Prostaglandin D$_2$: A dominant mediator of aspirin-exacerbated respiratory disease

Katherine N. Cahill, MD, a,b,d Jillian C. Bensko, a,c Joshua A. Boyce, MD, a,b,d and Tanya M. Laidlaw, MD a,b,d

Background: Aspirin desensitization followed by high-dose aspirin therapy is routinely performed for patients with aspirin-exacerbated respiratory disease (AERD). Little is known about the contributions of mediators other than cysteinyl leukotrienes to aspirin reactions and to the therapeutic benefit of high-dose aspirin therapy.

Objective: We investigated differences in urinary eicosanoid metabolite levels and blood eosinophil counts in patients with AERD who tolerate and those who fail aspirin desensitization and also in patients with AERD who were successfully treated with high-dose aspirin therapy.

Methods: Twenty-nine patients with AERD were stratified into those who tolerated aspirin desensitization (group I) and those who did not (group II). Urine was analyzed for eicosanoid metabolites at baseline, during aspirin reactions, and during high-dose aspirin therapy. Blood was analyzed for cell differentials at baseline and during aspirin therapy.

Results: Basal prostaglandin D$_2$ metabolite (PGD-M; 13.6 ± 2.7 vs 7.0 ± 0.8 pmol/mg creatinine [Cr], $P < .05$) and thromboxane metabolite (TX-M; 1.4 ± 0.3 vs 0.9 ± 0.1 pmol/mg Cr, $P < .01$) levels were higher in group II than in group I. During aspirin reactions, PGD-M levels remained unchanged, whereas TX-M levels (0.7 ± 0.1 pmol/mg Cr, $P = .07$) tended to decrease in group I. In contrast, PGD-M levels increased dramatically in group II (61.3 ± 19.9 pmol/mg Cr, $P < .05$), whereas TX-M levels did not change. The decrease in FEV$_1$ inversely correlated with basal urinary levels of both leukotriene E$_4$ and PGD-M. Blood eosinophil and basophil levels increased and urinary PGD-M levels (2.2 ± 0.8 pmol/mg Cr, $P < .001$) decreased on 2 months of high-dose aspirin therapy in group I.

Conclusion: Failure to tolerate aspirin desensitization in a subset of patients with AERD is associated with prostaglandin D$_2$ overproduction. The increase in blood eosinophil and basophil counts during high-dose aspirin therapy might reflect the functional consequences of decreased prostaglandin D$_2$ release and the therapeutic benefit of aspirin. (J Allergy Clin Immunol 2015;135:245-52.)

Key words: Aspirin-exacerbated respiratory disease, Samter triad, nasal polyps, asthma, prostaglandin D$_2$, thromboxane, aspirin desensitization, cysteinyl leukotrienes, urinary eicosanoids, eosinophils

Aspirin-exacerbated respiratory disease (AERD) is characterized by asthma, eosinophilic nasal polyposis, and respiratory reactions upon ingestion of COX-1 inhibitors. The pathogenesis of AERD involves dysregulation of arachidonic acid (AA) metabolism, as indicated by excessive basal generation of the cysteiny1 leukotrienes (cysLTs) leukotriene (LT) C$_4$, LTB$_4$, and LTE$_4$, which is further increased by COX-1 inhibitors. A long-standing hypothesis for the cause of reactions to COX-1 inhibitors in patients with AERD has been that COX-1 inhibition dysregulates 5-lipoxygenase (5-LO), resulting in overproduction of cysLTs. Reactions typically occur at a threshold aspirin dose of 40 to 160 mg (sufficient to block COX-1 but not COX-2), with symptoms generally confined to the respiratory tract. During reactions, both eosinophils and basophils are rapidly recruited to the respiratory tissue, accompanied by a decrease in blood eosinophil counts. The reaction is usually followed by a desensitized state, during which patients can benefit from high-dose daily aspirin, which improves disease control.

Neither the mechanism responsible for the recruitment of effector cells nor the basis of the therapeutic benefit of high-dose aspirin are known.

AA is metabolized intracellularly to LTC$_4$ through the actions of 5-LO and LTC$_4$ synthase. LTC$_4$ is released and converted to LTD$_4$, which in turn is rapidly metabolized to the stable end-metabolite LTE$_4$ and excreted in the urine. At least 3 receptors (type 1 [CysLT$_1$R] and type 2 cysteinyl leukotriene receptors and GPR99) mediate the actions of cysLTs in vivo. Urinary LTE$_4$ measurements reflect systemic cysLT production, and basal levels of LTE$_4$ in the urine of patients with AERD are higher than those in control subjects with aspirin-tolerant asthma (ATA). Patients with AERD who experience large (>30%) decreases in FEV$_1$ during aