain connectivity is centered on the localization of a cognitive function
into some brain regions due to several integrative fibres. The assumption here is that each region and
fibre is associated to specifics activities of the brain. Functional Connectivity analysis considers the



2.4 The Brain as a Complex Network 37

brain as a computational entity in which different regions activate in a coordinated/uncoordinated
way. This approximation is focused only on the activations but not on how these activations
are organized from a holistic point of view. Network Science approach represents a qualitatively
different view for the analysis of the brain activity and brain-behavior mapping (see Fig. 2.3). In this
case, the brain is understood as a complex system, where relationships between a great number of
constituent parts give rise to collective behaviors. The viewpoint of the statistical physics approach
is based on understanding of observed network properties as macroscopic phenomena resulting
from the microscopic interactions among a great number of individual components. Therefore,
the identity of nodes and links is somehow lost. The network, rather than well-specified nodes or
links, is endowed with specific properties. These network properties are not easily traced to their
single nodes and links, rather, they emerge from the statistical properties of their components. With
respect to prior connectivity methods, the complex networks approach presents three distinctive
advantages:

1. It affords a multiscale characterization of the brain’s organization.
2. It allows handling complex relationships between brain structure, dynamics and function.
3. It allows studying the brain as a biophysical machine and investigating a wide range of

aspects of mechanistic brain functioning, including efficiency, resistance to failure or syn-
chronizability, which could not directly be addressed with connectivity techniques alone.

2.4.1 Building a Brain Network
The projection of experimental data onto a network is one of the most delicate steps in the application
of network theory to the analysis of biological data. Both the nature (anatomical or functional) and
the scale of observation constrain the way networks are reconstructed. The experimental technique
used to record brain activity determines the size of the network and, ultimately, the information
that can be extracted from it. Important methodological aspects of brain network reconstruction
and possible pitfalls are still a subject of debate [T1], [A262]. In general, brain networks can be
classified into three main types: anatomical, functional and effective networks.

Anatomical networks
They refer to the physical connections between neuronal elements, ranging from synapses between
neurons to the grid of bundles between Regions of Interest (ROIs). We can define an anatomical
network of connections at the scale we are interested in (or the scale given by experimental limita-
tions): neurons cortical columns, ROIs or any parcellation of the brain with significant meaning.
There exist different experimental techniques to trace the anatomical network of connections, which
rely both in the scale at the organism being studied. For example, electron microscopy has allowed
extracting the complete set of connections between neurons of the nematode C. Elegans [A248],
the only living system whose nervous system has been fully mapped [A243]. More recently,
Micro-Optical Sectioning Tomography (MOST) has also revealed the connectivity of a mouse
brain [A134]. Both the anatomical networks of the cat [A194] and the macaque [A72] cortex has
been extensively studied thanks to the data obtained from different histological studies, leading
to a complete cortico-cortical network of N = 53 cortical regions and L = 650 connections in the
cat [A194] and the reconstruction of the macaque visual area (N = 32 and L = 305) [A72]. DTI
technique [A115], [A88] allowed to reconstruct the human brain anatomical network, with the
limitation of inferring the fibre bundle orientation. The use of DSI has overcome this constraint
[A97] allowing an anatomical reconstruction of the human brain anatomical network formed by up
to N ∼ 1.000 nodes and L∼ 100.000 link [A96].

Although the anatomical networks provide a substrate for the dynamical processes occurring
on them, they are not necessarily linked to the functional activity occurring between different
brain regions. Anatomical and functional networks may differ depending on the specific cognitive
process that an individual is carrying out: while at short time scales the anatomical network
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is essentially static, the functional network associated with the execution of a cognitive task is
inherently dynamical.
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Figure 2.4: How to obtain functional brain networks. A. Sensors spread through the scalp
to record the cortical activity. B. Next, the coordination between the times series of every pair
of channels, e.g. φi and φ j, is calculated with the use of the aforementioned metrics. C. Each
correlation will be an element of the weighted adjacency matrix, i.e. the weight of the link between
two nodes (brain regions).

Functional Networks
They account for the neurodynamical interactions between neural regions. Functional networks
measures statistical interdependences between the dynamics of large amount of pairs of the network
nodes without taking into account causal effects. The more correlated the activity between two
regions, the higher the weight of the functional connections between them. Note that despite func-
tional connectivity requires the existence of an underlying anatomical connection, both functional
and anatomical networks do not necessary need to resemble each other6. As we will see, functional
networks share common features between them, despite each network is task dependent. In Fig.
2.4 we have qualitatively shown the procedure to obtain a functional network from a brain signal.

Effective Networks
Nevertheless, one of the main drawbacks of functional networks is the lack of directionality of
their links. The fact that correlation does not imply causality, leads to the necessity of defining an
additional kind of brain networks. Effective networks, which are constructed from the analysis
of the dynamical response of the different brain sites, assign directionality to the links based on
causality analysis [A26]. This kind of networks is the most mathematically demanding [A220] but
also the most accurate approximation to evaluate the real relations between brain sites (See Fig. 2.5
for a general framework of functional and effective brain networks).

2.4.2 Brain Networks Features
In the following Section we are going to overview what are the main properties of functional brain
networks and how Network Science is able to capture and quantify the main features of this kind of
brain networks.

Degree and Strength Distributions
In the case of the brain, different kinds of distributions have been reported depending on the spatial
scale at which the system is analysed, since the scale determines the number of nodes N and links
L of the network which, in turn, constrain the width of the degree distribution. In cultured neural

6As the map of the road connections does not necessary reveal the traffic moving through them.
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Figure 2.5: The general framework of brain networks. Clockwise guideline. Nodes can be
regarded as sensor or electrodes recording the electromagnetic signals of the brain, which may
contain dependencies based on correlation or causality. These interdependencies, or link weights,
lead to a weighted connectivity matrix, which is the mathematical representation of a network. This
network is usually filtered using statistical thresholds to work only with the relevant links. Network
metrics can be classified into local (degree, clustering,...) and global (average shortest path, global
efficiency, ...). The previous topological properties allow to compare, to establish hypothesis and to
classify different brain networks in order to obtain neuromarkers for either: healthy vs. diseased
subjects, and resting state vs. cognitive/motor tasks (figure adapted from [A53].

networks, the fact that neurons primarily connect through a random process leads to exponential
distributions [A62] [A199]. This kind of distribution is also reported in the in-degree and the
out-degree of the anatomical connections of C.Elegans nematode, the only living system with a
whole reconstruction of its neural network [A8]. In human brain networks, the degree distribution
strongly depends on the experimental technique used to acquire the data, the scale at which the
system is observed and the nature of the network that its being analysed (anatomical, functional or
effective).

In functional networks, Eguíluz et al, [A70], showed that functional brain networks from fMRI
had scale-free distributions for different tasks [A70] which could be related to their resistance to
failure, facility of synchronization, and fast signal processing [A130]. Van den Heuvel et al, also
reported a scale-free distribution. Nevertheless, other results showed some discrepancies at the tail
of the degree distribution, which was better fitted with an exponential decay leading to a power-law,
exponentially truncated distribution [A240], [A3]. In summary, there is no typical behaviour that
describes the degree or strength distribution in brain networks. The number of nodes and links of
the network, the experimental technique used to obtain the data and the task performed during the
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recordings restrict the width of the distribution.

Hubs and Rich Clubs
The existence of hubs in both anatomical and functional brain networks has been related to a
reduction of the wiring cost of the network, since hubs behave as integrators and distributors of
information through the network when combined with a few long-range connections to other brain
modules. Several studies have focused on the identification of these hubs and both their role
inside their respective community and as connectors between different brain modules [A97]. The
tracking of hub connectivity during aging has shown an alteration of both its importance within
its community and its participation in other network modules [A148]. Particularly, hub failure,
quantified in terms of loss of connectivity, has been associated to the emergence of different brain
diseases [A18].

In the context of Network Science, the rich club refers to the existence of tight connections
between the hubs of the network, leading to groups that retain the majority of the importance along
the whole network. In the human brain, the rich club seems to encompass regions including the
superior parietal cortex, the precuneus, both posterior and anterior cingulate cortices, and the insula
[A239]. The brain’s rich club appears as a “super hub” where information converges from and
is broadcast back to segregated communities and networks, allowing for integrated processing,
offering a potential network substrate for the ‘global neuronal workspace’ proposed in recent
influential theories of cognition [A198].

Assortavity
Assortativity is one of the mechanisms promoting the emergence of rich-clubs. Regarding assor-
tativity in the brain, functional networks obtained from fMRI recordings during music listening
and finger tapping were shown to be assortative [A70]. Interestingly, the majority of biological
networks seem to be disassortative, with clusters organized around local hubs [B16].

Brain Efficiency
Efficiency in brain networks is related to the cost of creating and maintaining the network, and
its interplay with the performance in executing a given task. Note that the concept of efficiency
introduced by Latora et al [A131], measures a different thing, since it is essentially a way of
evaluating the (inverse of the) topological distance between nodes. Different studies have shown
that, in brain anatomical networks, the number of steps between any pair of nodes in the network
[A121] and the physical cost of their placement in a three-dimensional space [A19] are reasonably
close to their optimal value. Functional networks can enhance their topological efficiency during
a demanding cognitive process, paying the price of an extra-cost and recovering the initial state
after finalizing the task [A124]. In this sense, impaired networks show the deviation from a cost-
efficiency balance in the brain, for example in schizophrenia and Alzheimer’s disease [A139],
[A217].

2.5 Brain Networks Organization
Network Science also offers a diversity of tools to evaluate the organization of the whole functional
network and its interplay with different cognitive processes.

2.5.1 Modularity and Hierarchy
Detecting modular structure of a brain network is a complex task, nonetheless is completely nec-
essary since it gives information about the segregated activity of the brain [A169]. Interestingly,
anatomical networks exhibit a modular [A108] and hierarchical organization [A258]. Additionally,
different algorithms of community detection upon anatomical networks have shown high correla-
tions of the obtained communities with known functional areas in the human brain [A40], [A98].
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Parallel to this, hierarchical organization of functional communities has been reported in the human
brain showing that hierarchically modular structures facilitate the embedding of complex topologies
into low-dimensional physical space [A147], [A19].

2.5.2 Integration and segregation

Regarded to this point, there are evidences that show that cognitive functions require an optimal
balance between global integrative and local functionally specialized processes [A232], [A241], for
instance, the local and global collaboration in the phenomena of gestalt-like perception by Singer et
al [A201]. An appropriate balance between these two tendencies has been shown to be necessary
for efficient functioning, particularly in neural systems [A232] ; in fact, exceedingly segregated or
integrated brains have been associated with various pathological conditions, e.g. autism [A118] , or
schizophrenia [A74], [A233], [A74]. The functional organization of the human brain presents an
essential balance: On the one hand, modules present sufficient independence to guarantee functional
specialization and parallel computing; on the other hand, modules are sufficiently connected to
bind multiple sources of information so as to benefit a coordinated activity.

2.5.3 Small-world structure

It has consistently been shown that brain anatomical networks have characteristically small-world
properties of clustered local connectivity with relatively few long-range connections mediating a
short path length between any pair of neurons or brain regions [A208], [A103], [A96]. The small
world structure seems to be pervasive both across scales of brain activity and across species, for
example: in mammal [A206], [A256], and the simplest system of C. Elegans [A247]. The modifica-
tions of small world structure in disease [A212], normal aging, and by pharmacological blockade of
dopamine neurotransmission [A2] may be functionally interpreted in the light of theoretical studies
showing that small-world architecture optimizes information processing [A225], facilitates syn-
chronization [A28] and rapid response and emergence of coherent oscillations conferring resilience
against pathological attacks [A130].

2.5.4 Brain Diseases

Graph theoretical measures have proven to be adequate indicators of the emergence and evolution
of a series of brain diseases, an aspect that renders them of enormous practical applications. The
emergence of brain dysfunction can be quantified using network metrics, which are altered in a
disease-specific way [A215]. For example, during epileptic seizures, functional brain networks
become more regular, modifying their degree distribution and losing part of their modular structure
[A181], [A119]. On the contrary, functional networks of schizophrenic patients become more
random, with a consequent decrease of both the normalized clustering coefficient and shortest path
[A149]. Mild cognitive impairment, a condition sometimes evolving into Alzheimer’s dementia,
also shows increased functional network randomness, but in this case it is associated to increased
network synchronization and a propensity to enhance long-range connections [A29]. Network
analysis of Alzheimer’s disease indicates a disconnection syndrome leading to an increased shortest
path and decreased network clustering, both leading to a severe impairment of the desirable
properties afforded by small-world networks [A218] , [A213]. The epilepsy as neural disorder was
investigated with MEG techniques in the works by Chavez et al. [A38] and the brain plasticity
problem and strokes injuries using EEG data have been better understood through the works by De
Vico Fallani et al. [A54], [A57]. Regarding brain resilience, cats [A122] and macaques [A120]
brains had been analysed from the optics of robustness showing a robust behaviour due to their
scale-free organization.
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2.6 Final Remarks
In summary, tools coming from Network Science have been widely applied to better understand
different problems in neuroscience, ranging form normal functioning of a brain to the impairment
due to different diseases. Notwithstanding, there are a diversity of open problems and future lines of
research in the field. The problem of how to link structure and function in the brain, the application
of concepts like control and targeting of a functional network or the debate around what should
be a node (neuron, groups of them, cortical regions,...) and a link (functional or anatomical) in
brain networks. Among them, I will be ultimately interested in the interplay between the topology
of a brain network and the dynamics occurring in it. The possibility of figuring out a correlation
between both the topological features and the dynamical properties of functional networks will
be investigated along this PhD Thesis through a series of results using, all of them, different
methodological tools coming from Network Science.



3 Topology & Dynamics of Brain Networks

In this (short) Chapter I will summarize the specific problems that have been addressed during
this PhD Thesis. The five forthcoming Chapters, each of them targeting a specific problem,

make up the second part of the Thesis, were the results obtained during the last four years will be
exposed. Obviously, there are several links between all of them, but they are organized in a time
line departing from the most fundamental problems to the most general ones. All of that, by the
hand of Network Science.

3.1 Quantifying Functional Hubs

The first results of this Thesis refer to the quantification of the importance of a node within a
functional network. With this aim, I will investigate what is the more adequate network measure
capturing the importance of brain regions in both healthy individuals and patients suffering from a
neurodegenerative disease. In this Chapter 4 will introduce the way functional networks can be
obtained from brain imaging and how network metrics can help us to discriminate between groups.

3.2 Hemispherical Balance

In the previous Chapter I investigated the properties (in that case centrality) of functional networks
when they are considered as single networks. In this Chapter, I will explicitly take into account
that networks are not isolated systems, and they are in continuous contact with other networks.
In neuroscience, the task-differentiation between brain hemispheres has been deeply studied.
Nevertheless, concepts coming from Network Science, such as the existence of networks-of-
networks have been scarcely developed in the context of functional brain networks. Thus, I will
consider functional networks as an interplay between two sub-networks, each one accounting for
the activity of each of the hemispheres a brain has. Chapter 5 is completely devoted to study the
problem of hemisphere competition/cooperation using a EEG datasets recorded from a group of
individuals under two base-line conditions: (i) open eyes resting state and (ii) closed eyes resting
state. Here, I will evaluate to what extent the centrality of the whole network is shared between both
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hemispheres, and how the robustness of functional brain networks relies on the inter-hemispherical
connections.

3.3 Evolving Networks

Hitherto, previous Chapters answer different questions related to the topology of the networks.
However, those functional networks only capture the dynamics of the system during a specific
moment, i.e., networks are a snapshot of what is really happening in the brain. Nevertheless,
functional networks are intrinsically dynamical and its topology unavoidably changes as time goes
by. Based on this fact, in this Chapter 6 investigate what happens when the topology of a functional
network is tracked during several time-steps? In other words, I investigate how functional brain
networks evolve in time. In this way, in Chapter 6, I put forward the evolution of the topological
properties of functional networks associated to two groups of people (young and old subjects).
The idea is to define specific time windows in MEG signals in order to create dynamical networks
corresponding to different temporal lapses. I will show how the statistical comparisons of the
topological features of the time-evolving networks lead to discriminate the brain performance in
young and old individuals who are facing an interrupted memory task.

Figure 3.1: Five Studies on topology and dynamics of functional brain networks. A. Quantify-
ing Functional Hubs. B. Hemispherical Balance. C. Evolving Networks. D. Anomalous Networks.
E. Cognitive Reserve.
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3.4 Anomalous Networks
In this Chapter 7 I will show how it is possible to obtain a new type of functional network from
the recording of the brain activity, what is called "parenclitic network". The main aim will be to
investigate the consistency of the brain signals and how it deteriorates in a group of individuals
suffering from mild cognitive impairment. The phenomenon of consistency is based on the identical
response of a dynamical system when the same external perturbation is applied, no matter what the
initial conditions of the system are. What I will show is that the differences of the consistency of
the brain activity in a group of patients diagnosed with mild cognitive impairment can be captured
by a parenclitic network, which is defined as the network projection of the differences between the
features of two different groups. In this study, the reader will find how the consistency, measured by
means of MEG, can be translated into a network, which can be analyzed with the aim of determining
where are the focal nodes of "anomalous networks".

3.5 Cognitive Reserve
In the last Chapter devoted to the new findings of this PhD Thesis, I will be concerned about the
interplay between the topological features of a node and its dynamical properties. Specifically,
on the one hand, I will characterize the inner dynamics of the nodes through the use of several
statistical complexity measures. In this way, the complexity and the level of disorder will be
assessed by means of temporal ordinal patterns obtained from MEG signals. These signals will be
recorded from two groups of healthy people performing a well defined memory task, being the level
of studies the key difference between both groups. The idea behind this experiment is to evaluate
the level of cognitive reserve, a term that was widely associated with the stability of brain function
during ageing. MEG signals will be correlated to reconstruct the respective functional networks to
seek for some their topological features. Next, the dynamical properties of cortical signals and their
corresponding topological features will be correlated. The results contained in Chapter 8 will show
certain type of hub reorganization regarding the level of complexity and permutation entropy.

Study Type Phenomena Activity Emphasis Correlation

1 Topology Node
importance

Short-term
memory task

Centralities SL(t)

2 Topology
of NoN

Hemisphere
balance

Resting state Eigenvector
centrality

i-Coh( f )

3 Topology
in time

Age-related
memory

Working
memory task

Strength PLV(φ )

4 Dynamics
of nodes

Brain
consistency

Short-term
memory task

Anomalies
organization

SL(t) &
Z-scores

5 Dynamics
& topology

Cognitive
reserve

Short-term
memory task

Hubs
reorganization

SL(t)

Table 3.1: Summary of the results contained in the PhD Thesis. Rows corresponds to the
problems investigated in each chapter. I present the type of study, the associated phenomenon, the
task-related activity, the associated key information and the kind of correlation used. Regarding
short-term memory tasks, it was performed using the Sternberg test. It is important to highlight that
the experiment datasets consists on MEG signals in Study 1, 3, 4 and 5 (Chapters 4, 6, 7 and 8),
while Study 2 (Chapter 4) is based on EEG recordings.
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3.6 Final Remarks
In view of all, this PhD Thesis contains a series of complementary studies with the common
objective of characterizing the topology and dynamics of functional networks. As shown in Tab.
3.1, in this PhD Thesis I address different problems, all of them with the common tool of Network
Science. Despite the results concern very specific and applied problems, the methodology I use
could inspire future research on the field of brain networks, simply by analyzing different cases of
study. In this way, although a neuroscience-based network theory has not been developed yet, I
hope to have helped in its future arrival. Definitely, we deserve more efforts to develop a set of well
established methodologies aiming to fully describe the behaviour of brain networks.
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4 Functional Hubs

§

In this first study about topology of functional brain networks, we investigate how hubs of
functional brain networks are modified as a result of mild cognitive impairment (MCI), a condition

causing a slight but noticeable decline in cognitive abilities, which sometimes precedes the onset
of Alzheimer’s disease. We used MEG to investigate the dynamics of the networks of a group
of patients suffering from MCI and a control group of healthy subjects, during the execution of
a short-term memory task. Couplings between brain sites were evaluated using synchronization
likelihood, from which a network of functional interdependencies was constructed and the centrality
quantified. The results showed that, with respect to healthy controls, MCI patients were associated
with decreases and increases in hub centrality respectively in occipital and central scalp regions,
supporting the hypothesis that MCI modifies functional brain network topology, leading to more
random structures.

4.1 Introduction

Characterizing how the brain organizes its activity to carry out complex cognitive tasks is a highly
non trivial pursuit. While early neuroimaging studies typically aimed at identifying patches of
task-specific activation or local time-varying patterns of activity, it is now recognized that both at
rest and during behaviour, that brain activity is characterized by the formation and dissolution of
functionally meaningful integrated activity [A24].

The existence of central regions in brain functional networks and the way of quantifying their
importance in the network structure has been the object of numerous studies [A209], [A3], [A27],
[A258] [A117], [A136], [A114], [A127]. The importance of a node i, can prima facie be measured
by the number of connections k(i) (degree), indicating how many regions are coordinated with
it during a certain task. Likewise in weighted networks, the node strength S(i), becomes a more
accurate indicator of the importance of a node. Nevertheless, both the degree and the strength are

§This chapter is based on my published paper: Functional Hubs in Mild Cognitive Impairment. International
Journal of Bifurcation and Chaos. 25, 10 (July 2015). [A158]
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local measures, which do not take into account the global topology of the functional network. To
overcome this issue, global measures of centrality have been proposed. Node closeness C(i), takes
into account the number of steps that we have to do to go from one to another: the lower number
of steps, the higher closeness a node has. The eigenvector centrality E(i), is another indicator
of the global relevance of a node and it is measured by computing the eigenvector v1 associated
to the largest eigenvalue of the connectivity matrix. A more intuitive measure is represented by
node betweenness B(i), which quantifies the number of shortest paths that cross a certain node,
thus reflecting its importance in the transmission of information in the whole network. Closeness,
eigenvector centrality and betweenness, make use of information about the structure of the whole
network, nevertheless node centrality could be restricted solely to a certain community. To measure
the community importance of nodes, Guimerà et al. [A94] introduced two indicators, the within-
module-degree zi and the participation coefficient pi. The combination of both parameters not only
measures the importance of a node inside its community but allows classifying the role played by
the central nodes (hubs) in the overall community structure.

The application of these measures to functional brain networks may help in quantifying how
relevant nodes are impaired by the emergence of different brain diseases. Here, we analyse the
alteration of functional networks’ hubs caused by MCI, a brain syndrome involving cognitive
impairments beyond those expected based on the age and education of the individual often repre-
senting a transitional stage between normal aging and dementia. The progressive accumulation
of the beta amyloid protein and the loss of cells and synapses along the Alzheimer’s disease (AD)
continuum impair cognitive function as a reflection of network malfunctioning. Thus, although hubs
organization has been studied for fully-fledged AD [A27], [A218], [A60], whether hub organization
impairment at the early stages of the disease such as in MCI still remains unclear.

In Buldu et al. [A29], the attention was devoted to the global properties of the functional
networks. Nevertheless, how hub organization is affected by the disease was not considered. In the
present work we focus on how the role of the hubs is distorted by MCI. Our hub characterization
relies on various parameters, but we show how the eigenvector centrality E(i) of the nodes is
the more adequate indicator, in contrast with local measures such as degree or strength centrality.
Therefore, we use this measure of centrality to identify (and quantify) network hubs. Eigenvector
centrality allows detecting the dominant regions in the functional connectivity network and, next,
how these regions are affected by the disease. Our results show that the leading role played by
network hubs is attenuated by MCI, which transforms the network into a more homogeneous
one. These results are consistent with previously reported analyses showing that MCI increases
the randomness of the global structure of the functional network [A30], thus, leading to a more
homogeneous connectivity network.

4.2 Materials and Methods
The MEG signal of seventeen patients suffering from MCI and seventeen control subjects (Box, 2
and [A14]), was recorded (Box, 3) during the execution of a memory task (Box, 4 and [A30] for
details). Next, we measured the synchronization likelihood (SL) between all pairs of nodes, and
obtained a weighted correlation matrix.

In this case we chose Synchronization Likelihood (SL) [A214] to correlate the MEG signals. SL
is a nonlinear measure of the synchronized activity that has been proven to be a suitable quantifier
for datasets obtained from magnetoencephalographic recordings [A216], [A30]. This index, which
is closely related to the concept of generalized mutual information [A34], relies on the detection of
simultaneously occurring patterns, which can be complex and widely different for every pair of
signals. Specifically, the SL algorithm detects windows of repeated patterns within the time series
of a channel A and, next, checks whether the channel B also shows a repeated pattern at the same
time windows, no matter if it is the same or different to that observed in channel A.
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The idea behind this algorithm proceeds as follows. LetX denote the matrix containing all the
M signals (one per each channel that measures a certain cortical region) of n time steps, and let
Xn = [xn,yn, ...,zn], where X1,n = xn, X2,n = yn and so on. In the time series of a given channel, for
each time step n, we define the probability that embedded vectors are closer to each other than a
distance ε:

Pε
n (X) =

1
2(w2−w1)

N

∑
m=1

w1<|n−m|<w2

θ (ε−|xn− xm|) (4.1)

where |.| is the Euclidean distance and θ is the Heaviside step function, being θ(x) = 0 if x ≤ 0
and θ(x) = 1 for x > 0. Here w1 and w2 are two windows: w1 is the Theiler correction for
autocorrelation effects and should be at least of the order of the autocorrelation time; w2 is a
window that sharpens the time resolution of the synchronization measure and is chosen such that
w1� w2� N.

Box 2: Subjects

All recruited subjects or legal representatives provided written consent to participate in the study,
which was approved by the local ethics committee of the Hospital Clínico Universitario San

Carlos (Madrid, Spain). MCI patients fulfilled the following criteria:
• Cognitive complaint corroborated by an informant (a person who stays with the patient at

least for half a day for 4 days a week). Additionally, relatively preserved daily living activities
was measured by the Lawton scale.

• In addition to age, years of education were matched to the MCI group: 10 years for the MCI
group and 11 years for controls. Objective cognitive impairment, documented by delayed
recall in the logical memory II sub-test of the revised Wechsler Memory Scale (score≤ 16/50
for patients with more than 15 years of education; score ≤ 8/50 for patients with 8−15 years
of education). Memory impairment was assessed using the Logical Memory immediate (LM1)
and delayed (LM2) subtests of the Wechsler Memory Scale-III-Revised.

• Normal general cognitive function, as assessed by a clinician during a structured interview
with the patient and an informant and, additionally, a mini mental state examination (MMSE)
scored greater than 24. Specifically, two scales of cognitive and functional status were applied
as well: the Spanish version of the Mini Mental State Exam (MMSE) [A135], and the Global
Deterioration Scale/Functional Assessment Staging (GDS/FAST).

• Not sufficiently impaired, cognitively and functionally to meet criteria for dementia. Age
and years of education were matched to the SMC group. According to their clinical and
neuropsychological profile, all patients in this group were considered multi-domain MCI pa-
tients (see [A177]). As for the geriatric depression scale, none of the MCI showed depression
(score lower than 9) [A253]. To confirm the absence of memory complaints, a score of 0 was
required in a 4-question questionnaire [A153]. None of the participants had a clinic history of
neurological or psychiatric condition.

Box 3: Recordings

The MEG signal was recorded with a 256 Hz sampling frequency and a band pass of
[0.5,50] Hz, using a 148-channel whole-head magnetometer (MAGNES c©2500 WH,

4−D Neuroimaging) confined in a magnetically shielded room. An environmental noise
reduction algorithm using reference channels at a distance from the MEG sensors was applied
to the data. Letters of the Sternberg test were projected through a LCD videoprojector (SONY
VPLX600E), situated outside of a magnetically-shielded room, onto a series of in-room
mirrors, the last of which was suspended approximately 1 meter above the participant’s face.
The letters subtended 1.8 and 3 degrees of horizontal and vertical visual angle respectively.
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Box 4: Task & Preprocessing

Task Subjects’ responses were classified into four different categories: hits, false alarms, correct
rejections and omissions. Only hits were considered for further analysis because we were
interested in evaluating the functional connectivity patterns which support recognition success.
The percentage of hits (80% control group and 84% MCI group) and correct rejections
(92% control group and 89% MCI group) was high enough in both groups, indicating that
participants actively engaged in the task.

Preprocessing Thereafter, single trial epochs were visually inspected by an experienced investigator,
and epochs containing visible blinks, eye movements or muscular artifacts were excluded
from further analysis. Thirty-five epochs corresponding to each subject were used in order to
calculate the functional connectivity values (i.e., their synchronization likelihood). This lower
bound was determined by the participant with the least epochs. To have an equal number of
epochs across participants, thirty-five epochs were randomly chosen from each of the other
participants. The effect of plasticity in the evaluation of network synchronization is not dealt
with in this work, although it could be a subject of analysis in future ones.

Now, for each signal and each time n, the critical distance εn is determined for which Pε
n (x) =

pre f , where pre f � 1. We can determine for each discrete time pair (n,m) within our considered
window (w1 < |n−m|< w2) the number of channels Hn,m where the embedded vectors xk,n and
xk,m will be closer together than this critical distance εk,i:

Hn,m =
M

∑
k=1

θ (εk,n−|xk,n− xk,m|) (4.2)

This number lies in a range between 0 and M, and reflects how many of the embedded signals
“resemble” each other. We can now define a synchronization likelihood SLn,m(X) for each channel k
and each discrete time pair (n,m) as:

SLn,m(X) =


Hn,m−1
M−1

, if |xn− xm|< εn

0, if |xn− xm| ≥ εn

(4.3)

By averaging over all m, we finally obtain the synchronization likelihood, SLn(X) who stands
for :

SLn (X) =
1

2(w2−w1)

N

∑
m=1

w1<|n−m|<w2

SLn,m (X) (4.4)

Synchronization likelihood SLn(X) describes how strongly channel x at time n is synchronized
to all the other M−1 channels. The range of values of SL is 0≤ SL≤ 1, being (pre f ) when all M
time series are uncorrelated, and 1 for maximal synchronization of all M time series. The value of
pre f can be set at an arbitrarily low level, and does not depend on the properties of the time series,
nor it is influenced by the embedding parameters [A214]. The SL yields a symmetric and weighted
correlation matrix wi j, then we follow the normalization technique proposed in [A29] in order to
avoid intrinsic differences from different individuals. The off-diagonal weights in the correlation
matrices are rescaled to the interval [0,1] by means of

SLi j =
wi j−min(wi j)

max(wi j)−min(wi j)
(4.5)
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Figure 4.1 shows an example of a functional brain network obtained from the control group.
The normalized weighted correlation matrix Wi j leads to a fully connected network (since all pair
of nodes have a SL > 0), so only the 5% of the links with higher weights have been plotted to
ease visualization of the network. The size of a node i is proportional to its strength S(i), defined
as the sum of the weights of all its connections. We can observe how the density of connections
is higher at the peripheral regions and, specially, at the occipital lobe, while the central cortical
region is sparsely connected (note that we are only considering the links with higher correlations).
Interestingly, nodes with higher strengths, i.e., the network hubs, are mainly localized in the
occipital lobe.
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Figure 4.1: Averaged functional network of the control group. Only 5% of the links with higher
weights have been plotted. Colors indicate the lobe that a node belongs to: frontal-left (blue),
frontal-right (light green), central (dark green), temporal left (red), temporal-right (light orange)
and occipital (dark grey). Node size is proportional to the node strength S(i). Note the higher
density of connections at the occipital and frontal lobes. Node number is indicated for those nodes
with higher strength.

4.3 Results

4.3.1 Measuring node centrality
The emergence and evolution of MCI has been studied extensively during the last years [A177],
[A64], [A11], [A195], [A196], [A13] since it is known to be related to prodromal Alzheimer’s
disease (AD). Neuropathological studies indicate that MCI patients have clear pathophysiological
characteristics, such as the presence of neurofibrillary tangles, loss of dendritic spines and the
accumulation of beta-amyloid protein in the associative cortex [A142]. From the point of view of
brain connectivity, MEG recordings of patients suffering from MCI revealed an enhancement of the
synchronization between cortical regions when memory tasks were performed [A13]. The increase
of the synchronized behaviour was accompanied with a change of the topological structure of the
associated functional network, which turned into more random configurations [A30]. A reduction
of the modular behaviour of the network together with an increase of the long-range functional
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connections has also been associated with the appearance of MCI [A30].
Nevertheless, how functional hubs are affected by the disease is still unclear. It is known that

network hubs are strongly affected by brain diseases like schizophrenia [A18] or Alzheimer’s
disease [A27], [A218], [A60]. This is bad news, since the targeted attack to leading nodes leads to a
fast damage of the whole network properties [A6] and, eventually, to cascading failures [A156]. We
used four different centrality measures from complex weighted-network theory to detect network
hubs and to evaluate how their topological roles are affected by the disease.

The most straightforward centrality measure is the strength of nodes, S(i). If a node has strong
connections with its neighbors, it will have higher influence on the functional network, i.e. it will
be more central. Figure 4.2A shows the strength S(i) of both control and MCI groups, averaged
over the whole groups. Network hubs can be easily identified as those with higher network strength,
while the influence of the disease in the hubs is directly the difference of S(i) between both groups.
We can observe that the strength of the network hubs (highest peaks of the S(i) distribution) is
not specially altered, while from node 1 to 40 (localized at the central lobe) there is a significant
increase of strength, although they are not hubs of the network. Therefore, node strength seems to
indicate that MCI is not especially severe with the hubs.
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Figure 4.2: Averaged centrality measures for the control (black) and MCI (red) groups.
Specifically, we calculate the node strength S(i) (a), node closeness C(i) (b), node betweenness B(i)
(c) and node eigenvector centrality E(i) (d). All measures have been calculated and averaged over
each epoch and for each subject of both groups. Note that E(i) is the measure that better captures
the differences between groups in those nodes with higher centrality. The periodicity reported in
the four figures is only a consequence of the node numbering. See Fig. 4.1 for details on where
relevant nodes are placed in the Euclidean space.

Nevertheless, as the strength S(i) is a local measure, it does not account for correlations of
link strength or specific structural distributions of the weights in the network. To overcome this
issue, two measures of centrality have been applied, with the aim of including the influence of the
network structure from a point of view of information transfer: the node closeness C(i) and the
node betweenness B(i), which are measures based on the geodesic distance di j from node (i) to
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Figure 4.3: Correlation between the eigenvector centrality E(i) and its variation ∆E(i) =
E(i)MCI−E(i)control . Note the negative correlation indicating that nodes with higher eigenvector
centrality are those that are affected the most by the disease.

node ( j). The former associates the importance of a node due to the lower values of the shortest
paths a node i has. The more central a node is, the lower distances to other nodes in the network.
Meanwhile, the later measures the ability of a node to act as transmitter of information through
the network. B(i), that was defined in previous chapters, accounts for the number of the shortest
paths between every pair of nodes j and k that pass through node i, properly normalized by the total
number of geodesic paths g jk from j to k.

In Fig. 4.2B-C we plot the average values ofC(i) and B(i) for control and MCI groups. While
both measures have their proper characteristics, a common behavior appears in the high correlation
present among the centralities of control and MCI for all nodes. The position of the network hubs
perfectly matches when comparing the local measure of centrality S(i) with C(i), while B(i) seems
to suggest the existence of hubs but with a more noisy distribution. Interestingly, the highest peaks
reported in the three distributions correspond to nodes placed at the occipital lobe (see node number
in Fig. 4.2). Again, there are no significant differences in the centrality of the network hubs, and
the most clear signature of MCI is an increase of centrality in the nodes belonging to the central
lobe (from 1 to 40). This alteration is not captured by B(i), thus indicating that it is not the most
suitable measure to evaluate changes in network centrality.

It is worth noting that although C(i) and B(i) contain information about how weights are
distributed within the network, they only refer to shortest paths distribution and disregard other
structural properties of the network. To surpass this issue, we compute the eigenvector centrality
E(i) of the nodes. Note that any modification of the weight of the links, will result in a change of
the matrix W and, therefore, will be reflected in the value of the eigenvector centrality E(i). On the
contrary, if an alteration of a link does not imply any modification in the distribution of shortest
paths, it will not be captured by C(i) or B(i) centralities.

Figure 4.2D shows the eigenvector centrality E(i) for both groups. It detects the position of
the network hubs which, as in S(i) and C(i), are mainly placed at the occipital lobe. Interestingly,
this measure captures a clear decay in the centrality of the hubs, as indicated by the decrease of
the peaks height. The consequence of this decrease is a network were the hubs play a less relevant
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Figure 4.4: Distribution of the variation of eigenvector centrality E(i). The size of the nodes is
proportional to |∆E(i)|= |E(i)MCI−E(i)control|, while node color indicates an increase (green) or
decrease (red) in the node centrality. Node number is indicated for those nodes with high |∆E(i)|.

role. In Fig. 4.3 we plot how the variation of the eigenvector centrality ∆E(i) due to MCI is related
with the centrality of the control nodes. We can observe a negative correlation, indicating that those
nodes with higher centrality are, in turn, the nodes that decrease its importance the most. It is also
interesting to see what is the position of the nodes in the whole network. Figure 4.4 shows the
increase (green) and decrease (red) of eigenvector centrality with the node size proportional to the
value of |∆E(i)|. It is the occipital lobe the one that is mostly affected by the decrease of centrality,
while the central lobe takes advantage of this reduction.

4.4 Discussion

The analysis of functional and anatomical brain networks using complex networks analysis have
revealed interesting information about how these networks are organized [A30]. All studies agree
on the fact that brain networks are highly heterogeneous, giving rise to the existence of hubs, i.e.
leading nodes from the point of view of dynamics of the networks. We have shown a detailed
analysis of how the importance of network hubs in a functional network associated with the
execution of a memory task is affected by the emergence of MCI. We report how the disease
particularly affects network hubs, reducing their importance in the network. This reduction is
captured by all different measures of centrality, independently of whether they rely on the local or
global properties of the network.

Among all centrality measures, eigenvector centrality E(i) is the one that better captures the
effect of the disease on the network hubs. The occipital region, containing the majority of the hubs
in the case of healthy individuals, is the region where centrality decreased the most, while nodes
belonging to the central lobe benefit from the hub deterioration. Interestingly, anatomical networks
of patients suffering from schizophrenia also show a reduction of the hub importance, together with
a dispersion in the location of network hubs [A18]. This reduction of hub centrality can be used
as a signature of the existence of pathology since it is known that the hub structure is quite stable
in healthy adult individuals [A114], [A271]. In addition, it reinforces the hypothesis that MCI
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increases the randomness and homogeneity of the functional networks [A29], since the reduction
of hubs importance leads to more homogeneous networks

The implications of hub deterioration are still unclear. For example, in Alzheimer’s disease, it
has been shown that amyloid-beta deposition in the locations of cortical hubs could act critically in
the severity of the disease [A27]. In the case of anatomical networks in schizophrenia, the reduction
of centrality of the frontal hubs has been related to the disorganization of the anatomical network.
The reduction in hub centrality in posterior scalp regions could be related to the high levels of beta
amyloid accumulation in those regions found in MCI and Alzheimer’s disease. Conversely, the
increased hub centrality found for anterior sensors could reflect enhanced engagement of frontal
regions compensating for decreased capacity to tackle the demands of the memory task (see [A13]
for a similar interpretation). We believe that our work will shed some light on the role played by
hubs in brain networks, which may have strong influence on the network robustness [A6], cascading
processes [A156] and network controllability [A228]. Similar studies could be carried out in other
neurodegenerative diseases where the existence of functional hubs has been reported.

In summary, this first study focuses all attention in the dynamics of the brain, specifically when
the brain can be viewed as a single large scale network. Nonetheless, the brain has evolved to be
anatomically and functionally differentiated in two hemispheres. Thus a remarkable exploration of
the brain must attest this fact, that is, given that we have two hemispheres we can assume each as
different networks. The coming chapter attempts to unveil the dynamics of the brain network when
it is viewed as a composite system of two networks, one for each hemisphere.





5 Hemispherical Balance

§

Network theory has been recently adapted to study the physiopathology of the human brain, which
can be modelled as a graph where nodes represent different regions and links stand for statistical

interaction between their activity as recorded by current neuroimaging techniques [A31], [A209],
[A212]. Nevertheless, brain functioning, and any functional or anatomical network extracted
from it, relies on a combination of a segregated and integrated activity, the former leading to the
existence of modules, or sub-networks, and the latter to the existence of a network-of-networks
(NoN) coordinating the activity of all its underlying components. For this reason, a careful study
of the brain at the resting state condition would benefit from an inspection of how functional
sub-networks interact between them. In this Chapter, we describe the brain as a system composed
of two interacting networks, the left (L) and right (R) hemispheres, which struggle each other in
order to remain central (i.e., important) in a functional NoN. In this way, we investigate how the
fact that both hemispheres are interacting between them influences the distribution of centrality
along the whole NoN. We will see how the distribution of centrality, not only between hemispheres,
but also at the node level, strongly depends on the number of functional connections between
hemispheres and the way these connections are distributed.

With this aim, we carried out a series of experiments recording brain signals from the scalp
of 54 healthy adults in open/closed eyes conditions (EO and EC, respectively) by means of
an electroencephalograph (EEG). Next, we used the noise-reduction imaginary coherence for
evaluating the correlation between the recorded cortical activations for the classical θ(4−7Hz),
α(8−13Hz), β (14−29Hz) and γ(30−40Hz) frequency bands. For each individual, we obtained
two functional networks, one accounting for the 24 cortical regions of the left hemisphere, and the

other with the other 24 regions of the right hemisphere. Both networks are composed of intra-links,
accounting for the statistical correlations between regional activities within each hemisphere and
inter-links, measuring the coordinated activity between nodes belonging to different hemispheres.

§This chapter is based on the unpublished work entitled: Connector Links Support Functional Centrality
Distribution in Brain Hemispheres. A collaborative work from my academic stay in Paris in the group of Dr. M.
Chavez
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Once the NoN and its sub-networks (i.e., hemispheres) were defined, we quantified the centrality
of the nodes inside each hemisphere and studied what rules constrain the distribution of centrality
among the whole functional NoN. By means of numerical simulations, we studied of how the
distribution of inter-links promotes (or hinders) the leading role of an hemisphere over the other, by
comparing the actual distribution of inter-links with the best/worst cases for each of the hemispheres.
These simulations are based on identifying the strategies of the different rewiring processes of inter-
hemispherical links that lead to the highest amount of centrality for each hemisphere. In this way,
it is possible to define a competition parameter indicating how close the actual inter-hemispheric
connections are from the optimal configuration of any of the hemispheres. Under this framework,
variations of the hemispherical centralities and the competition parameter for both conditions (EO
and EC) were obtained in all bands. Finally, we investigated the robustness of functional NoNs
when facing node failures and discovered how, depending on the number of inter-hemispherical
links, the hemispherical robustness could be highly sensitive to failures, in contrast to other network
metrics such as the clustering or the average shortest path.

5.1 Introduction

The fact that brain networks are spatially embedded, i.e. each node of the network has a precise
spatial position, results on a useful information that it is not always accessible in many kinds of real
networks. In turn, closeness between nodes distributed along a spatial network leads in many cases
to the formation of clusters, which rely on the spatial constrains of the network. This is, somehow,
the case of the human brain, which consists of two large modules (i.e., the hemispheres), exhibiting
different but complementary functions [A266], [A249].

An adequate interplay between both hemispheres is necessary for the correct functioning of
the brain, and the way hemispheres interact can be roughly classified into two categories: (i)
competition and (ii) cooperation [A76]. The role of these categories during cognitive control1 has
been widely investigated by means of fMRI data, showing that both cooperation and competition
arise in the dynamics of the hemispherical interactions [A46] .

Notwithstanding, the competition/cooperation of hemispheres during the development of
different cognitive tasks requiere to achieve high temporal resolutions, something difficult to reach
using merely fMRI techniques. This fact motivates the use of EEG/MEG measurements, with
a much higher temporal resolution, with the aim of obtaining more precise information on the
different oscillatory behaviors of functional brain networks. In this way, and with the objective
of better understanding the role of the functional interaction between the brain hemispheres, we
are going to adopt a EEG-based network approach. The analysis of these functional networks,
will allow us to evaluate to what extent hemispheres are engaged in a competitive behaviour in
terms of nodal centrality, or whether they are in a functional trade-off demeanour, i.e., how the
importance of each hemisphere relies on the connections between them. Specifically, we will focus
our study on the case of the resting state of healthy individuals, in order to obtain a baseline of
inter-hemispherical interactions, which could be used for further studies on how these interactions
are modified during a cognitive task or due to the emergence of a certain impairment.

As we have explained in the previous Chapter, eigenvector centrality has been shown as an
adequate indicator of the importance that a node plays in the topology of a brain network [A158].
One of the advantages of this measure of importance is that, once the functional network has been
obtained, it can be easily calculated with the eigenvector associated to the largest eigenvalue of
the (weighted) adjacency matrix of the network [B16]. In this way, we were able to measure the
eigenvector centrality of the nodes belonging to the whole functional network, and quantify the
centrality accumulated by each of the hemispheres as the sum of the centralities of their constituent

1Cognitive control associates the ability of adaptation regarding specific tasks.



5.2 Matherials and Methods 61

nodes [A4]. Next, we analyzed how the centrality has been distributed between the hemispheres and
how the inter-hemispherical links influence this distribution. Furthermore, we traced the differences
between hemispherical centralities and evaluated the competition between brain hemispheres at the
different frequency bands.

Our results show that, even at resting state, hemispheres are characterized by dynamical
asymmetry, and by different connection patterns. Finally, we carried out a detailed study about
the hemispheric robustness against failures of the individual nodes. Our analysis reveals how the
centrality distribution is extremely sensitive to the failure of single nodes, while other parameters
of the network topology such as the clustering and shortest path remain almost unaffected. These
results open the way to a new characterization of the interactions between the two hemispheres that
can be used to better understand organizational mechanisms in healthy and disease brain networks,
specially when the role of the leading brain regions (i.e., hubs) is investigated.

5.2 Matherials and Methods
5.2.1 Experimental Setup

The database consists of S = 54 healthy subjects recorded in two different baseline conditions, i.e.
1-minute eyes opened (EO) and 1-minute eyes closed (EC), both at resting state. In each condition,
subjects were comfortably seated on a reclining chair in a dimly lit room. During EO they were
asked to avoid ocular blinks in order to reduce signal contamination. The EEG data were recorded
on a commercial system (Brainproduct GmbH, Munich, Germany) with a sampling rate of 200 Hz.
All the EEG signals were referenced to the mean signal gathered from electrodes on the ear lobes.
Data were subsequently down-sampled to 100 Hz after applying a proper anti-aliasing low-pass
filter to restrict the available frequency range up to 50 Hz. The electrode positions on the scalp
followed the standard 10-10 montage [C6]. 5 electrodes are excluded and only 56 electrodes are
retained for the subsequent analysis. From the previous, 8 electrodes associated to the sagittal plane
were removed so as to differentiate between the two hemispheres. This way, the final amount of
nodes used in this study was 48, 24 electrodes per hemisphere.

5.2.2 Imaginary Coherence
EEG signals come from tangential and radial oriented cortical sources respect to the scalp surfaces,
but many different electric conductivities, i.e., skull, hair, skin, can influence the measurement of
these sources, blurring the real EEG acquired data. This fact hinders the localization of the brain
regions that are the real sources, leading to spurious links due to the volume conduction effects.
To overcome this issue, the imaginary coherence (iCohi, j( f )) has been proposed as a satisfying
method to assess brain connectivity based on the frequencies of the brain signals [A165]. This
measure of functional connectivity has been proved to be effective to avoid the field spread and
cross-talk residual effects in EEG data [A81], [A56]. Given two zero-mean time series x(t) and y(t)
for channels X and Y respectively and their (complex) Fourier transforms Sx(t, f ) and Sy(t, f ) as
defined in [A165]. Then we obtain the cross spectrum as SX ,Y (t, f ) = 〈SX(t, f ) ·S∗Y (t, f )〉, where 〈·〉
is the expectation operator. Finally, the imaginary coherence iCohX ,Y ( f ) is defined as the imaginary
part of the normalized cross spectrum:

iCohX ,Y ( f ) = Im{ SX ,Y ( f )√
SX ,X( f ) ·SY,Y ( f )

} (5.1)

5.2.3 Functional Network Construction: Hemispheres and Interlinks
The imaginary coherence gives us a value that can be used as a weight of communication between
two brain sites. In this way, we use the imaginary coherence to obtain a N×N bidirectional matrix
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(with N = 48), which can be interpreted as a weighted adjacency matrix. Note that the matrix
is symmetric and, in principle, all values are different from zero, i.e., we have a fully connected
network. Initially, we are going to use the fully connected networks to maintain as many information
as possible, which is contained in the weight of the links. Networks associated to each individual
contain at the same time the information about two sub-networks L and R, corresponding to the
left and right hemispheres, respectively. Each of these two sub-networks hasNL = NR = 24 nodes.
Finally, we define the matrix P as the inter-hemispherical block matrix containing only the interlinks
that connect both hemispheres. In this way, the structure of the whole brain network-of-networks is
defined by a supra connectivity matrix T :

T =

(
L P

P> R

)
(5.2)

Note that, T , L and R are intrinsically symmetric, meanwhile P is non-symmetrical. Also
note that in the supra connectivity matrix, nodes numbered from i = 1 to i = NL belong to the
left hemisphere, while nodes from i = NL + 1 to i = NL +NR belong to the right one. This way
NT = NL +NR.

5.2.4 Evaluating the node and hemisphere centrality

Following the methodology of [A4], the centrality accumulated by the L and R hemispheres, CL and
CR, respectively, is obtained as the sum of the centrality of the nodes belonging to each hemisphere,

i.e, CL =
∑

NL
i=1 uT (i)

∑
NT
i=1 uT (i)

and CR =
∑

NL+NR
i=NL+1 uT (i)

∑
NT
i=1 uT (i)

, with uT being the eigenvector centrality over the

whole network. With such a normalization, the global centrality of T is shared between both
hemispheres following the equation CL +CR = 1. Intra-hemispherical eigenvector centralities
uL,R(i) of the non-connected hemispheres can also be calculated treating both sub-networks as if
they were isolated from each other. In this way, we can also categorize the importance of cortical
regions (i.e., nodes) inside their own hemisphere (i.e., sub-network). From now on, we will call hubs
those nodes with the highest intra-hemisphere centrality, while those nodes with lower centrality
will be designed as peripheral nodes.

We are going to investigate how the connections between hemispheres have been carried out
and what is their influence on the distribution of centrality along the whole functional network.
Furthermore, we will evaluate how the centrality would have been redistributed if different con-
nections between hemispheres would have been created. By inspecting the consequences of the
rewiring of the matrix P, we can gather the best strategies to optimize (maximize or minimize)
the hemispherical centrality of a specific hemisphere and, in turn, evaluate how far the actual
distribution is from any of the optimal cases.

The rewiring of P is based on a deterministic search of the inter hemispherical links pi j that
promotes the acquisition of centrality by one of the sub-networks forming a NoN, as explained in
[A4]. If we compute the largest eigenvalue λ1 of the connectivity matrices of two isolated networks
(e.g., L and R), once we connect them, the network with higher λ1 (suppose the dominant network is
L) will be the one retaining more centrality (i.e., CL >CR). Nevertheless, there are two fundamental
rules that can enhance/decrease the amount of centrality accumulated by a sub-network if the
adequate connector nodes are selected (see box 5) [A4].
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Box 5: Rules to enhance/decrease the accumulated centrality

Rules to enhance/decrease the centrality accumulated by a sub-network based on the
adequate connector nodes:
1. The hemisphere that, in isolation, has a higher λ1 will accumulate more centrality if

the connection with the other network is carried out through the peripheral nodes.
2. The network with lower λ1 benefits from connecting to the other network through the

hubs, acquiring the highest possible centrality in this case (when compared with any
other configuration).

A detailed demonstration of the above rules, both with theoretical and real applications,
can be found in [A4].

Using these rules we analyzed the effects that the rewiring of P may have in the centrality
accumulated by each hemisphere. The rewiring process is focused on obtaining the highest possible
centrality of a given hemisphere, let us say L in this example (the same procedure is followed for
R). With this aim, we remove all connector links from the matrix P and re-introduce them again
starting with the one with the highest weight pmax

i j and finishing with the one with the lowest pmin
i j .

The position of the weight pmax
i j will be the one that leads to the highest centrality of L. Once all

positions of the matrix P have been inspected and the one leading to the highest CL identified,
we leave the weight pmax

i j in that position and repeat the procedure with the link with the second
highest value of pi j. Once all weights of matrix P have been relocated, we call CL

max the value of
the centrality accumulated in the L hemisphere, and converselyCR

min the one accumulated by the R
hemisphere, since CR = 1−CL.

When the configuration of the inter-links associated to the highest and lowest centralities of the
two hemispheres has been identified, we can define a competition parameter Ω that evaluates how
the actual distribution of centrality is from the optimal cases of both hemispheres (see box 6).

Box 6: The competition parameter Ω

The Ω parameter, which depends on CL, CL
max, CL

min, is given by ΩL =
2(CL−CL

min)

CL
max−CL

min
−1. Note

that ΩL is normalized such as −1 ≤ ΩL ≤ 1. Values close to 1 (-1) indicate that the
real distribution of centrality CL (CR = 1−CL) is close to the best case for the left (right)
hemisphere. Importantly, values of Ω close to zero reveal that none of the hemispheres is
optimally connected in terms of centrality distribution, indicating that the hemispheres are
in a sort of functional balance.

5.2.5 Robustness against node failure

Our next objective is to evaluate the robustness of the hemisphere centrality when one of its nodes
fails. We define the hemispherical local impact lL,R

imp, which accounts for the loss of centrality that a
hemisphere suffers when one of its nodes is removed from the functional network, calculated (in
the left hemisphere) as

lL
imp(i) = (

CL
∗ (i)−CL

CL )∗100% (5.3)

where i is the node that has been removed, and CL and CL
∗ (i) are the centralities accumulated by the

left hemisphere before and after the removal. The local impact in the right hemisphere would be
obtained in the same way, just replacing L by R. It is also important to relate the local impact of a
node with its centrality, since we can expect higher impacts when failures occur in the hemispherical
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hubs. We define the local importance of a node as

lcL(i) =
uT (i)

∑
NL
i uT (i)

∗100% (5.4)

which indicates the percentage of the hemispherical centrality that is captured by node i. The
interplay between the local impact and the local importance will be crucial to evaluate the robustness
of the functional network under node failure.

5.2.6 Thresholding the functional network
We will initially work with fully connected networks, i.e., all links will have a certain weight.
Nevertheless, when analyzing functional networks it is common to remove those links whose
weight adds spurious information about the coordination between brain sites. What links to remove
or, more specifically, where to put a threshold to the links’ weights is an unsolved problem [B4],
[A262]. Here we will adopt one of the most extended solutions, which consists on removing all
possible links, starting with those with the lowest weight, until the network is broken, and set the
threshold at the value that guarantees the existence of a unique connected component.

When anayzing the impact of inter-hemispherical links, we will use this procedure to each of
the hemispheres in isolation and, next, treat the removal/addition of the inter-hemispherical links as
an independent problem.

5.3 Results
5.3.1 Node centrallity

The centrality accumulated by each of the brain hemispheres is just a consequence of the centrality
accumulated by the nodes belonging to that hemisphere. Therefore, a preliminar step is to obtain
the centrality of all nodes of the network in order to detect how it is distributed, what are its bounds
and how it depends on both the experimental conditions (i.e., EO and EC) and the hemisphere the
nodes belong to. Importantly, we have to distinguish between the centrality that a node has over
the whole functional network-of-networks and the centrality at its hemisphere (i.e., within each
sub-network). The former, the global centrality uT , is obtained from the eigenvector associated to
the largest eigenvalue of the matrix T , which is related to the full functional network. The latter,
the local one uL,R, is calculated from the eigenvectors associated to the largest eigenvalues of L and
R when both hemispheres are in isolation. Note, that it would be reasonable to expect that the hubs
of each hemispheres would also be the hubs of the full network, although this is not a necessary
condition. Figure 5.1 shows the interplay between both centrality measures for each hemisphere
and condition. We can observe how, as expected, all plots reveal a positive correlation between the
global centrality uT and the local centrality uL,R, which holds for any frequency band.

These results indicate that the centrality of the nodes does not change significantly when
hemispheres are connected/disconnected. Thus, it suggests that the functional inter-connections do
not promote the scape of centrality from one hemisphere to the other, being both hemispheres in a
kind of functional balance.

5.3.2 Evaluating the centrality distribution between hemispheres
We are going to further investigate the competition for centrality from the point of view of the
hemispheres (and not their nodes) in the two aforementioned conditions, eyes closed (EC) and eyes
opened (EO), and four frequency bands: θ , α , β , γ . First, we calculate how the centrality of the
whole network-of-networks is distributed along the two hemispheres. For simplicity, we chose
the left hemisphere as the reference and we compute the difference of hemispherical centrality
(CL−CR) in both conditions, for each subject. In this way, we obtain the hemispherical centrality of
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Figure 5.1: Correlation between the global and local centrality of the nodes in EC and EO
conditions. Global centrality uT is obtained from the complete matrix T , when both hemispheres
are connected (vertical axes); while local centralityuL,R is extracted from the hemisphere matrices
L and R when hemispheres are isolated (horizontal axes). Upper panel sows the EC condition for
the left (A), and right (B) hemispheres. Bottom panel: the same as the upper panel but in the EO
condition.

each of the 54 subjects and, then, average over the whole group in each condition. Results show that
the centrality accumulated by both hemispheres is very similar. In Fig. 5.2 A we can observe how
the difference of centrality is, in all cases, close to zero, indicating a situation close to a balance in
the distribution of centrality between both hemispheres.

Nevertheless, the results of Fig. 5.2A, which are summarized in Tab. 5.1, also show slight
differences in the hemispherical importance when both the EC and EO conditions are compared.
We observe a higher concentration of centrality in the left hemisphere during the EC condition,
for all bands, as indicated by values higher than zero. In contrast, a certain amount of centrality is
transferred to the right hemisphere when individuals open their eyes (see 5.2A and second column
of Tab. 5.1).

For all frequency bands, the difference of centralities between hemispheres are closer to zero
in the EO condition, which indicates a more balanced situation (i.e., CL−CR = 0 would reflect an
equal distribution of centrality), at least under the scope of the importance and hemisphere plays in
the topology of the whole functional network-of-networks.

These results reveal a situation close to a balance in the EO condition, that shifts to benefit one
of the hemispheres when eyes are closed. This latter fact, raises the question of what is the role of
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Figure 5.2: Differences of centralities and Competition Parameter for left hemisphere. EC
conditions (triangles) and EO (circles) and four frequency bands: θ , α , β , γ . A. Average difference
of the hemispherical centralities (CL−CR) along 54 subjects. B. Average of the Competition
Parameter ΩL for all subjects. In both plots, error bars are the standard deviation of the mean.

〈CL−CR〉 〈ΩL〉
Band EC EO EC EO

θ 0.016 0.0 −0.008 0.025

α 0.023 −0.007 −0.032 −0.026

β 0.026 −0.007 −0.021 −0.018

γ 0.025 0.011 −0.022 −0.044

Table 5.1: Mean hemispherical centralities and competition parameter ΩL. Results of hemi-
spherical differences between CL and CR and the competition parameter ΩL for average of the 54
individuals in both conditions. Summary of the data shown in Figs. 5.2 and 5.3

the inter-hemispherical links, whether they are enhancing the centrality of one of the hemispheres or,
on the contrary, if they are promoting a balance. To clarify this issue, we compute the competition
parameter ΩL which is an indicator of how the inter-hemispherical links favour one or the other
hemisphere.

In order to calculate ΩL we first need to obtain the highest/lowest possible centrality of each
hemisphere according to the rewiring of the inter-hemispherical connections. In this context, the
rewiring implies reconnecting all elements within the inter-hemispherical matrix P. Note that these
rewirings are unreal, but they are necessary to asses whether the actual distribution of inter-links is
close to the optimal or worst case situation for each hemisphere. In this way, we obtain a value
of ΩL for each individual and condition, and then average them to have a value for the overall
population. Figure 5.3 shows an example of how the distribution of the inter-hemispherical links
benefits/hinders the centrality captured by one of the hemispheres, in this case for the α band of an
average brain network.

In Fig. 5.3 we have followed the rules explained in Box 5 about the role of the connector nodes
of each hemisphere, which lead to the best/worst solutions. Specifically, we show the configuration
for the inter-hemispherical links for three different cases: the highest centrality of L (Fig. 5.3A), the
actual distribution of centrality (Fig. 5.3B) and the highest centrality of R (Fig. 5.3B). According
to these values we obtain ΩL =−0.006, which revels that, for the example shown in Fig. 5.3, the
actual distribution of inter-links promotes the balance of centrality between both hemispheres.

When 〈ΩL〉 is computed (as the average of the whole group) we obtain values very close to
zero in all frequency bands and for both conditions (see Fig. 5.2B). Interestingly, α , β and γ

bands have a 〈ΩL〉 that is slightly negative. Since the competition parameter is defined with regard
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Figure 5.3: Reshuffling the inter-hemispherical links. Example of three different configurations
of the inter-hemispherical links. Intra-hemispherical connections are colored in grey, while blue
is used for the inter-hemispherical links. Nodes’ sizes are proportional to their local eigenvector
centrality before connecting both hemispheres. For visualization purposes, these networks have an
arbitrary threshold that maintains the 16% of the links with the highest weight. Data is obtained
from the α band of an average subject. In this example, A: Peripheral nodes are connected, resulting
in the left hemisphere’s optimal strategy for increasing its centrality (leading to CL

max ≈ 0.7); B:
Actual distribution of inter-hemispherical connections, which leads to a balance of the centrality
distribution as indicated by CL = 0.49; C: Right hemisphere’s optimal strategy is obtained through
the connection of the hubs (CR

max ≈ 0.8). The competition parameter in the original configuration is
ΩL =−0.006, indicating a balance between the optimal strategies of both hemispheres.

to the left hemisphere, the negative value of 〈ΩL〉 is a consequence of an inter-hemispheric link
distribution that slightly benefits the right hemisphere. This behaviour is reported in both the EC
and EO conditions (see also fourth column of Tab. 5.1).

From all above, it seems that there are no major distinctions between the centrality of brain
hemispheres, despite the distribution of links slightly benefits the right hemisphere. This fact would
indicate that hemispheres are close to a balance or a trade-off situation, at least with regard to the
centrality distribution. Nevertheless, it is crucial to investigate to what extent this balance is a
consequence of the particular topology of the network. Is the type of network topology responsible
of this equal partition of the network centrality between hemispheres? And, furthermore, what is
the role played by the inter-hemispherical links?

5.3.3 Inter-hemispherical links and the competition for centrality
In this section we are going to investigate how the number of inter-hemispherical links may be
fundamental to the distribution of centrality between hemispheres, showing two clear regions
that could be related to a “competition” and “cooperation” scenarios. Importantly, the results
shown in the previous sections have been obtained, in all cases, when the analysis is carried out
maintaining all weights of the links in the connection matrix. As a consequence, we have been
working with fully connected matrices, despite the great part of the links have weights that are
close to zero. However, as we have mentioned in the introductory Chapters, functional networks are
ussally thresholded, maintaining only those links that are relevant for the topology of the functional
networks, and, in the majority of cases, analyzing binary matrices [C3].

For this reason, we are going to introduce a threshold at both the matrices L and R and also at
the network-of-networks T . The procedure is the following. First we are going the keep, for each
hemisphere L and R, those links with higher weights that maintain each hemisphere as a connected
component (i.e., without any isolated node). Note that following this procedure both hemispheres
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may have different thresholds. Nevertheless, we select the lowest threshold of the two hemispheres
in order to guarantee that none of them is favored among the other. We repeat this procedure for
each functional network of each individual.

Left-dominant population (%)

Condition θ α β γ

EC 59.2 57.4 55.5 53.7

EO 37.0 50.0 50.0 55.0

Table 5.2: Percentage of left-dominant individuals within the group of study. The hemisphere
dominance is defined according to the largest eigenvalue λ1 of the hemispherical connectivity
matrices: the hemisphere with the highest λ1 is the one that dominates over the other (see Ref. [A4]
for details).

Next, we compute the largest eigenvalue λ1 of L and R and call the “strong" (“weak") hemi-
sphere that with the highest (lowest) value of λ1 (see a detailed explanation in Ref [A4]). We
distinguish between groups of people that are left-dominant when the eigenvalue λ1 of L is higher
than the eigenvalue λ1 of R, otherwise they are right-dominant. See table Tab. 5.2 summarizing the
percentage of each kind of dominance according to the condition and frequency band.

Once the matrices of both hemispheres have been analyzed in isolation, we study the influence
of adding the inter-hemispherical links. We take the matrix T and empty the inter-hemispherical
block matrix P. Next, we introduce the inter-hemispherical link with the highest weight, compute
the new value of the centrality distribution (i.e., CL and CR) and repeat the process until all inter-
hemispherical links have been re-introduced. We repeat this procedure for each of the frequency
bands of the 54 subjects, and for both the EC and EO conditions.

Figure 5.4 shows the evolution of CL (note that CR = 1−CL) with the addition of the inter-
hemispherical links, distinguishing between left- and right- dominant individuals. We also obtain the
values of 〈CL〉 as the average of the centralities of L along all subjects, which are grouped according
to the dominant hemisphere (see. Fig. 5.4). Interestingly, the inclusion of inter-hemispherical
links shows a clear tendency in the hemispherical centrality: the hemisphere that has the “strong"
position (i.e., it has a higher λ1) accumulates a high amount of centrality when the number of
inter-hemispherical links is low, but its centrality diminishes as the number of interlinks is increased.
“Weak" hemispheres behave just in the opposite way.

Figure 5.4 evidences a crucial dependency of the hemispherical centrality on the amount of
links that coordinate the activity between them, leading to two well-defined regions: (1) a region
where the number of inter-hemispherical connections is low and the centrality accumulated by one
of the hemisphere is very high and (2) a region where the number of inter-links is high and the
centrality is evenly distributed between the two hemispheres.

The majority of studies investigating the role of the nodes within a functional network and, more
specifically, the characterization of functional hubs, are based on a thresholding of the connectivity
matrix where only the 3%-10% of the links are maintained [A171], [A31].

Nevertheless, the fact that the distribution of the overall centrality is strongly dependent on the
number of inter-links has been commonly disregarded. This fact opens the door to two relevant
issues: (1) To what extent is affected the role of the network hubs by the distribution of centrality
between hemispheres and (2) is the functional balance of the hemispheres just a consequence of the
high number of connections between them? Both questions deserve further attention in the future,
and the results presented in this Chapter could be a starting point to understand how the distribution
of centrality is influenced by the existence of functional communities in the brain. Furthermore, an
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additional question naturally arises, what happens with such a centrality distribution in the case of
failures in the functional network?

5.3.4 Hemispherical Robustness against node failures
Hitherto, our results analyze the distribution of centrality under normal conditions (i.e., EO and EC,
resting state) but, what would happen if a subject suffers from a dysfunction? In other words, what
would be the impact of the hemispherical centrality if an individual suffers from a cortical damage?
And furthermore, which hemisphere is better prepared, in terms of centrality, to the corresponding
node failure? In order to answer these questions we have investigated the consequences of node
removal over both the hemispherical and whole network properties, focusing on the impact on
the distribution of centrality. Node removal can be a way of modeling the effect of brain lesions
(i.e. strokes) in a functional network and has been one of the most extended ways to evaluate the
robustness of a network [A217], [A213], [A122], [A7].

The study of the network robustness against failures should be also inspected under the scope
of the number of inter-hemispherical links since, as we have shown in the previous Section,
centrality is strongly dependent on this issue. For this reason, we considered three different kinds
of configurations, each of them accounting for a prototypical distribution of centrality. The first one
assumes all inter hemispherical links between both hemispheres, keeping the same properties as
the fully connected state. As we have seen, this state is associated with a balance in the amount
of centrality retained by each hemisphere (see Fig. 5.5, stage 1). The second one is a condition
where part of the low-weighted inter-hemispherical links have been removed and only around the
10% of the strongest links have been maintained (Fig. 5.5, stage 2). Finally, the third situation
is just the opposite to the first one: we maintain only a small number of links (the highest 3, in
this example), entering a region where the distribution of centrality is highly unequal, with the
dominant hemisphere acquiring the main percentage (Fig. 5.5, stage 3).

Once these three regions are defined, we study the effects of node deletion by computing its
impact on the hemispherical centrality, for each hemisphere, band and condition. Specifically,
we remove a node from the left hemisphere and compute the new hemispherical centrality CL

∗
without that node. Next, we estimate the percentage of network damage as the difference with
the actual centrality of that hemisphere CL. The local impact lL

imp(i) is defined as the percentage

lL
imp(i) =

(CL
∗−CL)
CL ×100. At the same time, we measure the local contribution lcL(i) of the node i

being removed as the percentage of importance inside its hemisphere (see Section 5.2.5). The same
procedure is repeated for analyzing the robustness of the right hemisphere. In this way, we measure
the impact a node has when it is removed from the network as a function of its own importance.

Figure 5.6 shows the behaviour of lL
imp(i) vs. lcL(i) for all frequency bands, conditions and,

importantly, for each of the three regions defined by the number of inter-hemispherical links. We
plot a dashed line at lL

imp(i) = lcL(i) in order to help the reader to evaluate if the impact of a node
is higher/lower than its importance or, in other words, to see if a node with importance x has an
impact higher or lower than x.

Interestingly, we can clearly differentiate between three different groups which perfectly fit
with the aforementioned stages. In all plots of Fig. 5.6, stages 1, i.e., the impact of the removal
when all inter-hemispherical links are considered, corresponds to the group of nodes lying above
the dashed lines which is defined by lL

imp(i) = lcL(i). This fact indicates that the impact on the local
centrality is always lower than the importance of the node itself. The explanation of this behaviour
is simple, once a node is removed, part of its centrality is still retained by the nodes belonging to its
hemisphere. This phenomenon promotes the resilience of the hemisphere against random failures
and also maintains the functional network-of-networks close to the balance reported in stage 1, at
least in terms of the hemispherical centrality. At the same time, we observe a linear correlation
between the local contribution of a node and its local impact (see Tabs. 5.3-5.4). This kind of
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Figure 5.4: Hemispherical centrality CL vs. the number of inter-hemispherical links. Each
plot shows a different combination of a condition (EC or EO) and a frequency band ( θ , α , β and
γ). Line colors indicate whether the dominant hemisphere is the left (green) or the right one (red).
The 54 curves corresponding to the CL of all subjects are plotted together with the average over the
left-dominant and right-dominant groups (dashed lines). Note how the fact that an hemisphere is
dominant over the other (i.e., when it has higher λ1) leads that hemisphere to retain more centrality,
despite the ratio is strongly dependent on the number of inter-hemispherical links.
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Figure 5.5: The sparsity of the inter-hemispherical links leads to three different stages.
Example from an arbitrary subject in the α band and during the EC condition. The upper panel
shows the weighted matrices for the three regions, according to the number of inter-hemispherical
links, as explained in the main text. In these matrices, the left and right hemispheres keep those
links with a weight higher than the threshold that guarantees that both L and R have a unique
connected component when they are in isolation. Next, the number of links belonging to the
inter-hemispherical connections is modified (i.e., those belonging to P). Stage 3 contains only the
three inter-links with the highest weight; Stage 2 contains thirty inter-links (10.4% of the total);
Stage 1 contains all inter-links. The bottom panel shows the value of CL corresponding to the
connectivity matrices of the upper panel, where red circles correspond to right-dominant individuals
and green squares to left-dominant ones

correlation could be expected but, as we will see, the value of the slope is crucial to determine how
important is that the failure occurs at a hub or at a peripheral node. In this case, the damage would
be always lower than 5% no matter what node fails.

Stage 2 of Fig. 5.5 (the one maintaining the 10% of the links) corresponds to the cloud appearing
in the middle of the four plots of Fig. 5.6. Despite the local importance of the nodes is maintained,
we can observe how the damage in the centrality accumulated by hemispheres has increased
(when compared to the previous stage). Now, the local impact of the nodes is close to its local
contribution. At first sight, this result could be counter-intuitive, since the reduction of the number
of inter-hemispherical links is making the centrality to better “escape" to the other hemisphere.
Nevertheless, the explanation comes from the fact that, the lower the number of links, the farther
we are from the balance in the centrality distribution (and the higher the centrality captured by one
of the hemispheres). In addition, while the linear correlation between node contribution and impact
is maintained, we observe and increase of the slope, indicating that differences between peripheral
nodes and hubs are increasing (Tabs. 5.3-5.4).

Finally, stage 3, the one maintaining only 3 inter-hemispherical links, corresponds to the cloud
of points placed at the lower part of all panels of Fig. 5.6. In this extreme situation, the damage due
to node failure is dramatically increased, at least when compared with the previous results. Now
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Figure 5.6: Local impact lL
imp(i) vs. local contribution lcL(i) during a failure of node i. In all

plots, points correspond to single-node failures (i.e., a single node is removed from the functional
network). Upper (bottom) plots refer to the EC (EO) condition and left (right) column to the impact
in the left (right) hemisphere. In all panels, three groups of nodes can be identified: (1) Stage 1
corresponds to the upper cloud of nodes, (2) Stage 2 to the middlle cloud and (3) Stage 3 to the
bottom group of nodes. See Fig. 5.5 for a definition of the three stages. The dashed line corresponds
to lL

imp(i) = lcL(i). For each stage, a solid line allows to better follow the linear correlation between
the local contribution and the local impact. It has been obtained from the α band, but similar slopes
are obtained for the rest of frequency bands. See Tabs. 5.3-5.4 for a detailed study.
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Stage 1 Stage 2 Stage 3

Band mECL mEOL mECL mEOL mECL mEOL

θ −0.479 −0.537 −1.238 −1.357 −3.784 −4.296

α −0.421 −0.465 −1.541 −1.021 −3.629 −3.466

β −0.599 −0.631 −1.262 −1.082 −3.107 −2.416

γ −0.686 −0.748 −1.857 −2.013 −4.034 −4.098

Table 5.3: Correlation between the local impact and the local contribution (left hemisphere).
Slopes of the linear fitting of lL

imp vs. lL
c (Fig. 5.6) for all bands, conditions and stages. Note the

increase of the slope as we move from stage 1 to stage 3.

Stage 1 Stage 2 Stage 3

Band mECR mEOR mECR mEOR mECR mEOR

θ −0.623 −0.441 −1.759 −1.070 −3.942 −4.660

α −0.608 −0.466 −2.000 −1.222 −4.322 −2.788

β −0.532 −0.586 −1.653 −1.064 −3.118 −1.430

γ −0.833 −0.933 −2.462 −2.240 −4.480 −3.534

Table 5.4: Correlation between the local impact and the local contribution (right hemisphere).
Slopes of the linear fitting of lL

imp vs. lL
c (Fig. 5.6) for all bands, conditions and stages. Note the

increase of the slope as we move from stage 1 to stage 3.

the slope of the linear correlation is that high (Tabs. 5.3-5.4) that the damage in the hemispherical
centrality can be more than three times the local contribution of a node. This way, damaging a node
with a local centrality of 5% leads to a lose of centrality of more than 15%. The clonlussion is
clear: the lower the number of inter-connections between hemispheres, the highest the centrality
vulnerability of the hemispheres and, as a consequence, the farther we are from a balance situation.
These results hold no matter what the hemisphere being attacked is, the condition under study or
the frequency band being analyzed.

Figure 5.7 shows an example of how the impact of the node failure is strongly related to the
amount of inter-hemispherical links. In this example, we plot a spatial distribution of the nodes,
whose size and color indicates the percentage of local impact in the α band. We can observe
that, when all inter-hemispherical links are considered, the local impact of the nodes is similar, no
matter what their local centrality is (Fig. 5.7, left panel). On the contrary, when only few inter-
hemispherical links are considered (Fig. 5.7, right panel), the local impact of all nodes drastically
increases, but also differences between nodes are enhanced. Interestingly, those nodes with the
highest impact are placed at the occipital region and are more vulnerable in the EC condition.

In view of all, we can affirm that the way the hemispheres are interconnected is crucial to
understand the distribution of centrality and the local damage in a functional network-of-networks.
Nevertheless, this point of view has been traditionally disregarded when analyzing functional brain
networks. An explanation of this oversight may come from the impact on other network parameters,
such as the clustering coefficient and the average shortest path. Is the same dependence on the
inter-hemispherical links reported when calculating these two topological parameters? To answer
this question, we computed the impact on the shortest path limpd (i) and the clustering coefficient
limpc(i) when a node failure is introduced. Figures 5.8 and 5.9 show the behaviour of limpd (i) and
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Figure 5.7: Topological organization the local impact in the α band for EC and EO conditions.
Average local impacts in α band for the EC (upper panel) and EO (bottom panel) groups and for
the three stages. The radius of each node is proportional to the local impact and represented by a
color bar. Note how the local impact of the nodes increases as we move from stage 1 to stage 3.

limpc(i) for the EC and EO conditions, respectively. We have also included the local impact in
terms of hemispherical centrality in order to ease the comparison between them. Results are quite
surprising, since both the clustering and the shortest path remain almost unaltered when the number
of inter-hemispherical links is modified (i.e., at the three different stages). Furthermore, the role of
the node that suffers the failure is irrelevant in terms on the impact at the clustering (Figs. 5.8C-D
and 5.9C-D) and has a slight positive correlation in the case of the average shortest path (Figs.
5.8E-F and 5.9E-F).

5.4 Discussion

In the current Chapter we have seen a study of how centrality is distributed in functional brain
networks from a perspective that is different from classical approaches where the brain is treated as
a single network. While a series of previous studies were based on the idea of using the eigenvector
centrality as the metric to assess the importance of the nodes, this centrality parameter is strongly
influenced by the fact that functional brain are composed by inter-connected hemispheres. It is
important to say that all subjects are right-handed, however there is no clear evidence for left-handed
with right dominant brain or vice versa.

Under this framework, we have found that the hemispherical centrality is a useful metric to
better quantify whether brain hemispheres vie to acquire the highest possible amount of centrality
or, conversely, if they are close to a functional trade-off. We have seen how the total centrality along
the functional network-of-networks of the brain is fully distributed between hemispheres in almost
equal proportions when considering all its inter-hemispherical links, including those whose weight
seemed to be irrelevant. As a consequence, we report the existence of a functional balance that, in
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the context of centrality, is merely a consequence of this hyperconnectivity between hemispheres.
This trade-off is captured by the competition parameter Ω, which is close to zero in all conditions
of study (i.e., eyes closed and eyes opened, both at resting state).

The fact that weaker links between hemispheres may represent spurious correlations among
cortical regions, highlights the need to understand how the hemispherical centrality is modified as
the level of connectivity decreases. In this context, we computed the percentage of the damage a
cortical regions has due to single strokes (i.e., removing a node from the network), highlighting the
resilience of the functional network when weakest links are maintained (stage 1). Nevertheless,
when these links are disregarded, the local impact due to a node failure becomes more important
(stages 2 and 3). This way, the functional network-of-networks goes from a tight-binding model to
a fragile system due to absence of inter-hemispherical links. Interestingly, the cortical regions that
lead to the most severe deterioration of the hemispherical centrality are located in the occipital lobe
for all conditions.

In contrast to the centrality distribution, the effect of nodal failures on both the shortest path
and clustering coefficient is not dependent on the number of inter-links. These results should be
put in contrast when network-of-networks methods are applied to neuroscience, because it warns
about the risks of investigating the robustness of multilayered systems only in terms of the typical
topological features associated to information distribution, such as the average shortest path or
the clustering coefficient. In this way, another take-home message is that a network-of-networks
whose number of inter-links is decreased might be robust when dealing with information transport,
meanwhile at the same time it may become vulnerable in terms of centrality.

In conclusion, despite topological studies of functional brain networks improve the understand-
ing how the brain operates, it is important to remark that the brain cannot be analyzed as a single
network. Furthermore, as many other biological complex systems, the brain continuously evolves
in time, but this is another story, which will be the main goal of the next Chapter...
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Figure 5.8: Local impact on centrality, clustering and shortest path for the EC condition.
Upper panels: Local impacts on hemispherical centrality for the left (A), and right (B) hemispheres.
Middle panels: Local impact on the clustering for the left (C) and right (D) hemispheres. Bottom
panel: Local impact on the average shortest path for the left (E) and right (F) hemispheres.
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Figure 5.9: Local impact on centrality, clustering and shortest path for the EO condition.
Same representation as the figure 5.8 but in this case for the EO condition.





6 Evolving Networks

§

We have seen how the eigenvector centrality is useful to better understand the central role played
by nodes in a single network and, to what extent the level of nodes simultaneously activated in

different hemispheres categorizes the level of resilience of the brain when we see it as a system
composed by two single networks. Nonetheless, the previous studies attend to static systems,
that is, networks that simply do not evolve in time and concentrate their dynamics in a steady
state. For this reason a profound study of networks that dynamically change their own topology is
convenient to better understand what happens with the topological organization in different time-
steps. In the present study we used graph theory analysis to investigate age-related reorganization
of functional networks during the active maintenance of information that is interrupted by external
interference. Additionally, we sought to investigate network differences before and after averaging
network parameters between both maintenance and interference windows. We compared young
and older adults by measuring their magnetoencephalographic recordings during an interference-
based working memory task restricted to successful recognitions. Data analysis focused on the
topology/temporal evolution of functional networks during both the maintenance and interference
windows. We firstly observed that older adults require higher synchronization between cortical brain
sites in order to achieve a successful recognition. Secondly we found the main differences between
age groups arise during the interference window and we conclude that older adults show reduced
ability to reorganize network topology when interference is introduced. Finally, we detected that
averaging network parameters leads to a loss of sensitivity to detect age differences.

6.1 Introduction

Older adults show a decline in information-processing resources, such as working memory, and it
is commonly accepted that ageing adversely affects memory abilities. In this regard, age-related
difficulties to suppress irrelevant information from distractors are evident during the active rehearsal

§This chapter is based on my published paper: Evaluating the Effect of Aging on Interference Resolution
with Time-Varying Complex Networks Analysis. Frontiers in human neuroscience. 9, 255 (Jan 2015). [A10]
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of the to-be-remembered material [A83], [A140], [A190], [A101], [A203], [A204], [A205]. Com-
pelling evidence from functional neuroimaging studies has suggested that the disproportionate
susceptibility to interference in older individuals is accompanied by greater activity in prefrontal
and parietal regions relative to their young counterparts. This over-recruitment is thought to be com-
pensatory when it is accompanied by similar task performance across age groups [A91], [A35]. On
the other hand, less activity in frontoparietal regions may also be shown in ageing as task demands
increase, which is associated with a drop in performance [A182]. Despite extensive evidence on
focal brain activity, the human brain is primarily a network and, complex cognitive functions, such
as interference resolution, may be mediated by interactions among a set of functionally related
areas rather than specific brain regions (McIntosh, 1999; Salami et al., 2014)[A144]. Functional
connectivity [A78], [A190] refers to the interactions among spatially remote brain regions [A245]
and connections within specific networks involved in high level cognitive processes seem to be
altered with age, which in turn might affect behaviour [A44], [A90], [A190], [A9], [A92], [A52].
Specifically, a greater distractibility has been associated with reductions in connectivity between
the prefrontal cortex and the parahippocampal area [A44], and within a more anterior network
including the middle frontal gyrus, anterior cingulate and basal ganglia [A190]. Additionally,
Geerligs et al [A85], compared connectivity changes between four different networks showing
increased connectivity in older compared to young adults.

Altogether, current research suggests an age-related reorganization within and between specific
networks. On the other hand, most of the studies have considered functional networks as static
entities without investigating their evolution over time. Importantly, functional networks emerge,
evolve and disappear according to the specific requirements of a given cognitive process and also in
the absence of external stimulation, [A113]. Only a few studies to date have focused on the temporal
evolution of different neural networks [A58], [A66], [A20], [A68]. Network reconfigurations at
larger time scales have been shown to be strongly correlated with learning [A20]. Hence, the
temporal evolution of simultaneous brain networks can help identifying the neural mechanisms
promoting interference resolution with progressing age. This way, MEG technique is an ideal tool
to explore the dynamical properties of whole-brain networks as it enables a direct measurement of
brain magnetic fields from pyramidal neurons in the human cortex with optimal temporal resolution
(i.e., milliseconds) [A99].

Two main principles might be considered when exploring the temporal dynamics of whole-
brain networks, the so-called local specialization and global integration of functionally linked brain
networks [A79], [A207], [A268], [A25], [A245], [A22], [A31], [A245]. Those studies have been
able to demonstrate that the healthy brain is organized according to a small world architecture that
favours cognitive performance [A202], which is characterized by high local specialization (high
clustering coefficient, C) and high global integration (short topological distance between nodes
or path length, L) [A246]. Additionally, deviant graph parameters have been used as markers for
several pathological conditions (for a review, see [A95], [A17], [A245], [A215]), such as mild
cognitive impairment and Alzheimer’s disease [A104], [A61], [A212], [A202], [A30], [A178], [277]
and also for healthy ageing [A149]. In this regard, healthy ageing generally leads to alterations in
the topology of large-scale functional networks with connectivity patterns more similar to “random”
networks [A149], [277] and, hence, deviating from the optimal small-world organization observed
in healthy young individuals. However, only a few studies to date have examined age effects
on task-related functional connectivity with graph approaches [A106], with only one of them
focusing on memory processes [A245]. In this respect, the authors observed age-related disruptions
of large-scale networks relevant to memory encoding and recognition. Specifically, older adults
showed a widespread loss of long-range connections and longer path lengths in fronto-temporal
and temporo-parietal regions with a few increases in posterior parietal regions.

The present study aimed at expanding limited previous work from graph approaches on age-
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related disruptions of memory-based functional connectivity, with special emphasis on the tem-
poral evolution of network topology. To address this important issue, we examined whole-brain
temporal dynamics of large-scale functional networks with MEG during the performance of an
interference-based working memory task in young and older adults. To this end, we calculated phase
synchronization across whole-brain regions and computed complex network parameters within
each age group for α , β and γ bands, observing that the α band was the one reporting significant
differences between young and older individuals. We then compared the abovementioned complex
network values between age groups for successful recognitions. We also focused on the ability
of functional networks to evolve and adapt in time during both the maintenance and interference
period. Finally, we investigated network differences before and after averaging network parameters
between both maintenance and interference windows. In contrast with previous research that
focused on memory encoding and recognition, we were interested in memory maintenance as it
corresponds to the period in which distraction is presented and interference resolution takes place.
The present work is built on an study who examined age-related changes in brain activations during
memory maintenance. Here we demonstrated that interference resolution from distractors during
the active maintenance of information requires greater neural resources for older adults in order
to match the level of performance seen in young adults. Previous studies of network functionality
in ageing [A140], [A148], hypothesized that older adults would demonstrate altered temporal
dynamics in whole-brain functional networks during task performance compared to younger adults.
To investigate this issue, we analysed how the topology of the functional networks of both young
and old adults evolves during the experiment and we compare it with the classical analysis of the
averaged functional networks, i.e. disregarding the fluctuations of the network topology along the
experiment.

6.2 Materials and Methods

The sample comprised 20 healthy individuals divided into two groups according to their age,
young and older adults (see, Table. 6.1 for a description of the sample). They were selected from
the adults program at the Universidad Complutense de Madrid (UCM). All participants reported
corrected to normal vision and hearing within the normal range. All participants underwent a
screening evaluation including a semi-structured interview, the reduced Geriatric Depression Scale
rGDS [A253], and the MiniMental State Examination MMSE [A75]. They were required to
satisfy a number of inclusionary criteria: (I) No psychiatric diagnosis described by the American
Psychiatric Association (DSM-IV-TR axis I or II disorder), (II) No chronic neurological disease
(e.g., seizure disorder or dementia) or severe medical illness that requires medication (e.g., diabetes
or cardiopathies), (III) A score < 5 on the rGDS, and (IV) A score > 27 on the MMSE. Informed
consent was obtained prior to participation and approved by the Institutional Review Board at
UCM.

Female/Male Age MMSE rGDS

Young 6/3 21.88 (3.40) 29.77 (0.44) 0.92 (1.38)

Older 9/2 64.45 (4.68) 29.17 (0.83) 1.58 (2.47)

Table 6.1: Demography of the Sample. Variables are included as mean values (standard devia-
tions).
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6.2.1 Cognitive Task and MEG Recordings

We performed an interference-based working memory task, composed of 120 trials [A203]. Stimuli
were presented using E-Prime 1.2 software (Groningen, The Netherlands). The experimental design
is schematically depicted in Fig. 6.1. It is divided into three stages: encoding, maintenance and
recognition. A ‘LEARN’ yellow cue (500 ms) indicated the beginning of each trial, followed by a
blank screen (200 ms). Two paired associates, each of them composed of a visual stimulus (face)
plus an auditory stimulus (semantic attribute describing some aspect of the face, i.e. ‘clever’),
were subsequently shown during 2000 ms, separated by a blank screen (200 ms). Participants were
instructed to memorize each pair.

Next, after a 500 ms blank screen, an interfering face of a famous person was presented during
3000 ms. Participants had to answer a yes/no question (i.e. ‘Is he a writer?’) pressing one of two
response buttons, followed by a blank screen (500 ms). Next, a ‘REMEMBER’ white cue appeared
(500 ms), followed by another blank screen (200 ms). Thereafter, two more paired associates were
shown during 2000 ms each.

Finally, another blank screen appeared for 200 ms. Subjects were required to make a match/non-
match button-press response with the index finger to each probe as quickly as possible without
sacrificing accuracy. We used a specially designed button panel and left/right (yes/no) index finger
assignment was counterbalanced across participants. All participants were right-handed as stated
with the initial semi-structured interview. On120 of the 240 probes, the two paired-associates had
been presented previously during the encoding period (a cue visual stimulus plus a cue auditory
attribute) and the order of cue paired-associates at recognition was randomized. For the other
120 probes, the two paired-associates were foils. Specifically, 60 of these 120 probes were two
paired-associates consisting of a cue visual stimulus plus a novel auditory attribute, and the other
60 consisted of a novel visual stimulus plus a cue auditory attribute. The presentation of ‘Old/New’
paired-associates was randomized and counter-balanced across all trials.

Figure 6.1: Trial Structure. Two paired associates were shown subsequently for 2000 ms each to
memorize during the encoding stage. An interfering picture of a famous face was displayed for
3000 ms and subjects were asked about some attribute related to that picture during the maintenance
stage. Two paired associates were presented subsequently for 2000 ms each during the recognition
stage and subjects reported whether each of them had appeared during the encoding phase.

Visual stimuli consisted of coloured pictures of human faces from the MEG laboratory database
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for faces. Sex and age were counter-balanced across all pictures. Age range was the same as the one
employed in the selection of young and older participants (19-27 years for young participants, and
55-73 years for older participants). Famous faces were selected based on a preliminary behavioural
study conducted with a different set of participants in which pictures were equally recognizable
to young and older adults [A203]. Paired associates and famous faces at the maintenance period
were novel across trials. The set of employed images consisted of 240 faces for the encoding
stage, 120 for the maintenance, and 240 for the recognition stage. From those at the recognition
state, 120 were target (faces presented at encoding) and the rest were distractors. From the set of
distractors, half incorporated a novel auditory stimulus and the half matched those at the encoding
stage, but incorporated a novel face. Gender and age showed a variety of neutral expressions and
were controlled across pictures.

Auditory stimuli were stereo-recorded at a frequency of 44.1 KHz and 16 bits. The set of stimuli
consisted of 300 words: 100 were adjectives taken from the dictionary of the Royal Academy of the
Spanish Language; 100 were professions taken from the Spanish National Institute of Statistics; and
the 100 remaining were places of residency taken from the Spanish National Institute of Statistics.
Prior to the MEG scan, subjects undertook a 20 trial-training session with the same structure as
described above.

MEG recordings
Magnetic fields were recorded using a 148-channel whole-head magnetometer (MAGNES R©
2500 WH, 4-D Neuroimaging, San Diego, California, USA) confined in a magnetically shielded
room. The sampling rate was set to 678.17 Hz. An online anti-aliasing bandpass filter between
0.1−100 Hz was applied. Four electrodes were attached for the identification of blinks and eye
movements; two of them near the left and right outer canthus and the other two above and below
the right eye. Prior to the MEG measurements, the position of the magnetometers relative to the
subject’s head was determined utilizing five small radiofrequency coils. Responses at recognition
were classified either as ‘hits’ (both answers were correct at recognition) or ‘errors’ (one answer or
none of them were correct at recognition). We were interested in successful recognition; hence, we
selected trials with hit responses for subsequent network analysis.

Data were pre-processed using a signal space projection (SSP) procedure that uses simultaneous
recordings from nine reference channels. Baseline correction was applied on the basis of a pre-
stimulus 100 ms window. Thereafter, the signal was submitted to a low-pass filter of 48 Hz.
Ocular artifacts were corrected using BESA (version 5.1.6) (MEGIS Software GmbH, Gräfelfing,
Germany), which is a standard artifact-correction tool. Datasets were then visually inspected for
movement artifacts, and epochs with peak-to-peak amplitudes exceeding a threshold of3 pT were
discarded from further analysis. In order to avoid any bias related to the different number of
trials across subjects, we used a quality criterion referred to the minimum number of trials free
of artefacts, which in the present study were 32. In individuals with more than 32 trials free of
artefacts, we selected 32 of them randomly. From these trials, we segmented epochs of 1500 ms,
including the blank-screen period prior to presentation of the interfering stimulus (500 ms) and
the first 1000 ms after it. This segmentation was applied to avoid muscular artefacts coming from
the button pressing while answering the interfering question. Hence, segmented epochs contained
two different parts: 1) a memory maintenance window (500 ms) and b) and interference window
(1000 ms).

6.2.2 Synchronization and Networks Analysis
The construction of the functional networks relies on the evaluation of the phase synchronization
(PS) between brain regions. PS detects when the phases of two signals synchronize, even though
their amplitudes remain uncorrelated [B17], [A174] and was quantified through the Phase Locking
Value (PLV) [A129] using HERMES toolbox [A164]. Phases associated with the dynamics recorded
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at each magnetometer were extracted using the Hilbert Transform [B17]. Next, we definedφ(t) as
the difference between the two phases and calculate the PLV as:

PLV = 〈eiφ(t)〉==
√
〈cosφ(t)〉2 + 〈sinφ(t)〉2 (6.1)

Higher PS between two signals relate to small differences between phases and high PLV, and
vice versa for lower PS. We were interested in the temporal evolution and topology of the functional
networks. This way, we split the 1500 ms epochs into time windows of 50 ms length each with
no overlap and evaluate the PLV within each temporal window. The window length was set to a
value low enough to guarantee a sufficient number of points to observe a non-stationary temporal
evolution of the network structure, but large enough to allow an accurate PLV. PLVs were computed
in ten frequency bands (from 8 Hz to 48 Hz, with central frequencies separated each 4 Hz) between
pairs of the 148 magnetometers. Lower frequencies could not be considered due to edge effects
after Hilbert transforms. Then, results were normalized with respect to a baseline (an open eyes
resting state period of 100 ms). PLVs were then merged to form α (8−12 Hz), β (12−30 Hz)
and low γ (30−48 Hz) frequency bands. Note that the length of the time windows to obtain the
PLV is lower than the 1

fmin
limit suggested by Leonardi and van de Ville [A133]. Nevertheless, the

fact that we are analysing non-stationary signals allow us to reduce the length of the time window
beyond this limit, as recently explained by Zalesky and Breakspear [A257]. Importantly, statistical
differences between network parameters were only found at α band. Thus, we will focus on this
frequency band in the forthcoming sections.

Complex network analysis
The PLV between all pairs of channels led to a NxN (N = 148) symmetric matrix W , where its
elements wi j quantify the PS between node i and node j. Due to the time segmentation into 50 ms
windows, we obtained a set of matrices {W} for each individual, and we tracked how the topology
of these matrices changed with time. With this aim, we computed a series of complex networks
parameters for each matrix of the {W} set: the network strength (S), outreach (O), weighted
clustering coefficient (Cw), global efficiency (Eg) and average shortest path (SP). These parameters
were obtained, first, for each node of the network and, second, averaged over the whole network.
This procedure was followed for each individual and, finally, each network metric was averaged
over individuals of the same group, leading to an average of the ensemble with its corresponding
error.

We have also computed the average values for the memory maintenance, the interference
and the whole experiment, in order to evaluate the information gained from the analysis of the
evolution of the network parameters. Age-related differences in complex network parameters were
calculated using non-parametric Kruskal-Wallis test [B22]. Reported p-values were corrected for
multiple comparisons using a non-parametric permutation approach as elsewhere [A163]. Statistical
significance was considered for p-values lower than 0.05.

6.3 Results

6.3.1 Functional Network Parameters in α Band
We have computed a group of classical network metrics over averaged and non-averaged functional
networks in order to investigate functional activity. Our first approach was to obtain three different
averages of the network parameters during: A) memory maintenance (MM), B) interference (I) and
C) the whole experiment (MM+I). As we will see, the averaging of the network parameters leads in
many cases to non-significant differences between groups, but we will use them as a reference to
evaluate the advantages of analysing their temporal evolution.
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Figure 6.2: Average network parameters obtained during the whole experiment (MM +I),
memory maintenance (MM) and interference (I) windows. strength (S), outreach (O), weighted
clustering coefficient (Cw), global efficiency (Eg) and average shortest path (SP). Rows refer,
respectively, to MM+I, MM and I. Statistically significant parameters (p <0.05) are highlighted in
green, see Tab. 6.2 summarizing the reported p-values. Black bars represent standard error of the
mean. Y = young, O = old.

First row of Fig. 6.2 shows the network parameters of the functional network obtained for
averaging the set of synchronization matrices W during the whole experiment (MM+I). We observed
that the older adults group had a higher average of the network strength S (Fig. 6.2 A), indicating
a more synchronous activity during the whole experiment. As a consequence, the outreach O,
measuring how the synchronized activity is correlated with the physical length of the links, also
had higher value in the older adults group (Fig. 6.2 B). Accordingly, the network shortest path
SP was lower in the older group (Fig. 6.2 C), since the topological length of a link is obtained as
the inverse of its weight (which, in turn, measures the synchronization). Thus, a higher value of S
is translated into a lower average length of the network links, reducing the topological distance”
between nodes and leading to a lower SP in the older group. Note that this does not necessary
indicate a better/worse organization of the network structure (in terms of information processing)
since the lower SP was just a consequence of having a larger S (i.e., higher average synchronization).
The global efficiency Eg was obtained as the inverse of the harmonic mean of the shortest distances
between nodes, and it normally correlates with the inverse of SP, which is the case of our experiment
(Fig. 6.2 D). As explained before, the higher efficiency of the older group is just a consequence
of having a higher average synchronization between cortical regions. Finally, we focused on the
local properties of the network by inspecting the weighted clustering coefficient Cw, measuring how
dense the connections are at the local level. We report a higher value in the older group (Fig. 6.2
E), which can be attributed again to a higher value in the average synchronization.

Second row of Fig. 6.2 shows the same network parameters but restricted to the memory
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S O SP Eg Cw

MM+I 0.0532 0.0524 0.0708 0.1008 0.0674

MM 0.8226 0.5496 0.3390 0.5026 0.8810

I 0.0230 0.0174 0.0476 0.704 0.0264

Table 6.2: Comparisons between averaged graph metrics. P-values of the comparisons be-
tween average graph metrics after correction for multiple comparisons through non-parametric
permutations test.

maintenance window (MM). We observe similar results as in MM+I, with the exception of the
clustering coefficient where average values of both groups remain very close. Nevertheless, although
there are clear differences at the average value in the first panel, none of the network parameters
had significant statistical differences between groups in the MM+I analysis (see first row of table,
6.2), i.e. when an averaged functional network is considered for the whole experiment. Likewise,
the statistical analysis in the MM analysis leaded to the same results as in MM+I, that is, average
differences between groups are not statistically significant.

Finally, in the third row of Fig. 6.2 the analysis is restricted to the interference window
(I). In this case, S (Fig. 6.2 K), O (Fig. 6.2 L), SP (Fig. 6.2 M) and Cw (Fig. 6.2 O) show
statistically significant differences (p<0.05) between young and older adults. The average strength
S (p = 0.0230) during the interference period is higher for the older group, which suggests that
they require a higher synchronization between cortical regions in order to successfully perform
the memory task (note that only successfully recognized items were considered for the analysis).
This fact is reflected in the differences in the SP: the increase of S reduces the topological distance
between nodes, and SP now becomes statistically significant (p = 0.0476). Interestingly, the
outreach is the network parameter showing the lower p-value (p = 0.0174) and, in turn, the largest
difference between averages. When inspecting the local scale, we also obtain statistical significant

differences in the clustering coefficient Cw (p = 0.0264). Only the Eg does not show enough
differences to overcome the statistical test, although the differences between the average values
between groups are larger than in the memory maintenance window.

Two general conclusions can be extracted from the analysis of the topology of the averaged
functional networks. First, a division of the task into MM and I gives more interesting information
about the functional network structure as compared to the average over the whole experiment
(MM+I). This is somehow expected as we are considering two different cognitive processes:
memory maintenance and interference. Second, age differences are more evident during the
interference period, leading us to consider that older individuals require higher synchronization
between brain regions in order to perform a successful recognition. However no correlations were
observed between the averaged network metrics and the task behaviour, i.e. the percentage of
correct answers.

6.3.2 Temporal Evolution of Functional Networks in α Band

The fact that the topology of functional networks is not static recommends a study of how their
temporal evolution is. Thus, it is desirable to split the whole experiment into short time intervals,
calculate the properties of the functional networks at each interval and track their evolution. The
shorter the time intervals, the larger the number of points and the better the temporal resolution.
Nevertheless, the minimum length required to compute the synchronization between cortical regions
introduces a lower threshold when dividing each time series into short windows. In our case, we
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have chosen a threshold of 50 ms, which leads to 30 points during the 1500 ms of each measurement.
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Figure 6.3: Evolution of the network strength S (A), outreach O (B) and weighted clustering
Cw (C) for young (blue squares) and older (red squares) groups. The dashed line indicates
the end of the memory maintenance period and the beginning of the interference period. Stars
indicate those time steps where the strength of the functional network shows statistically significant
differences (p<0.05) between both groups.

Next, we have obtained, and compared, all network parameters for each time step. Figure 6.3A
shows the evolution of the network strength S during the whole experiment, with a dashed line
indicating the end of the memory maintenance period and the beginning of the interference period.
As we observed in the previous section, the average strength S was higher in older individuals. The
phenomenon where Solder > Syoung, is clearly reported in the interference time-window.

It is worth noting that those time steps where the functional network has statistically significant
differences appear at the beginning of the interference period (see stars in Fig. 6.3A, indicating
the time steps with a p-value p<0.05), vanishing after step 23 (700 ms after the beginning of the
interference). Also note how the strength decreases during the interference period when compared
with the memory maintenance period. This decrement is sharper at the beginning of the interference
in the young group and much smoother in older individuals. Similar results are obtained with
the outreach O parameter, as shown in Fig. 6.3B. Again the temporal evolution of the functional
network reveals statistically significant differences between groups during the early stages of the
interference period, in this case disappearing after500 ms (step 20). For both groups, the outreach
decreases in the interference period (See Fig. 6.2G and Fig. 6.2L) following a similar profile as the
network strength S, as it can be seen by comparing 6.3A with Fig. 6.3B.

Interestingly, the weighted clustering coefficientCw does not reveal such clear differences (see
Fig. 6.3C). The number of points that have statistically significant differences (stars in Fig. 6.3C)
decreases in just one time step located in the interference period. Again, the main differences are
reported during interference and similar profiles to those of S and O are obtained, i.e., higher values
during the memory maintenance in both groups and Cw(older) > Cw(young) during the interference.
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SP (B) for both the young (blue squares) and older (red squares) groups. The dashed line indi-
cates the end of the memory maintenance period and the beginning of the interference period. Stars
indicate those time steps where the strength parameter shows statistically significant differences
between both age groups.

Figures 6.4A-B account for the two parameters related with the global transmission of informa-
tion along the network: global efficiency Eg and the average shortest path SP. As for the rest of
parameters, differences between both groups are more evident in the interference period. In both
measures, we only obtain two time steps with statistical differences in the interference region. The
higher Eg reported in the older group (Fig. 6.4A) is a consequence of the higher value of S: the
higher the synchrony between nodes, the higher the efficiency will be.

Note that Eg refers only to topological efficiency, and to the efficiency of the brain during the
cognitive task. This decrease in network efficiency might indicate that older subjects require a
higher synchronization between brain regions, which implies a higher energy demand, to achieve
the same objective, in this case, a successful recognition after the inference. Finally, we observed
that SP behaves in the opposite direction from the topological efficiency parameter (Fig. 6.4B). The
increment of synchrony in the older adults group results in link weights of higher values that, in
turn, lead to shorter paths between nodes (i.e., the higher the synchrony between two nodes, the
shorter the distance between them).

6.3.3 Fluctuations of Network Parameters in α Band

We finally focused on the ability of functional networks to evolve and adapt in time during both
the memory maintenance and the interference window. With this aim, we quantified the increment
of the network strength S at every time step ∆S = |Si−Si−1| since, as seen in the previous section,
this parameter influences the rest. We used ∆S as an indicator of how much the synchrony over the
functional network is able to increase/decrease during the short time interval of 50 ms associated
to each time step. Next, we computed the cumulative probability distribution Pc(∆S) of having an
increment of network strength higher than ∆S. Pc(∆S) was obtained for both groups separately.

A comparison between memory maintenance and interference is plotted in Fig. 6.5. Interest-
ingly, during the memory maintenance, fluctuations of the network strength are higher in the young
adults group (Fig. 6.5A). When analysing the same distributions during the interference period, we
observe that the situation is reversed. In this case, the older adults group shows higher fluctuations
of the network strength, which can be clearly observed by looking at the difference between both
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distributions (Fig. 6.5B).

Figure 6.5: Cumulative probability distributions of the increment of the network strength
∆S between consecutive time steps (insets) and differences between groups. ∆S is defined as
∆S = |Si− Si−1|. Blue circles refer to ∆S of individuals belonging to the young group and red
squares to ∆S of old subjects. Both insets show the cumulative probability distributions Pc(S) for the
maintenance and interference regions (in log-linear scale), respectively. Main figures, (A) and (B)
show the difference (POld

c −PYoung
c ), in linear scale, between both groups. We observe how, during

the memory maintenance the increments of the network strengths are higher in the young group.
On the contrary, during the interference region, fluctuations are mush larger in old individuals.

We also analyse the fluctuations in strength at the nodal level. In Fig. 6.6A-B we show between-
group differences, in the average strength of the nodes (i.e., ∆Sold−young = sold

i − syoung
i ), for both

the memory maintenance and the interference time windows. During memory maintenance, we
observe that despite the average network strength S is higher in the older adults group (see Fig.
6.2F), this is not a generalized feature, since some nodes show a negative value of ∆Sold−young
(Fig. 6.2A). In the interference time-window, with a higher average network strength S for the
older group compared to the young group (see Fig. 6.2K), the majority of nodes have, accordingly,
positive ∆Sold−young, with values much higher than the ones in the memory maintenance window.

Finally, it is worth analysing strengths fluctuations at the node level during memory maintenance
and interference. Figure 6.6C-D shows differences in strength fluctuations at the local level between
both time windows (MM and I)for both age groups. This way, we first obtained strength fluctuations
between two consecutive time steps ∆S = |Si−Si−1| and, next, we averaged this value within each
time-window and computed the difference ∆SMM−∆SI .

The results show how in the older adults group, differences between MM and I are more
extreme at certain nodes placed at the frontal and occipital regions (Fig. 6.6 D), while differences
in the young adults group are more homogeneous (Fig. 6.6C). In both cases, we have positive
and negative deviations of ∆SMM−∆SI , indicating that it is worth going to the level of nodes to
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gain insights about how the fluctuations of the network strength are distributed among the cortical
region.

6.4 Discussion
We have investigated how functional networks of young and older individuals modulate their
structure during an interference-based working memory task. We have seen that averaging the
network topology during the whole experiment or, splitting it into two parts corresponding to the
memory maintenance and interference, hide the differences reported between groups when a full
segmentation along the experiment is performed. The latter analysis allows observing the evolution
of the network parameters on time, reporting significant differences between young and older
individuals at the beginning of the interference period. These differences are more pronounced in
parameters such as the strength S or outreach O, although they are also reported in the weighted
clustering Cw, average shortest path SP and network global efficiency Eg. Interestingly, the ability of
the network topology to reorganize is impaired in the older group, which shows lower variations of
the network strength between consecutive time steps during the interference region when compared
to the memory maintenance.

Complex networks’ metrics have traditionally quantified the topological properties of networks
with a unique and fixed value. This approximation is valid in those cases where the time scales
of the network evolution are orders of magnitude higher than the dynamical processes occurring
in them. For example, when evaluating anatomical brain networks, it is reasonable to assume
that the topology of the network is fixed during the measurement of the network itself, despite
it is known that the synaptic connections also evolve with time (although at much slower rates).
On the contrary, during a cognitive task, the brain activity suffers drastic changes at really fast
time scales, and it is reasonable to expect that the associated functional networks could modify
their topology during the task. Thus, averaging the network properties during a whole task may
hinder information about the real topology of the functional network. Despite these limitations,
the majority of the studies analysing the topology of functional networks have dealt with, what
we call averaged functional networks, which are obtained as the average of the activity during
a cognitive process, e.g.: one memory task, one single functional network. Unfortunately, this
approximation may not give enough accuracy to draw conclusions about how the topology of the
functional network is and how it evolves in unison with the cognitive task. In addition, it can be
expected that the analysis of the evolution of a functional network, if possible, would result on
a deeper knowledge of how the network arises, evolves and disappears, thus leading to a better
understanding of the interplay between the network topology and cognitive processes.

Only a few studies have focused on the evolution of the topology of functional networks, most
of them analysing the effects of ageing or adaptation during learning ([A17][A58][A55]). The fact
that the majority of real networks change their topology as time goes by is capturing the attention
on scientist working on complex networks analysis and redefining classical measures in a way that
they are able to capture the intrinsic evolution of the network structure.

In the current work, we use of this kind of methodologies in order to evaluate how young
and older individuals perform an interference-based memory task and what are the consequences
of undergoing an interference stimulus aiming to alter the memory maintenance. We show that
calculating the parameters of the functional networks averaged along the whole experiment leads
to differences between groups (young and older) that are not statistically significant. This fact
reveals that, whenever it is possible, temporal averaging of the functional networks should be
avoided. When the analysis is divided into two different stages, i.e., memory maintenance and
interference, statistical differences between young and older individuals arise. Interestingly, it is
only the interference window where the comparisons between network metrics show significant
differences. This result indicates that at the whole-brain network level, the mechanism that allows to
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the elder group to achieve a successful recognition appears during the interference period, and this
seems to be related with a global increase of functional connectivity, as observed for the network
strength and outreach in the two first time windows. This result is in agreement with previous
evidence considering the increase of functional connectivity as a compensation mechanism.

Interestingly, the fact that an impaired functional network shows a higher synchronization
between its nodes has been reported in mild cognitive impairment, a brain disease considered
as Alzheimer’s prodromal state. The network metrics reflect differences between groups when
taking into account both the global organization, by means of the outreach parameter, and the
local organization, through the network clustering. The older group showed higher values of both
metrics, indicating a higher activity of their functional networks, despite, as in the case of network
strength, only the interference period shows significant statistical differences. The fact that outreach
parameter takes into account the physical length of the links indicates that the differences between
groups are also influenced by geometrical constraints. Nevertheless, we must note that the increase
of the network strength in the older group has consequences in the rest of the network parameters.
Higher strength leads to shorter distances between nodes, since topological distance scales with the
inverse of the weight of the links. Thus, an increase ofS is translated into a reduction (increase) in
the SP (Eg). At the local scale, the clustering coefficient of the older group shows higher values
than the young group, also capturing the enhancement of the synchronization in old individuals. As
a general picture, the increase of the correlated activity of the older group modifies the network
parameters accordingly, a fact that is mainly reported in the interference region.

In the present study, age-related differences in network topology are restricted to the alpha
band. Converging evidence has demonstrated a central role of alpha oscillations in both the
active processing necessary to memory maintenance ([A168][A193]) and functional inhibition
[A116]. Both aspects are intrinsically linked to the notion of “top-down control”, which refers to an
attentional control function that focuses on task-relevant information and suppresses task-irrelevant
information by means of inhibition [A179]. In this regard, our results support the importance of
alpha in inhibitory top-down control to enhance the retention of the to-be-remembered material and
the suppression of interference during the maintenance period.

All in all, it is worth mentioning how the functional networks adapt their values in time. We
observed how the increment of the network strength between consecutive time steps behaves
differently during the memory maintenance and the interference periods. While the fluctuations of
the network strength are slightly higher in the young adults group during the memory maintenance,
this situation is reversed during the interference period, where fluctuations of the strength of the
older adults group are much higher. This fact suggests that the ability of functional networks to
maintain (modify) its topology during interference is decreased (increased) with ageing, which may
be related to inefficient top-down control, particularly, to deficits in inhibitory mechanisms necessary
to override interference [A84]. These enhanced fluctuations of the network topology in order to
compensate external disturbances might be of interest in the early diagnosis of neurodegenerative
diseases such as Alzheimer’s disease or other types of dementia. In addition, results are consistent
with previous literature reflecting age related changes during recognition processes [A91], [A35].

Finally, this study offers another perspective to understand the dynamics of the functional
networks on the basis of tracking the temporal evolution of the topology. Nonetheless, these kind
of studies still let aside the possibility of knowing the inner dynamics associated to cortical regions,
i.e., the intrinsic dynamics in the network. In this sense, the following study offers the way to
understand how the inner dynamics of cortical regions may behave consistent/inconsistently in
order to reorganize their own topology by themselves. That is to say, how the brain consistency can
be captured by a new sub-type of functional network.
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Figure 6.6: Comparison of the strength of the nodes and their fluctuations during the memory
maintenance and interference time windows. (A) Comparison of nodal strengths si of both
groups during memory maintenance (sold

i − syoung
i ). (B) Same as differences as (A) obtained during

the interference period. In (A) and (B) node size is proportional to the average node strength. We
can observe how, during the interference period, the strength, in this case at the node level is much
higher in the old group. (C) and (D) Average differences of strength between consecutive time steps
∆S = |Si−Si−1| at the nodal level. Colours account for the difference of ∆S between the memory
maintenance and interference regions, ie. ∆SMM−∆SI . This way, we compare the value of the
fluctuations within the same group at the different regions (MM - I): (C) Young group and (D) old
group.



7 Anomalous Networks

§

The inner activity of the nodes makes feasible to study the dynamics in the networks, this way one
can capture another different type of information about the brain networks different from that

regarding multichannel interdependencies. i.e., the brain performance variability due to the local
activations of cortical regions. In this sense, increased variability in performance has been associated
with the emergence of several neurological and psychiatric pathologies. However, whether and how
consistency of neuronal activity may also be indicative of an underlying pathology is still poorly
understood. In this study we propose a novel method for evaluating consistency from non-invasive
brain recordings. We evaluate the consistency of the cortical activity recorded with MEG in a group
of subjects diagnosed with Mild Cognitive Impairment (MCI), a condition sometimes prodromal of
dementia, during the execution of a memory task. We use metrics coming from nonlinear dynamics
to evaluate the consistency of cortical regions. A representation known as parenclitic networks
is constructed, where atypical features are endowed with a network structure, the topological
properties of which can be studied at various scales. Pathological conditions correspond to strongly
heterogeneous networks, whereas typical or normative conditions are characterized by sparsely
connected networks with homogeneous nodes. The analysis of this kind of networks allows
identifying the extent to which consistency is affected in the MCI group and the focal points where
MCI is especially severe. To the best of our knowledge, these results represent the first attempt at
evaluating the consistency of brain functional activity using complex networks theory.

7.1 Introduction

Excessive variability in performance negatively impacts people’s ability to carry out activities
of daily living. Increased short-term fluctuations, particularly in reaction times, that cannot be
attributed to systematic effects, such as learning, have been associated with a wide range of
cognitive disorders including impaired top-down executive and attentional control processes, and

§This chapter is based on my paper: Anomalous Consistency in Mild cognitive Impairment: A complex
networks approach. Chaos, Solitons & Fractals. 70 (Jan 2015). [A143]
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with conditions including healthy ageing, and various neurological and psychiatric disorders
ranging from Parkinson’s disease [A36, A59], multiple sclerosis [A23], traumatic brain injury
[A47], schizophrenia [A141] and various forms of dementia [A111, A234].

Figure 7.1: The phenomenon of consistency. The consistency of a dynamical system relies on its
ability to respond in the same way when the the same external input is applied. In all panels (A,
B, C), the same external perturbation is applied and the response of the system with two different
initial conditions (~x0 and~x′0) is (qualitatively) shown. In A, we show an example of a driven system,
where the output always behaves in the same way (as the external perturbation) due to a strong
forcing of the input. In B, the external perturbation is not able to drive the output which responds in
a different way when the same input is applied (due to different initial conditions). In C, we show
an example of consistent dynamics. When the same input is applied, the system’s output always
behaves in the same way, despite not mimicking the driving dynamics.

A number of studies attest an association between behavioural inconsistency and structural
and functional brain abnormalities. For instance, diffusion tensor imaging showed a relationship
between intra-individual variability in reaction times and white matter integrity, with variability
increasing with white matter degradation, pathway connectivity degradation and brain dysfunc-
tion [A73, A226, A230]. Behavioural inconsistency was also associated with neurotransmitter
dysfunction, stress, and fatigue [A43, A67, A69, A157, A234].

However, whether and how behavioural consistency stems from a corresponding loss of consis-
tency of functional brain activity is still unclear. For example, it has been shown that behavioural
variability in the response time during a face recognition task negatively correlates with the brain
signal variability, at least when children and adults are compared [A145], the latter having lower
response time variability combined with higher signal variability. In the current study we will focus
on the variability of brain dynamics when carrying the same (memory) task. We study whether the
dynamics of the recorded signal at different cortical regions maintains (or not) its shape when the
same memory task is carried out, and how the variability of each cortical region is related to that of
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other regions.

In physics, consistency [A237] has been studied with a series of different dynamical models
[A87, A176, A238]. The emergence of a consistent response requires a high synchronization
between different outputs of a nonlinear system (i.e., different realizations with different initial
conditions) when the same external input is applied. Nevertheless, consistency does not imply the
observation of a synchronized state between the external input and the system’s response as it is the
case of an entrained or driven system. Figure 7.1 shows, qualitatively, the difference between a
driven system and a consistent/inconsistent system.

Here we propose a new methodology for quantifying neuronal consistency that can be applied
to noninvasive diagnostic procedures. This method involves constructing a parenclitic network
representation [A260, A264] based on anomalous behaviour of a certain set of features. In our case,
each node of the parenclitic network corresponding to a certain cortical region, is associated with a
feature: its dynamical consistency during a memory task. We construct a network where nodes
have a link between them with a weight that depends on how their consistency diverges from an
expected value. The topological characteristics of the parenclitic networks can be used to extract
information about how consistency is lost/maintained across the whole functional network. In such
a representation, atypical or pathological conditions lead to the existence of a high number of links
with large weights. Previous applications of this methodology to biological data have shown that
parenclitic networks obtained from datasets associated with pathological conditions lead to strongly
heterogeneous networks, i.e., networks where some nodes have a degree that is much higher than
expected for links created at random, whereas typical or normative conditions are characterized
by sparsely connected networks with homogeneous nodes [A260, A264]. In essence, a parenclitic
representation equips the set of abnormalities of a system with a network characterization based on
topological properties at various scales.

Specifically, we study the consistency of functional brain activity in a group of patients diag-
nosed with MCI. As it was mentioned in chapter 4, MCI is a clinical condition in which subjects
experience memory loss to a greater extent than would be expected for age, who while not meeting
the criteria for clinically probable Alzheimer’s Disease (AD) are nonetheless at increased risk of
developing it. Behavioural evidence shows that, compared to cognitively healthy ageing, MCI has
been associated with increased response time variability and particularly in those subjects later
developing AD [A43, A67, A69, A73, A89, A226]. Abnormal consistency in MCI may therefore
represent a measure of functional integrity that may help identifying those patients who ultimately
lapse into fully-fledged dementia.

On the other hand, recent studies have shown how the functional networks of MCI patients
obtained during a memory test show differences in their topologies when compared to healthy
subjects [A14, A29]. This fact indicates that a global reorganization of brain activity is occurring,
raising the question of how the consistency of a brain network is affected by this reorganization.
With the aim of studying the consistency of the whole brain network, we used MEG to record the
brain activity of a group of patients suffering from MCI and a healthy control group as they carried
out the Sternberg short-term memory task. We then computed the consistency of each brain site for
each individual of each group and finally constructed the parenclitic network for the differences in
consistency between MCIs and controls. The structure of the parenclitic networks highlights those
regions whose consistency is most affected by the disease and suggests ways in which the effects of
MCI may propagate through the functional brain network.
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7.2 Materials and Methods

7.2.1 Subjects
It is important to remark that this study is based on the data set collected for the first study. Here,
the only change is the number of subjects and the amount of magnetometers in the scalp of them
(147 nodes). Specifically, fourteen right handed patients with MCI were recruited. In addition,
fourteen age-matched elderly participants without MCI were included as the control group. A
summarized demographical information is stored in Tab. 7.1.

GDS LM1 LM2

Controls MCIs Controls MCIs Controls MCIs

1 3 42.5±8 19.1±5 26.7±7 13.1±6

Sample(Sex) Age MMSE

Controls MCIs Controls MCIs Controls MCIs

14(9 Female) 14(9 Female) 70.6±8.1 74.7±3.6 26.75±0.9 25±1

Table 7.1: Demographic and clinical information of the Control and MCI groups [A14].
MMSE: Mini Mental State Exam (maximum score is 30); GDS: Global Deterioration Scale;
LM1: Logical Memory immediate recall; LM2: Logical Memory delayed recall

The details about the legal written consent and the type of psychiatric and psychological tests
are described in the box 2 (Subjects), of chapter 4. In the same way MEG technique was used to
record cortical signals from the subject’s scalp. Details about the MEG devise and the Sternberg
memory test can be found in boxes 3 (Recordings) and 4 (Task & Preprocessing), respectively.
In sum, a total of 14 MCIs and 14 control was used in this study. 147 electrodes were used in
located in their scalp in order to capture MEG signals and, after all preprocessing methodology we
randomly selected thirty-five epochs from those individuals with a higher number of valid epochs.

7.2.2 Consistency and Network Construction
Now the first step is to quantify how consistent the output of each channel is. This can be done
by computing how coherent the outputs of the same channel are when the same task is carried out.
With this aim, for each individual, we calculate the Synchronization Likelihood (SL) [A14, A211]
between each pair of MEG time series within the same channel. While other measures to evaluate
linear or nonlinear correlation between time series could have been used [A173], SL has proven an
adequate measure for capturing the interdependencies between MEG time series obtained during a
short-term memory tests [A29].

This way, we evaluate if the cortical activity measured at each channel during a positive
identification of a letter is consistent, e.g., has similar temporal evolution when repeating the same
task, despite the initial conditions are intrinsically different. We calculate the average of the pairwise
SL of all non-repeated permutations of the 35 time series recorded within each magnetometer in
order to get the Channel Consistency (CC). Note that the 35 time series of each channel are not
combined but compared between them to extract the CC. At this stage, we have a dataset based
on 147 CC values for the 14 subjects of the two different groups (MCIs and controls), which were
used to build the corresponding parenclitic networks [A264].
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Figure 7.2: Creating a parenclitic network. The channel consistency (CC) of channels 61 and
84 (each one corresponding to a node of the parenclitic network) is plotted for the 14 controls
(black circles) and the 14 patients suffering from MCI (red squares). A linear fitting of the CC
pairs of the control group is calculated (blue line) and it will be taken as the reference for a normal
behaviour. en

61,84 accounts for the deviation of CC from the reference value for the individual n.
Each individual, will have its own parenclitic networks, where the weight of the link between
nodes 61 and 84 is calculated as Zn

61,84 = |en
61,84|/σ61,84, being σ61,84 the standard deviation of

the CC values from the reference line. This way, the larger the weight of the link the higher the
deviation from the reference given by the control group. This procedure is repeated for each pair
of channels, leading to a parenclitic network for each individual, whose links quantify how far is
the consistency of a pair of channels from the normal behaviour. The bottom plot shows part of
the parenclitic network of patient 13, specifically the neighborhood of node 61 once all pairs of
channels underwent the same procedure.

The method for the network construction is explained in Fig. 7.2, which shows a specific
example with channels i = 61 and j = 84. Black dots represent the CC of these two magnetometers
for all control subjects and the blue line is their corresponding linear fitting. Note that there
is no previous evidence that a linear correlation between the consistency of two independent
channels exists, since, to the best of our knowledge, this is the first study obtaining networks from
intra-channel consistency. Nevertheless, as we will see, assuming a linear correlation leads to a
clear distinction between groups, based on statistical significant differences between the network
parameters of the control and MCI groups.
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Interestingly, assuming a correlation described by a second-order polynomial leads to the same
qualitative results (not shown here). This is due to the fact that the number of points used to estimate
the correlation function (fourteen in the absence of outliers) is low, since it is difficult to have large
datasets of individuals. A combination of both kinds of correlations together with other non-linear
methods to evaluate functional dependencies between nodes deserves its own study and it will
probably depend on the kind of data and problem (disease) under investigation.

The errors of the control group are adjusted to a normal distribution in order to obtain its
standard deviation σi, j. Once the standard deviation is obtained, we recalculate the correlation
function excluding the outlier points of the control group. Individuals of the control group with
an error higher than 2σi, j are assumed to be outliers and are not considered for the definition of
the correlation function. This way we exclude 6030 outliers from all the N(N−1)/2 correlation
diagrams, which represent the 4.2% of the total number of points. Importantly though, the outliers
are considered when calculating the average properties of networks of the control. This allows
taking into account variability inside the control group.

Red squares correspond to the CC of the same pair of channels for the 14 MCI patients. The
deviation from the expected value given by the linear fitting is designated as the error ei, j of the
joint consistency of channels i and j. The z-score of each pair of channels associated to a subject n
will measure how far the consistency of both channels is from the expected value and it is obtained
as Zn

i, j = |en
i, j|/σi, j. The next step is to project the z-score dataset into a parenclitic network. In

general, the links of a parenclitic network are created with a weight that is proportional to the
deviations of a certain feature from an expected value [A264]. These networks are weighted and
non-directed, and they unveil important topological differences between a reference group and a
group with a certain anomaly [A260]. In our case, the nodes of the network will be the channels
measuring the activity of a certain cortical region and the links between a pair of nodes i and j will
be the z-score Zn

i, j measuring their deviation from its expected value.

The procedure followed to obtain the links and weights of nodesi = 61 and j = 84 is repeated
for the CC of the 147×146/2 possible pairs of channels in order to obtain all links of the networks.
This way, we obtain a weighted matrix which can be represented as a fully connected network.
Finally, we need to apply a threshold in order to consider only those deviations that are relevant
enough. The thresholding process consists in considering only the L links with higher weight,
leading to a sparse matrix whose topology will be further analysed. Nevertheless, it is a delicate
step, since a very low threshold will maintain spurious data that may hide the observation of the
real network structure, while a very high threshold could dismiss valuable information.

In order to adequately set the threshold value, we repeated the analysis for different values of L
and calculated the corresponding network parameters. Next, we identify the threshold that showed
more differences between the network parameters of the control and the MCI groups [A263].
Specifically, we focused on the differences in the local Ēl and global Ēg efficiency, since the
dependence of these parameters on the deletion of links is smoother than the clustering coefficient
C or the shortest path length d [A131], and, in turn, showed a maximum difference around the same
value of L.

After following this procedure, we finally consider only the L = 400 links with the largest
Zn

i, j of each parenclitic network. This way, we obtain a set of weighted sparse networks for the
control and MCI subjects with the same number of nodes N and links L. By computing a set of
network metrics [B16], we are able to compare whether the networks differ in their topological
organization and what are the kind of network structures associated to each group. All network
metrics were statistically analysed on the basis of the mean differences between both populations
and 5000 different permutations were performed in order to obtain the corresponding p value of
each network metric.
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7.3 Results

7.3.1 Degree, strength and hubs

Our first inspection of the network topology focuses on the local properties of its nodes. Specifically,
we computed the highest degree Kmax of the network, which is an indicator of the existence of
network hubs. If we take into account the weight associated to the links, we can also compute the
node strength S(i). The maximum strength Smax and the average strength S̄ of the networks are
obtained as the maximum/average of S(i) over all nodes.
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Figure 7.3: Highest degree, maximum strength and average strength. From left to right, box &
whisker representation showing the first, second, third quartile and the average of: (A) the highest
degree Kmax, (B) maximum strength Smax and (C) average strength S̄. Patient and control groups
are orange and green, respectively. Red stars account for outlier values.

Figure 7.3 shows a comparison of the highest degree Kmax, maximum strength Smax and the
average strength S̄ of the control and MCI groups. We use the box & whisker representation which
highlights the main statistical quantities of the datasets, i.e., the first, second and third quartile and

the mean. When looking at the highest degree Kmax we can see how, in the MCI group, the mean,
median (or second quartile), third quartile and, in general, all values are around 50 % higher than
the corresponding values of the control group (Fig. 7.3A). This finding evidences the presence of
hubs with higher number of links in the parenclitic network associated to the MCI group.

Figure 7.3B shows the maximum strength Smax for each group. Red stars are outliers that show
that the maximum strengths of the MCI group follow not a normal but a skewed distribution. The
behaviour of Smax remains similar to Kmax and evidences that the existence of stronger hubs in
the MCI group is reinforced when considering the weight of the links. Therefore both measures
indicate the existence of certain nodes that accumulate large deviations in their expected value of
consistency. Since the number of links is limited to L = 400 in both groups, the fact that large hubs
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arise in the MCI networks also reveal the formation of more heterogeneous structures.
In Fig. 7.3C we plot the average strength S̄ of the networks to confirm that the MCI patients have

higher deviations from the reference value than the control individuals. As expected, the average
strength of the MCI group S̄MCI = 27.59 is much higher than the control group (S̄control = 13.49),
since the node strength accumulates the errors of all its links (i.e. the higher the strength of a node,
the more anomalous its consistency is). The higher the value of S̄, the larger the deviation of the
overall consistency of the functional network. It is important to remark the difference between the
maximum and average strength of both groups, which is much higher in the MCI group.
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Figure 7.4: CDF of the degree and strength distributions. (A) Cumulative Distribution Functions
(CDF) of the probability of finding a node with a degree (strength in (B)) higher than k (S in (B)).
Green circles correspond to the control group and orange circles to the MCI group. When the
strength of the nodes is considered (B), we obtain the power law distributionP(S(i)≥ S)∼ S−γ in
both cases, as indicated by a straight line in the log-log scale.

Finally, we calculate the cumulative distribution function (CDF) of the degree and strength
of the nodes both in the control and MCI groups. For each node i (i.e., a cortical region), we
compute its corresponding average degree 〈k(i)〉. Next, we obtain the CDF by computing the
percentage of nodes with a degree 〈k(i)〉 ≥ k. The same methodology is followed to calculate the
CDF of the node strength P(〈S(i)〉 ≥ S). Both distributions are plotted in Fig. 7.4 with regard to the
subjects of each group. Permutation t-test for the degree and strength CDFs was performed. Taking
into account 5000 randomizations we found significant statistically differences in the strength
distributions with a p− value = 0.004. Differences in the degree CDFs were not statistically
significant (p− value = 0.79).

In figure 7.4A, we can observe how the degree distributions cross at kc = 40 showing that
nodes with a degree higher than kc are more probable in the MCI group than in the control group.
This confirms what the values of Kmax and Smax already suggested: a number of nodes in the
parenclitic networks of the MCI group grossly deviate from their expected consistency.

The strength distribution spreads over three orders of magnitude and allows the CDF to
show a power law decay ∼ k−γ . The exponent of the power law is lower in the MCI group
(γMCI = 1.28< γcontrol = 1.42) which reveals the existence of hubs with a larger strength. These
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hubs play a relevant role in the structure of the network, since they accumulate a higher percentage
of the link weights: they are the core of the divergences with respect to the normal (healthy) values
of consistency.

7.3.2 Local vs. Global Properties
Next, we calculate local (clustering coefficient C̄ and local efficiency Ēl) and global (average path
length L̄ and global efficiency Ēg) properties of networks. Regarding to clustering, ci is calculated
using a generalization of this metric for weighted networks [A167].
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Figure 7.5: Clustering, shortest path length, local efficiency and global efficiency. Box &
whisker representation of: (A) the clustering C̄ , (B) shortest path length d̄, (C) local efficiency
Ēl and (D) global efficiency Ēg. Orange and green bars correspond, respectively, to the MCI and
control groups. Red stars are the outlier values. P-values of the network parameters are given in
Table 7.2.

ci was then averaged over the whole network to obtain the clustering coefficient C̄ per individual.
Figure 7.5A shows C̄ for the two groups under study. We can observe how the MCI network
has a largest clustering coefficient, indicating a higher density of connections at the local level.
Interestingly, the clustering coefficient is also an indicator of the network randomness since random
networks have a value of C̄ close to zero. Thus, the lowest value of C̄ of the control group indicates
that its network topology is closer to a random structure.

Now let us have a look at a global property of the network: the average shortest path d̄. To
obtain the value of d̄ we first calculate the distance matrix D for all parenclitic networks. Each di, j

element of the D matrix is the shortest path between nodes i and j (i.e., the lowest combination of
links’ lengths to go from i to j), which is calculated using the Dijkstra’s algorithm [A65]. Finally,
the average shortest path d̄ is just the average of all elements of matrix D. Figure 7.5B shows
that the MCI group has a lower value of d̄, which is a consequence of having higher weights (i.e.,



102 Chapter 7. Anomalous Networks

shorter distances), since, as we have seen, S̄MCI > S̄control . Parenclitic networks are capturing how
alterations of the expected consistency are distributed over the whole network and, therefore, the
low value of d̄ reveals that the loss of consistency propagates with a shorter number of steps in the
MCI group. That is not good news for the resilience of the consistency when MCI emerges.

Both parameters C̄ and d̄ can be reinterpreted in terms of how efficient is the network when
transmitting information from one node to any other in the network. By other hand, high values
of local/global efficiency indicate a good transmission of information (at the local/global scale) in
terms of the number of steps.

Figures 7.5C-D show the local Ēl and global Ēg efficiency for both groups. We can observe
how in both cases the efficiency is higher in the MCI networks, which indicates that the network of
dysfunctions is better organized.

Kmax (p = 0.016) Smax (p = 0.0002) S̄ (p = 0.004)

Controls MCIs Controls MCIs Controls MCIs

75.78 105 206.27 824.30 13.49 27.59

C̄ (p = 0.562) d̄ (p = 0.012) Ēl (p = 0.0002) Ēg (p = 0.0002)

Controls MCIs Controls MCIs Controls MCIs Controls MCIs

0.08 0.09 1.12 0.61 0.40 2.30 0.74 2.70

Table 7.2: Summary of the network metrics for the control and MCI groups. Highest degree
Kmax, maximum strength Smax, average strength S̄, clustering C̄, average shortest path d̄, local
efficiency Ēl and global efficiency Ēg. The p-value of each metric is also indicated.

Table 7.2 summarizes the average of all network metrics. Note that despite the classical
definition of C, d, El and Eg constrain the values of these to the interval [0,1] [B16], the fact
that we are using weighted connectivity matrices, which contain more information about the
interdependency between nodes, leads to values that can exceed this range [A188]. A comparison
between control and MCIs group, for each network parameter, was developed via a non parametric
Kruskal Wallis test, where we have computed the p−values (5000 permutations each) that illustrate
how significant the statistical differences are.

7.3.3 Localizing Focal Nodes

Anomalous networks allow detecting those nodes whose features (consistency in our case) diverge
the most from the expected behaviour. This task is carried out by finding the network hubs
and quantifying their importance. With this aim, we calculate the degree k(i), strength S(i) and
eigenvector centrality ec(i) of nodes belonging to both populations, all these metrics commonly
used as quantifiers of the network hubs. The later one, ec(i), is calculated from the eigenvector
associated to the largest eigenvalue of the weighted connection matrix W whose elements are, in
our case, Zi, j.

We proceed as follows: two vectors~kMCI and~kcontrol of length N = 147 (one element per node)
contain the average degree of the nodes of each specified group. The difference of the elements of
both vectors ∆〈~kMCI,control〉=~kMCI−~kcontrol accounts for the difference of node degree between



7.3 Results 103

both groups and reflects what nodes increase (or decrease) their importance in the network. Figure
7.6A shows ∆〈~kMCI,control〉, where two peaks stand out over the rest of the degree variations. Nodes
32 and 61 have a much higher degree in the MCI parenclitic networks than in the control ones. This
fact indicates that these two nodes accumulate the majority of variations related to the consistent
behaviour.
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Figure 7.6: Localizing focal nodes in the consistency impairment. We calculate the differences
in the node degree k(i) (A), node strength s(i) (B) and eigenvector centrality ec(i) (C). In all cases,
nodes 32 and 61 accumulate the highest variations, indicating that are the nodes whose consistency
is affected the most by the disease. (We computed these same differences with another metrics but
only the aforementioned ones showed relevant differences respect to control group) On the right
plot, we show the position and the local network of connections of these two nodes, where only the
30 links with higher weights have been plot.

In a similar way, we obtain the variations of the strength ~SMCI,control and eigenvector cen-
trality ~ecMCI,control . Figure 7.6B-C shows the difference between groups of these two metrics
∆〈~SMCI,control〉 (B), ∆〈~ecMCI,control〉 (C). Independent of the metric, again two peaks appear at nodes
32 and 61, confirming that they are the nodes whose consistency is affected the most by the dis-
ease. It is worth noting that these two nodes are not necessarily those nodes whose consistency
increased/decreased the most. Node 61 has an 8.14% variation in its consistency (#4 in the raking
of consistency variations) and node 32 around 2.71% (#25 in the consistency variation ranking).
This fact indicates that parenclitic networks go beyond the local changes of consistency and account
for the way variations affect the interplay, based on consistency, between nodes.

In Fig. 7.6 we plot a 3D representation of these focal nodes together with their local network of
interactions. This plot shows the local basin of influence of the network hubs and gives an idea
about where the disease is being more severe, at least when consistency is taken into account. It
is valuable to compare the position of the most affected nodes with previous results on how MCI
affects functional networks. In Buldú et al. [A29], it was shown that both the frontal and the
occipital lobes contain those nodes of the functional network whose synchronization with other
parts of the network was most impaired. Interestingly, these two lobes also contain the two nodes
that the consistency-based parenclitic networks revealed to be most affected by MCI. Comparing
both results we observe that, despite being in the different lobes, nodes 32 and 61 are not the
hub nodes of the functional network, nor are they the nodes whose local properties inside the
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functional networks were most modified by the disease. This fact indicates that, with the projection
of brain dynamics into parenclitic networks, we are evaluating a different effect of the disease on
the functioning of the brain network.

7.4 Discussion
It is worth mentioning that although we assumed a linear correlation between the channel con-
sistencies, we have not proved that this fitting is the one capturing the real interplay between the
consistency of brain regions. Further studies should be devoted to investigating the existence, or
co-existence, of higher order correlation functions, although we obtained similar results with a
second-order polynomial adjustment (not shown here). In any case, we demonstrated that assuming
a linear correlation leads to differences between groups and allows identifying the nodes whose
topological properties are affected the most by the emergence of the disease.

In the current work, we are concerned with another type of consequences of the emergence of
MCI: the loss of a consistent response [A237], i.e., in our case, the impairment of the ability of a
cortical region to behave in the same way when undergoing the same cognitive task, despite having
different initial conditions. We have taken advantage of a new kind of network representation, the
parenclitic network [A264], where a link between two nodes quantifies the deviations of a certain
feature of these nodes from an expected (healthy) behaviour. We have measured the consistency
of 147 cortical brain regions by means of MEG and constructed a parenclitic network capturing
dysfunctions of the expected consistency.

The analysis of the topological features of a control group of healthy individuals and a group of
MCIs shows that the parenclitic networks can provide useful information to evaluate how disease
alters the consistency between cortical regions. First, we report a higher network strength in the
MCI group when the same number of links are considered in both groups. This fact indicates higher
deviations from the expected consistency performance in the MCI group. Furthermore, we observe
the appearance of strong hubs in the patients group, which reveals that the disease is specially
severe at certain cortical regions. Specifically, nodes 32 (frontal lobe) and node 61 (occipital lobe)
are detected to be the focal points of the consistency impairment.

Nevertheless, the loss of consistency is not restricted to certain specific regions. This is reflected
by the fact that global network parameters such as the average path length or global efficiency also
capture differences between the control and the MCI group. On the contrary, the number of steps
needed to go from one node to any other in the parenclitic network is much lower in the MCI group,
which indicates that the disease alters network consistency in quite a fundamental way.

At the local scale, the MCI group shows high values of clustering and local efficiency of the
parenclitic network indicating that inconsistency does not emerge in isolated regions but in groups
of densely interconnected nodes.

Finally, we have also seen that the networks associated to the control group are more random
than those of the MCI group, which has been demonstrated to be a common signature of parenclitic
networks in preliminary works [A260], [A264]. It is important to highlight that the control networks
are not purely random in the sense of the definition given by Erdös-Renyi [B16], but their network
properties are closer to random networks when compared with the MCI. Similarly, the MCI
networks are closer to star-like networks, despite having more than one central hub and connections
between their peripheral nodes.

To the best of our knowledge, this is the first result concerning the construction of parenclitic
networks to understand brain functioning and specifically the effect of a neurodegenerative disease.
We believe that this technique could be extremely useful to evaluate how different brain diseases
deteriorate the normal functioning of the brain activity.

Although parenclitic networks unveil part of the inner dynamics of cortical regions, it is possible
to account for another type of non linear metrics to better capture the dynamics of such cortical
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regions. In fact, this is the topic of the last study in the next chapter, in which we consider to
search for dynamical properties of such cortical activations that, independently from the network
construction, correlate with the topological properties of the networks. In other words, we will
evidence a correlation between the dynamics of the networks and the dynamics on the networks in
a specific case.





8 Cognitive Reserve

§

The dynamics of the individual systems forming a network have been largely investigated through
the combination of nonlinear dynamics and network science. More recently, the focus has

been also put on the dynamics of networks themselves, consisting on studying how their structure
and topology evolve in time. Nevertheless, despite several works on coevolutionary adaptive
networks have analyzed the interplay between topology and dynamics, both innate characters of
complex networks, have been commonly studied independently, disregarding the possible bridges
between them. In this Chapter, we propose an analysis of functional brain networks that takes into
account both the topological features of the nodes and their dynamical properties. We use brain
signals obtained from magnetoencephalography (MEG) to investigate how the cognitive reserve, a
neuropsichological construct associated to the ability of optimizing cognitive processes, is related to
the level of studies a person has. With this aim, we compare the functional networks of two clinical
datasets of healthy individuals with different educational attainments. On the one hand, we analyze
the topological properties of their functional networks. On the other hand, we quantify two of the
main dynamical properties of the times series of each individual: the entropy and the complexity.
In this way, the Shannon’s permutation entropy and the statistical complexity are calculated for all
time series by means of temporal ordinal patterns. Next, we compare the topological and dynamical
properties of the nodes of both groups of individuals. Interestingly, we report statistical significant
differences between individuals with different level of studies both in the topological and dynamical
parameters. At the same time, our results also show an interplay between the topological role a
nodes has and its dynamical properties: hubs are prone to have higher entropy than peripheral
nodes, while the complexity behaves in the opposite way.

§This chapter is based on the unpublished work entitled: Dynamics-Structural Interplay Patterns in Brain
Networks Reveals Neural Correlates Organization in Cognitive Reserve.. A collaborative work with the
Laboratory of Cognitive and Computational Neuroscience at Centre of Biomedical Technology. CTB-UPM.
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8.1 Introduction

Cognitive reserve consists on the ability of the brain to maintain its functionality when facing
ageing or brain damage [A222]. The educational attainment has been one of the several factors
related to the enhancement or maintenance of such a cognitive reserve [A223]. Notwithstanding, it
has been difficult to quantify to what extent the educational level can postpone the consequences
that ageing has on brain functioning. Epidemiological studies found that individuals with lower
education levels had higher risk of developing Alzheimer’s disease (AD), while individuals with
higher education levels showed less chance of developing AD, however, more rapid decline of
cognitive function when they got AD [A221]. Only recently, the analysis of the topology of the
associated functional networks has been proposed as an alternative way of quantifying cognitive
reserve [A250]. In that work, the existence of multiple paths between brain sites was shown to
be related to the level of cognitive reserve. In this Chapter, we further investigate the interplay
between the topology of functional brain networks and cognitive reserve, adding an additional
point of view to better tackle the analysis: the dynamical features of brain regions. With this aim,
we record the cortical activity of two groups of individuals with different educational level, in
particular, nine Bachelor’s graduate subjects (BG) and eleven School graduate individuals (SG).
Both groups carry out a memory Sternberg task, where the subject has to recognize a letter from a
previously memorized set of four letters [A224]. The cortical activity is recorded by means of a
magnetoencephalograph, which has 148 magnetometers, each one acquiring the signal at different
positions of the scalp. Recorded signals undergo two different analysis: (i) we construct and
analyze their associated functional networks, reporting differences between both groups and (ii) we
calculate the entropy and complexity of each brain region and correlate them with the topological
properties of the nodes. As we will see, combining both analysis we found differences between
both groups indicating that the higher cognitive reserve of the BG group can be quantitatively
evaluated by the functional network parameters. Furthermore, we report a negative correlation
between the topological importance of the nodes and the complexity of their associated signals.
Conversely, when the entropy of the signal is analyzed, the correlation with the node importance
becomes positive.

8.2 Materials and Methods

8.2.1 Subjects and Recordings

Again, the dataset comes from the same experiment performed and explained in Chapters 4 and 7.
The details about the legal written consent and the type of psychiatric and psychological tests can be
found in Box 2 (Subjects) of Chapter 4. Details about the MEG device and the Sternberg memory
test can also be found in Boxes 3 (Recordings) and 4 (Task & Preprocessing), respectively. Here,
the only difference is that we will only select a set of healthy people, which is divided according
to their educational attainment. In this way, one group comprises 9 subjects with accomplished
undergraduate studies (BG) and the other group has 12 individuals without undergraduate studies
(SG). Individuals, with 148 magnetometers in their scalps, repeated 35 times (trials) the memory
task, leading to 35 matrices containing 148 MEG time series, each of them with 230 sample points.

8.2.2 Building the functional networks

The construction of the functional networks associated to each individual requires a series of steps
transforming brain signals into complex weighted networks. Specifically, the methodology is
summarized in the following 3 steps:

1. We select a set of 35 trials for each individual, since it is the lowest number of successful
trials for all subjects in the study. Each trial consists of the time series of 148 channels.
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2. The coordination between all possible pairs of channels, within each trial, is quantified
by means of the Synchronization Likelihood (SL) algorithm (see Material and Methods in
Chapter 4 for details). All pairs of SL are then included into a correlation matrix W{wi j}
where wi j have values comprised between ∼ 0.05 and∼ 0.5.

3. We apply a linear normalization that leads to a probability matrix P{pi j}, where the values
of pi j are obtained as pi j =

wi j−min[wi j]
max[wi j]−min[wi j]

. In this way, the probability matrix P{pi j},
whose values are within the interval [0,1], reflects the probability of the presence of a link
between nodes (brain regions) i and j. This normalization allows to adapt the classical
methodologies of unweighted networks to their weighted counterparts and, as a consequence,
the information included in the weak ties is maintained. In addition, the normalization
facilitates the comparison among networks obtained from different individuals.

Following these three steps we arrive to a set of 9 networks (1 for individual) for the BG group
and 12 for the SG group with i = 1,2, ...,148 nodes each. Next, we calculate a series of metrics
related with the role of the nodes within the network: the strength s(i), the weighted clustering
cw(i), the eigenvector centrality ec(i), the strength of the nearest neighbours snn(i) and the outreach
o(i). Another parameters such as the within-module degreez(i) (also kwon as the z-score) and the
participation coefficient p(i)[A30, A94] are also computed using the community affiliation vector
Ccom(i) extracted from the classical partition of the brain into six lobes: frontal-right, frontal-left,
central, temporal-left, temporal-right and occipital. A series of global network features such as the
global efficiency Eg and the average shortest path d were also calculated. The node average (average
along the same node for all subjects within the same group) of several metrics was computed to
obtain the following mean values: s̄(i), c̄w(i), ēv(i), z̄(i), s̄(i)nn and ō(i). Finally, network averages
of the preceding features were also appraised in order to compare both groups.

8.2.3 Normalized network parameters
We will to construct a set of randomized versions of the former functional networks, in order to
evaluate to what extent the deviation of the network parameters between groups are a consequence
of a topological reorganization or, on the contrary, just a matter of the number of links and their
weights. With this purpose, we generate a group of 100 networks for each of the functional network
an individual has. The randomization maintains the value of the links’ weights by reshuffling the
components of the weighted probability matrix P{pi j}. In this way, we guarantee that the average
strength of the network is maintained. Next, we calculate the network parameters for each of the
randomized versions and obtain an average value of each metric. Finally, we normalize all network
parameters with the average of the set of surrogate matrices, i.e., for a parameter X its normalized
value would be X̂ ∼ X

Xran
.

8.2.4 Evaluating the dynamical properties of the nodes
We are going to quantify the dynamical properties of the brain regions by computing the entropy
and complexity of their associated time series. With this aim, each of the nodes of the network will
be related to a times series comprising the 35 trials of the whole experiment. Since each trial has
230 time steps, we will obtain times series of M = 8050 points for each node of each functional
network.

Next, we will apply the methodology introduced by Bandt and Pompe [A15] to quantify the
dynamical properties of nonlinear dynamical systems. This methodology is based on the analysis of
the probability distribution of symbol sequences associated to an order according to the amplitude
of the signals (see section: Ordinal Patterns and Stochastic Analysis in Chapter 1). In this way, it
is possible to capture “the memory" of the dynamical system implicitly encoded on its temporal
patterns, which are also known as ordinal patterns. We chose a memory lapse of D = 6 to trace the
ordinal patterns of each node. In other words, we select a value of the embedding dimension D
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that defines the accessible states an ordinal pattern has, which could be repeated (or not) along the
temporal evolution of the system. Once the ordinal patterns are calculated for the whole time series,
the probability distribution P of these ordinal patterns is obtained.

In Chapter 1 we described how the dynamical properties of the node activity can be appraised
through the use of the ordinal pattern measures {H,Q,C} calculated upon the probability P. This
set of measures quantifies both the stochasticity and complexity of a given time series [A180].
Normalized permutation entropy H[P] = S[P]/Smax [A185], captures the level of uncertainty of a
signal. Here, S is the Shannon’s entropy and Smax = log(N) is the maximum level of entropy due
to the assumption of an equilibrium distribution {Pe = 1

N },where N is the number of all possible
ordinal patterns (appearing, or not, in the time series). The disequilibrium Q is a measure to evaluate
how far the distribution of patterns is from a pure random distribution and it is computed using the
Kulback divergence [A128]. In this way, Q[P] discriminates between Pe and P distributions, being
zero for a non discriminative observation between both distributions.

The product C[P] = H[P]Q[P], known as the statistical complexity [A138], combines both the
entropy of the ordinal pattern distribution with the disequilibrium. This measure has been shown
to effectively quantify the complexity of different dynamical systems and it is specially robust for
evaluating signals with a high amount of noise [A261]. Interestingly, these set of measures have
been applied to characterize EEG signals [A254], but its application to MEG data has not been
documented yet.

8.3 Results

8.3.1 Micro-scale: Differences at the node level.

We are going to evaluate the role a node plays within the functional network, for the two groups
under study. We will pay special attention to the hubs of both groups, trying to find differences in
the position of the leading nodes when both groups are compared.

Our first approach to characterize the role of the nodes is based on the calculation of the
eigenvector centrality ēv(i)BG,SG of the nodes. Figure 8.1 shows the position of the 10 nodes with
the highest eigenvector centrality in both groups.

At first sight, Figure 8.1 shows that both groups have the most influencing nodes placed at the
same cortical region (i.e., at the occipital lobe). Nevertheless, we observe signs of a displacement of
the node centrality toward the central and left-temporal lobes. In order to quantify the differences
between groups, we obtained the average difference of the node centrality of both populations
as ∆ēv(i) = ēv(i)BG− ēv(i)SG. At the same time, we identified those nodes that had statistically
significant differences between the ev(i) of each group (pval ≤ 0.05, using a non parametric Kruskal-
Wallis test). This procedure was also repeated for the averages of the within-module degree z(i)
and participation coefficient p(i) of each node obtaining ∆z̄(i), ∆p̄(i), respectively.

We have summarized all these metrics in Fig. 8.2, where the 148 nodes of the functional
network are plot in a two-dimensional space. In this figure, only those nodes with statistically
significant differences (pval ≤ 0.05) have been marked with a circle, whose size is proportional to
the values of ∆ēv(i) (A), ∆z̄(i) (B) and ∆ p̄(i) (C). Green circles show those nodes where the average
of BG population is higher than the SG group, otherwise nodes are circled in red. For example,
Fig. 8.2A shows an increase of the eigenvector centrality of the BG group in the central lobe, near
the parieto-occipital sulcus, as well as some tiny regions in frontal lobe (i.e., ēv(i)BG > ēv(i)SG and
subsequently, ∆ēv(i)> 0). Conversely, cortical tissue placed at the left-temporal and occipital lobes
increase their centrality in the SG population (i.e., ∆ēv(i)< 0).

Panels showing ∆z̄(i) (Fig. 8.2B) and ∆p̄(i) (Fig. 8.2C) have less nodes with statistically
significant differences, specially in the case of ∆p̄(i). Nonetheless, there is a slight tendency of the
lateral and posterior parts of brain to accumulate those regions that have statistically significant
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Figure 8.1: ēv(i) for BG and SG groups. Back view for ēv(i)BG (A) and ēv(i)SG (B). Colors
represent different brain lobes. Surrounded circles highlight the ten nodes with the highest ēv(i).
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central lobe for the BG group.
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Figure 8.2: Differences between BG and SG groups at the node level. Black dots indicate the
Euclidean position of the 148 magnetometers (nodes). Circles show those nodes with significant
statistical differences in the: eigenvector centrality ∆ēv(i) (A), within-module degree z-score
∆z̄(i) (B) and participation coefficient ∆p̄(i) (C). Green (Red) circles represent nodes that have an
increase (decrease) of the mean differences. Circle sizes are proportional to the absolute value of
the differences.

differences. These results indicate the importance of the lateral (specially the lateral-left) and
occipital lobes when a partition between lobes is considered (note that both z̄(i) and p̄(i) rely on
this particular partition).

Still at the micro-scale, i.e. at the scale of the nodes and their properties, we have investigated
how the strength of a node correlates with the strength of its neighbours, trying to quantify wether
a correlation of the nodes’ strengths exist. With this aim, we calculate the nearest neighbours
strength snn(i) as the average strength of a node’s neighbours. Figure 8.3 shows the correlation
between s̄nn(i) and s̄(i), both for SG and BG groups of subjects. Also in Fig. 8.3 , we plot the snn(i)
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obtained by a randomization of the original networks, to better observe how the topology of the real
functional networks influences the value of snn(i). We can observe the positive correlations of s̄nn(i)
vs. s̄(i), no matter what the level of studies is. The positive correlation reveals that nodes with
higher strength are prone to be linked to nodes with higher strength, what is known as assortative
mixing [A159]. This kind of behaviour is not reported in randomly distributed networks, as can
be seen with the randomized version of the networks, where no correlation is reported (see Fig.
8.3). Note that, the only difference between both groups is that the SG has highest values of snn(i),
nevertheless, the fact that the slopes are similar suggests that this difference could be attributed
just to an enhance of the average value of the network strength instead of being an effect of a
reorganization of the network topology (which is actually the case, as we will see in the following
Section).
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Figure 8.3: Average strength of the nearest neighbours. Correlation between the strength of
a node S̄(i) and the strength of its nearest neighbours S̄nn(i). Black circles represent the SG
group, while green circles are the BG group. Red and blue circles are the average strengths of the
randomized versions of the SG BG groups, respectively. We can observe a positive correlation in
the case of the real functional networks, indicating that, in both groups, networks are assortative.
(This is for the case of the average subject)

8.3.2 Macro-scale: Analyzing the topology of the whole network

Now let us move to a higher “topological" scale and analyze how the average network parameters
are modified according to the level of studies an individual has. We have calculated six network
parameters for each subject and obtained the average value for both the SG and BG groups. The
six parameters under study are: the network strength S̄, the outreach Ō, the weighted clustering
coefficient Cw, the average neighbour strength S̄nn, the global efficiency Ēg and the average shortest
path d̄. Figure 8.4 shows the average network parameters for each group and their respective
standard deviations. We can observe how the global strength, the outreach, the weighted clustering,
the strength of the nearest neighbours and the global efficiency, have higher values in the SG
group than in the BG group and, as a consequence the shortest path has lower ones (see Tab. 8.1).
These increases of the former network parameters can be explained by the enhancement of the
average network strength, which strongly determines the behaviour of the rest. The increase of
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the average network strength in the group of individuals with lower level of studies reveals that a
higher synchronization between cortical regions is requested in order to successfully perform the
memory test. The increase of the average network strength have been already reported in individuals
suffering from mild cognitive impairment and it has been associated to a higher energetic effort
when carrying out a certain cognitive task [A30]. In this way, our results show how individuals
with lower level of studies have a higher energetic cost when performing a memory task.

Nevertheless, due to the small size of the the group under study, it is important to check wether
the results shown in Fig. 8.4 are statistically significant or not. With this aim, we carried out a
Kurkal-Wallis test comparing both populations and summarized the results in Tab. 8.2. The p-values
(pval) are the percentages ((1− pval)∗100%) of significant differences between populations, e.g. a
pval = 0.030 in the network outreach indicates a 97.0% difference between the average outreach of
both populations, reflecting that, according to the values of Tab. 8.1, ŌSG > ŌBG, is statistically
significant. Therefore, the lower the p-value is, the more significant the differences between groups
are. In the context of functional networks, parameters with p-values lower than 0.05 are accepted
to be statistically significant. Thus, only the network outreach Ō and the average shortest path d̄
successfully pass the statistical test, what makes these network parameters to be the most relevant
when evaluating differences in the cognitive reserve of individuals with different level of studies.

Group S̄ Ō C̄w S̄nn Ēg d̄

SG 13.78 13.57 0.102 13.96 0.096 12.69

BG 12.65 12.29 0.093 12.76 0.089 14.12

Table 8.1: Average network parameters for the SG and BG groups Average network parameters
for the School degree (SG) and Bachelor degree (BG) groups. Specifically, the network strength
S̄, the outreach Ō, the weighted clustering coefficient Cw, the average neighbour strength S̄nn, the
global efficiency Ēg and the average shortest path d̄.
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Figure 8.4: Average network parameters for the SG and BG groups. Average network parame-
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Specifically, the network strength S̄ (A), the outreach Ō (B), the weighted clustering coefficient Cw

(C), the average neighbour strength S̄nn (D), the global efficiency Ēg (E) and the average shortest
path d̄ (F).
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S̄ Ō C̄w S̄nn Ēg d̄

pval 0.075 0.030 0.089 0.064 0.105 0.044

Table 8.2: Statistical significance of the network parameters. P-values (pval) of the Kruskal-
Wallis tests of the paramters shown in Fig. 8.4. Only the network outreach Ō and the average
shortest path d̄ have a pval < 0.05.

8.3.3 Dynamical Analysis of MEG Time Series

Our next step leaves the topology of the functional network aside and concentrates on the dynamical
properties of the nodes. We are going to quantify the entropy and complexity of each node (i.e.,
cortical region) and in the following Section we will try to find correlations between the topological
and dynamical properties of the nodes. Between the diversity of methodologies to quantify both the
entropy and complexity of a signal, we have selected a set of measures based on the occurrence
of ordinal patterns within a time series. The use of ordinal patterns have been demonstrated to
effectively work when analyzing signals with high amount of noise, as it is the case of our MEG
recordings. We have created large times series for each brain region by connecting the 35 epochs
recorded for each individual. Thus, we obtain series of M = ||{Xt}|| = 230×35 = 8050 points.
Next, we have to select the embedding dimension of the ordinal patterns, i.e. the number of
consecutive points in the series whose ordering (according to its amplitude) is going to be analyzed.
After a study of different lengths, we chose D = 6 since it is long enough to guarantee a high
number of possible different patterns, specificallyD!. Importantly, this embedding dimension also
guarantees that the number of points in the time series is long enough to have enough statistics,
since it fulfills the condition M−D� D! (see section: Ordinal Patterns and Stochastic Analysis in
Chapter 1. [A15]).

Once the ordinal patterns of each time series are obtained, we calculate their associated entropy
H(i) and complexity C(i) for each node i and individual. As explained in the Materials and Methods
Section 8.2.4, both measures rely on the probabilityP of finding certain ordinal pattern in the time
series. With the aim of quantifying the differences between the SG and BG groups, we average H(i)
and C(i) for each group. Finally, we identify those nodes with significant statistical differences
between groups with a permutation test of 5000 randomizations of both H(i) (or C(i)).

Interestingly, we find a group of brain regions with a pval < 0.05 indicating statistical differences
between the SG and BG groups, both for H(i) and C(i). In accordance with previous sections,
the occipital lobe is the brain region that concentrates the highest amount of nodes with statistical
differences (see Fig. 8.5). We obtain a group of 23 nodes whose entropy is always higher in the
SG group. At the same time, when complexity is compared, we obtain a very similar group (only
two nodes do not overlap) but the complexity of the signals is lower in the SG group (see Fig. 8.6).
These results indicate that a higher level of studies could be associated to a brain dynamics with
lower entropy and higher complexity.

Since the results shown in Figs. 8.5-8.6 seem to indicate that changes in the entropy and
complexity come together, we are going to investigate if a correlation between the two dynamical
properties exists. Fig. 8.7 shows a complexity-entropy diagram (H-C diagram) for all nodes, with
the inset plotting only those nodes with statistical differences. We can observe a negative correlation
between H(i) and C(i), revealing that those nodes with less entropy are, at the same time, those
nodes with higher complexity. This result holds no matter what the level of studies is. The negative
correlation between H(i) and C(i) has been previously reported in theoretical models [A269] but,
to the best of our knowledge, it is the first evidence in brain dynamics.
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Figure 8.5: Differences of entropy H(i) between the SG and BG groups. In A, entropy H(i)
of those nodes with statistically significant differences. Red squares (Blue circles) for SG (BG),
respectively. H̄(i)SG is higher than H̄(i)BG for nearly all nodes. In B, position of the nodes with
statistical differences. Node sizes are proportional to H̄(i)SG.
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C̄(i)BG for all nodes. In B, position of the nodes with statistical differences. Node sizes are
proportional to C̄(i)SG. Note that, as in the case of the node entropy, the majority of the nodes are
placed at the occipital region.

8.3.4 Correlation between topology and dynamics

As we have seen in previous Sections, nodes located at the occipital lobe are, on one hand, the most
relevant nodes for the topology characterization and, on the other hand, the nodes with statistically
significant differences when the dynamical properties are compared. In view of this, it is reasonable
to ask wether a certain interplay between the topological and dynamical properties of the nodes
exists. With this aim, we have looked for correlations between the dynamic properties of the nodes
(i.e., H̄(i), C̄(i)) and two of their topological parameters, namely the node strength S̄(i) and the
weighted clustering coefficient C̄w(i). Figure 8.8 shows all posible combinations, i.e. H̄(i) vs. S̄(i)
(A); H̄(i) vs. C̄w(i) (C); C̄(i) vs. S̄(i) (B); C̄(i) vs. C̄w(i) (D).

Fig. 8.8A shows the interplay between the entropy and the node strength. We can observe
a monotonically dependence between H̄(i) and S̄(i) in both groups, which indicates that nodes
with higher strength, i.e. the hubs of the network, are in turn those nodes with higher entropy at
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Figure 8.7: Complexity-Entropy Diagram. Red squares (blue circles) for SG (BG). Diagram of
global complexity vs. global entropy for all 148 channels. Inset plot represent common channels
with statistical significant differences.

their dynamics. The correlation between the node complexity and its strength is, on the contrary,
negative ( Fig. 8.8B), which could be expected from the results shown in the previous Section. In
other words, the hubs of the network have the less complex dynamics, probably due to the high
entropy of their signals.

The fact that the weighted clustering coefficient C̄w(i) depends on the weight of the links a
node has, leads to similar correlations when the clustering parameter is compared with the entropy
and complexity of a node (see Fig. 8.8C-D). At any rate, the four panels of Fig. 8.8 lead to the
conclusion that strong clusters of highly connected nodes are associated with dynamics with higher
entropy and lower complexity. This behaviour is similar in both the SG and BG groups, nevertheless
the fact that the SG group has nodes that reach higher strengths (see horizontal axis of Fig. 8.8A
and B) makes this phenomenon more evident in individuals with lower level of studies.

8.4 Discussion

In this Chapter we have shown how the cognitive reserve, associated to the level of studies an
individual has, leaves different fingerprints both in the dynamics of the cortical brain regions and
the topology of their associated functional networks. Initially, we have seen how a group of people
that reached the School level (SG) requires higher synchronization between brain regions in order to
successfully perform a memory task, at least when compared with a group with the Bachelor degree
(BG). This enhancement of synchronization leads to functional network with higher strengths.
Nevertheless the network outreach is the parameter that better unveils the differences between both
groups, which leads to the conclusion that there exists a reorganization of the network topology
that goes beyond the increase of strength.

At lower scales, i.e. at the level of the network’s nodes, the differences between groups also
arise. Interestingly, the role of the hubs within each group show some differences, and the occipital
and lateral regions of the brain increase their importance in the group with lower level of studies.
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Figure 8.8: Correlation between the topological and dynamical parameters. Correlation plots
for the global dynamical properties (entropy H̄(i) and complexity C̄(i)) of the MEG time series and
its corresponding topological features (strength S̄(i) and clustering C̄(i)). Specifically, H̄(i) vs. S̄(i)
(A); H̄(i) vs. C̄w(i) (C); C̄(i) vs. S̄(i) (B); C̄(i) vs. C̄w(i) (D). Red squares (blue circles) refer to the
SG group (BG).

Differences in the occipital lobe are also reported when the dynamical properties of the cortical
regions are investigated. In this way, it is the occipital lobe the one that accumulates the majority of
regions with statistically significant differences between groups. But, what are these differences?
They mainly consist of an increase of the entropy in the SG group, while, at the same time,
individuals with higher level of studies show higher complexity in their signals.

Thus, both the topological and dynamical properties of the functional brain networks seem to
capture differences between the level of studies and, in turn, in the associated cognitive reserve.
Nevertheless, what is the interplay between both kind of indicators? As we have seen, the im-
portance a node has within the functional network, measured as its strength, correlates with the
entropy of the signals, while it is negatively correlated with the level of complexity. The fact that
the network has been reported to be assortative and also the correlation between the clustering
coefficient and the entropy, leads to the existence of a densely connected group of hubs, placed at
the occipital lobe, with high entropy and low complexity. To the best of our knowledge, this is the
first evidence of the existence of a topological-dynamical core, which we believe could be present
in other kind of situations beyond the execution of memory tests. Thus, we hope that the results
contained in this Chapter showing the interplay between topology and dynamics could be further
adapted to other kind of cognitive or motor tasks, or even to the evaluation of brain impairment,
shedding light on the understanding of functional brain networks.
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9 Conclusions and Future Perspectives

Mathematical methods developed under the paradigm of complexity have given priceless ap-
proaches to better understand nonlinear biological systems. Among them, the brain, probably

the most complex system we are facing, has benefited from detailed studies that have shed light
on many of its emergent behaviours. Within this framework, this PhD Thesis makes use of the
new Science of Networks in order to better understand and characterize some of its emergent
properties, all of that under the hypothesis that functional brain networks must be interpreted from
their topological organization but also from their dynamical properties.

Along this PhD Thesis I have revisited key topics of complexity and neuroscience to understand
the organization of coupled brain signals. Specifically, I have made use of Network Science to figure
out how topological patterns appear in functional brain networks. Additionally, I characterized
the rivalry/balance between brain hemispheres and traced how the organization of brain networks
evolve in time. On the other hand, I unveiled the consistency of node dynamics and discovered
how the inner dynamics of individuals suffering from a brain disease can be projected into an
"anomalous network". Likewise, I analyzed the dynamics inside functional networks through the
use of mathematical tools that allow to extract ordinal patterns from the brain activations. In this
way, I captured the temporal content of information enclosed in brain signals so as to get statistical
metrics containing the main features of nodes’ dynamics. All of that was exposed through five
studies devoted to the analysis of the dynamics in/of functional networks, showing how complex
networks approach can be useful to the comprehension of the differences between groups of people
under different cognitive conditions, as well as to demonstrate that by studying the dynamics in/of
networks we can better understand the still-unclear relationship between topological and dynamical
complexity.

In the first study I witnessed the brain as a network with high heterogeneity, giving rise to the
existence of hubs. I showed a detailed analysis of how the importance of those hubs in functional
networks was associated with the execution of a memory task, and how the emergence of mild
cognitive impairment (MCI) affects the role of the network’s hubs. I concluded that among all
centrality measures, eigenvector centrality was the one that better quantifies the role of the hubs
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and captures the impairment introduced by the neurodegenerative disease. Regarding the relevant
cortical regions, the occipital region, containing the majority of the hubs in healthy individuals, was
the one where centrality decreased the most, while nodes belonging to the central lobe benefited
from the hub deterioration. For this reason, I concluded that the reduction of hub centrality could
be used as a signature of the existence of certain brain diseases, since the hub structure is quite
stable in healthy adult individuals.

The second study considered the brain not as a single network, but as a network-of-networks
formed by two components (one per hemisphere) connected through a certain number of inter-links.
I found that eigenvector centrality is a useful metric to evaluate wether the brain hemispheres
of healthy individuals vie to reach a certain level of competition or, conversely, some functional
trade-off. I found that the brain takes advantage of all links, including the weaker ones, to distribute
the centrality in almost equally proportions in both brain hemispheres, a fact that is reflected in a
competition parameter close to zero. I also computed the percentage of the damage an hemisphere
has due to single strokes, highlighting to what extent the resilience of the brain is affected according
to the number of inter-links between hemispheres. In this way, I evaluated how brain networks go
from a tight-binding behaviour up to a fragile system when the number of inter-links is reduced.
Interestingly, I found that the occipital lobe is the cortical region that suffers the most severe
deterioration, for all conditions in the α band. I also found that while centrality is highly affected by
strokes and removed inter-links, the shortest path and the averaged clustering coefficient were not
dependent on the number of inter-hemispherical connections. This fact results of high importance,
because it warns about the danger of investigating the robustness of network-of-networks only in
terms of the typical topological features, such as the shortest path or clustering coefficient.

The third study emphasized the fact that functional networks are not static entities and focused
on the analysis of how their topological features evolve and reorganize in time. I investigated
how the functional networks of young and older individuals modulate their topology during an
interference-based working memory task. This study allowed me to track the evolution of the
network parameters, reporting significant differences between young and older individuals at the
beginning of the interference period. These differences resulted more pronounced in parameters
such as the network strength or outreach, despite they were also reported in the weighted clustering,
average shortest path and network global efficiency. Interestingly, I found that the ability of the
network topology to reorganize is impaired in the older group, which shows lower variations of the
network strength between consecutive time steps during the interference region when compared to
the memory maintenance. In addition, I found that while the fluctuations of the network strength are
slightly higher in the young group during the memory maintenance, the situation is reversed during
the interference period, where fluctuations of the strength of the older subjects are much higher.
This fact suggests that the ability of functional networks to maintain (modify) its topology during
interference is decreased (increased) with ageing. Importantly, I also showed that averaging the
network topology during the whole experiment or, splitting it only into two parts, one corresponding
to the memory maintenance and the other to interference, hides the differences existing between
the two groups.

In the fourth study I focused on the dynamics in the network, i.e. I was concern about a
dynamical process occurring in the network more than in the network topology itself. I studied
how a dynamical property of dynamical systems called consistency, can be quantified with a new
sub-type of functional networks, i.e., the parenclitic networks. In this kind of graph representation,
the link between two nodes quantifies the deviations of the node consistency from an expected
(healthy) behaviour. I demonstrated that, by assuming a linear correlation among the consistencies
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of the nodes, the differences between a healthy group and a group suffering from MCI allowed to
identify nodes whose topological properties were affected the most by the emergence of the disease.
I reported a higher network strength for MCI group when the same number of links were considered
in both groups. This fact indicated higher deviations from the expected consistency performance
in the MCI group. Furthermore, I observed the appearance of strong hubs in the patients group,
which revealed that the disease is specially severe at certain cortical regions. Specifically, node 32
(frontal lobe) and node 61 (occipital lobe) were detected to be the focal points of the consistency
impairment. Nevertheless, the loss of consistency was not restricted to certain specific regions,
as reflected by the fact that global network parameters (average path length or global efficiency)
also captured differences between the control and the MCI group. On the other hand, I found
that the number of steps needed to go from one node to any other in the parenclitic network is
much lower in the MCI group, which indicates that the disease alters the network consistency in
quite a fundamental way. I also showed that networks associated to the control group were more
random than those of the MCI group, which has been demonstrated to be a common signature of
parenclitic networks. To the best of our knowledge, this was the first result concerned about the
construction of parenclitic networks to understand brain functioning and specifically the effect of a
neurodegenerative disease.

Finally, in the fifth study I focused on how the topological features of functional brain networks
can be interrelated with the dynamical properties of their nodes. I presented, for the first time, a
study that takes advantage of the methodology of ordinal patterns in large-time-series to interrelate
the dynamical properties of the nodes of a network with their topological features. Departing from
the magnetoencephalographic recordings of two groups of individuals with different level of studies,
I show the existence of differences between the topology and dynamics of their corresponding
functional networks. These differences were specially evident in the occipital lobe, being the one
that concentrated brain sites with higher statistical differences between both groups. Individuals
with a lower level of studies showed higher levels of the node and network strengths, revealing
a higher effort to attain the same level of performance during a memory test. The content of
information in the temporal patterns also distinguished between both populations, again unveiling
the occipital lobe to be the one with more differences between groups. In this context, subjects
with higher educational attainment exhibited greater levels of complexity in the occipital brain
sites. At the same time, nodes with higher levels of entropy were related to people with low
educational levels. Finally, I reported a negative correlation between the strength of the nodes
and the complexity of the signal, leading the hubs of the functional networks to be the nodes with
lowest complexity and highest entropy. To the best of our knowledge, this is the first attempt to
unveil the link between the topological and dynamical complexity in functional brain networks.

9.1 Future Perspectives

This Thesis offers different perspectives to understand how brain functional networks are organized,
both from the topological and dynamical point of view. Future works related to the above-mentioned
results should take into account other cognitive processes and/or other brain diseases in order to
evaluate the generality of the results presented in this PhD Thesis. In general, the application of
Network Science to understand the brain behaviour is still a pristine field with great expectations
and challenges. Below, there is a list of those that I consider to be intimately related to the results
contained in this PhD Thesis.

Applications to other brain diseases
Similar studies of statistical analysis of the hub deterioration could be carried out in other neurode-
generative diseases where the existence of functional hubs has been reported. For instance, not only
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in the early symptoms of MCI, but actually in Alzheimer’s Disease (AD). In the case of studying the
hemispherical balance, further studies should be addressed to implement the procedure described
in Chapter 2 to differentiate between individuals with a certain brain disease and a control group.
A clear target could be those individuals who suffer from a malfunctioning in the hemispherical
connectivity like, for example, agenesis of corpus callosum.

Applications to larger data sets
It is important to highlight that the sample size always represents a limitation when studying
brain networks. Particularly, in the Chapter of time-evolving networks, although the results were
statistically significant, subsequent similar studies should consider time series with larger sizes in
order to get temporal networks with better statistics.

In the same way, in further works related to parenclitic networks, a larger data set of individuals
would allow to test the existence of higher-order correlations among node features. A combination
of both kinds of correlations (linear and higher order ones) together with other nonlinear methods
would deserve its own study. Importantly, such combinations could depend on the size of the
datasets and the disease under study.

Interplay between topology and dynamics
Future works should focus on the evaluation of the complexity and entropy of nodes’ signals using
different kinds of measures. Evidently the choice of one or another metric of entropy or complexity
must be done carefully, because it depends on the task-related function and the particular dynamics
within the time series. Additionally, larger signals would imply the access to longer memory when
computing ordinal patterns, which would lead to a more accurate measurement of the probability
distribution of the ordinal patterns.

This PhD Thesis started studying the topology of functional networks and then moved to the
study of the dynamics in the network. In this way, I ultimately showed a correlation between the
topological features of a node and its dynamics. This could be enclosed as a first approach to
understand how functional networks act as adaptive networks. However I consider that future works
should take into account correlations with other network features different (or more sophisticated)
from the clustering and the strength. Additionally, the results concerning cognitive reserve came
from a data set of healthy people, thus similar studies should take into consideration both a healthy
group and a group with a certain disease in order to quantitatively measure the adaptativity of
functional networks.

Finally, further studies should deepen into the aforementioned bridge between topology and
dynamics of brain networks, since this kind of works could forward the application of Network
Science to clinical uses, such as the early detection of certain brain diseases.
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A Publications, Conferences & Others

Here I have listed the papers, conferences, seminars and, in summary, all the activities that I have
carried out during the realization of this PhD Thesis.

A.1 Articles

Published: P. Ariza, E. Solesio-Jofre, J. H. Martínez, J. A. Pineda, G. Niso, F. Maestú, J. M. Buldú.
Evaluating the effect of ageing on interference resolution with time-varying complex networks
analysis. Frontiers in Human Neuroscience. Vol. 9, 2015.

Published: A. Navas, D. Papo, S. Boccaletti, F. del-Pozo, R. Bajo, F. Maestú, J. H. Martinez, P. Gil,
I. Sendiña-Nadal, J. M Buldú. Functional Hubs in Mild Cognitive Impairment. International
Journal of Bifurcation and Chaos. Vol. 25, No. 3. 2015.

Published: J. H. Martínez, P. Ariza, M. Zanin, D. Papo, F. Maestú, J. M. Pastor, R. Bajo, S. Boc-
caletti, J. M. Buldú. Anomalous Consistency in Mild Cognitive Impairment: A Complex
Networks Approach. Chaos, Solitons & Fractals Journal. Vol. 70. 2015.

Submitted: D. Papo, Zanin. M, J. H. Martínez, J. M. Buldú. Beware of the small-world, neurosci-
entist! Submitted to Trends in Cognitive Sciences. 2015.

Upcoming: Martínez. J. H, Buldú J. M, Papo. D, Chavez. M, de Vico Fallani. F. Functional
Centrality Distribution in Brain Hemispheres. A Resting State Study. To be submitted to
PNAS. 2015.

Upcoming: J. H. Martínez, J. Pineda, P. Ariza, J. M. Buldú Correlation of Dynamics and Structural
Activation Patterns Reveals Neural Correlates Reorganization in Cognitive Reserve . To be
submitted to Neuroimage. 2015.
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A.2 Book Chapters

Published: Papo. D, Martínez. J. H, Ariza. P, Pineda J. A, Boccaletti. S, Buldú. J. M. Las
redes funcionales bajo la perspectiva de la teoría de grafos. Book chapter in: Conectividad
funcional y anatómica en el cerebro humano. ISBN-13: 978-8490225257. Ed: Elsevier.
2015.

A.3 Conferences and Workshops

Along those years I have attended several scientific events presenting oral and poster contributions:

Poster: J. H. Martínez, J. M. Buldú, M. Zanin, J. M. Pastor. A Complex Network Model for
Mild Cognitive Impairment Subject Characterization. Congreso de Física Estadística XII.
Proceedings c©, Congress. Mallorca, Spain, 2012.

Poster: J. H. Martínez, J. M. Pastor, M. Zanin, F. Maestú, R. Bajo, J. M. Buldú. Consistency,
complex networks and mild cognitive impairment. XXXIII Dynamics Days Europe. Congress.
ISBN: 978-84-15302-43-8 Legal Deposit: M-15935-2013, Madrid. Spain, June 2013.

Poster: J. H. Martínez, J. M. Pastor, M. Zanin, F. Maestú, R. Bajo, J. M. Buldú. Anomalous Net-
works: An Application To Brain Diseases. European Conferencce on Complex systems’13.
Conference, c, Barcelona. Spain, September 2013.

Poster: J. H. Martínez , D. de Santos, D. Papo, J. M. Pastor, E. Jover, I. Sendiña-Nadal, F. Maestú,
J. M. Buldú. Emergent Dynamical-Structural Interdependence in Hippocampus Cultures.
Net-works 2013. Conference, Madrid. Spain, December 2013.

Talk: J. H. Martínez, P. Ariza, J. Pineda, G. Niso, E. Solesio, F. Maestú, J. M. Buldú. Evaluating
Brain Resilience in Memory Ageing Based on Evolving Networks. Net-works 2013. Confer-
ence, Madrid. Spain, December 2013.

Talk: J. H. Martínez, P. Ariza, D. Papo, J. Pineda, R. Bajo, F. Maestú, J. M. Buldú. Utilizando
patrones de orden y redes complejas para evaluar la reserva cognitiva. NoLineal2014.
Congress, Badajoz. Spain, June 2014.

Talk: J. H. Martínez, P. Ariza, J. M. Pastor, et al Using Parenclitic Networks to Evaluate the Loss
of Brain Consistency. 10th AIMS Conference on Dynamical Systems Differential Equations
and Applications, Special Session: How Do Complex Networks Improve Our Knowledge of
Biology?. Conference, Madrid. Spain, July 2014.

Talk: J. H. Martínez, J. M. Buldú, D. Papo, M. Chavez, J. M. Pastor, de Vico Fallani. F Hemi-
sphere Competition in Functional Brain Networks. NetSci2013. Conference, Zaragoza.
Spain, June 2015.

Poster: J. H. Martínez, D. de Santos, D. Papo, J. M. Pastor, E. Jover, I. Sendiña-Nadal, F. Maestú,
J. M. Buldú. The Emergent Role of the Interplay Between Spikes Dynamical Properties and
Structural Neural Networks. Conference, Zaragoza. Spain, jun, 2015. Conference, Madrid.
Spain, December 2013.

Talk: J. H. Martínez, J. M. Buldú, D. Papo, M. Chavez, J. M. Pastor, de Vico Fallani. F Connector
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Links Support Functional Centrality Distribution in Brain Hemispheres. XIV LAWNP. Latin
American Workshop on Nonlinear Phenomena. Workshop, Cartagena de Indias. Colombia,
September, 2015.

A.4 Invited Seminars

Furthermore, I have been invited to give some talks, seminars, courses and tutorials related to my
scientific activity in international schools and different universities:

Course: J. H. Martínez. Introducción a Python en Cálculo Científico. Given in Master of Physics
on Complex Systems, Technical University of Madrid. Master Seminar, Madrid. Spain, April
2012.

Seminar: J. H. Martínez. Complex networks Approach for MEG Time Sries. A Methodology
for Data Classicfication. Given in Advanced Seminars of Master of Physics on Complex
Systems, Technical University of Madrid. Master Seminar, Madrid. Spain, October 2012.

Seminar: J. H. Martínez. Competition in Resting State. An approach from complex networks.
Invited talk given in AramisLab Group Monthly Meeting at Institut du Cerveau et de la
Moelle Epinière (ICM), Universite Pierre et Marie Curie. Seminar, Paris. France, April 2014.

Seminar: J. H. Martínez. Introduction to Biological Complex Networks. A functional perspective
from the complexity theory. International School of Bioinformatic & Computational Neuro-
science, School, Bogotá. Colombia, October 2014.

Course: J. H. Martínez. How To Deal With My Own Brain And Not To Die In The Attempt?. The
use of graph theory and complex systems for functional connectivity. Given in School of
Bioinformatic & Computational Neuroscience, Universidad Javeriana de Colombia, Also
given at Universidad Central de Colombia. School, Bogotá. Colombia, October 2014.

Seminar: J. H. Martínez. Prolegomenon to Functional Brain Complex Networks. Seminario de
Física Teórica del Departamento de Física at Universidad Nacional de Colombia, Capítulo
Estudiantil MBES- Depto de Ingeniería Biomédica at Universidad de los Andes, Facultad
de Ciencias Naturales y Matemáticas at Universidad de Ibagué, Neuros Research group at
Universidad Rosario de Colombia and Technical University of Madrid. Seminars, Bogotá,
Ibagué, Madrid. Colombia, Spain, September, October, November 2014; May 2015.

A.5 International Schools

As a PhD candidate I have attended the following international schools:

Talk: J. H. Martínez, J. M. Pastor, M. Zanin, F. Maestú, R. Bajo, J. M. Buldú. Anomalous Net-
works: Unveiling an Intrinsic Behaviour in Mild Cognitive Impairment. School of Biological
Complex Networks: From the Cell to the Brain and Beyond. School, Natal. Brazil, jul, 2013.

Talk: J. H. Martínez, J. M. Pastor, M. Zanin, F. Maestú, R. Bajo, J. M. Buldú. Anomalous Net-
works: An Application To Brain Diseases. ECCS Warm-Up School on Complex Networks.
School, Barcelona. Spain, sep, 2013.
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Talk: J. H. Martínez, P. Ariza, D. Papo, M. Zanin, J. M. Buldú. Do Our University Studies
Increase our Brain Complexity?. Mediterranean School of Complex Networks. School,
Salina. Italy, jun, 2014.

Talk: J. H. Martínez, J. M. Buldú, D. Papo, M. Chavez, J. M. Pastor, de Vico Fallani. F Dynamics-
Structural Interplay Patterns in Brain Networks Reveals Neural Correlates Organization
in Cognitive Reserve. School on Fundamentals of Complex Systems and Applications to
Neurosciences. School, São Paulo. Brazil, oct, 2015.

A.6 Conferences Committee
I have participated in the Organizing Committee of a Satellite of the NetSci2015 Conference:

Organizer: J. H. Martínez. Brain Networks Satellite at NetSci Conference 2015. NetSci2015.
Satellite, Zaragoza. Spain, jun, 2015.

A.7 Academic Secondments
Finally, in order to improve my academic career, I have visited different universities and research
centers:

London. UK: Imperial College London. Visit to the Complexity & Networks Group of Department
of Mathematics. March 2011.

Southamptom. UK: University of Southampton. Visit to the Adams & Graf Vision Labs of Psy-
chology Department. March 2011.

Paris. France: Université Pierre et Marie Curie. Scientific secondment at the ARAMISlab of In-
stitute Du Cerveau Et De La Moelle Épinière (ICM). January-May, 2014.

Barcelona. Spain: Universitat Politècnica de Catalunya. Visit to the Nonlinear Dynamics, Nonlin-
ear Optics and Lasers. DONLL Group of Department of Physcis and Nuclear Engineering.
May 2015.
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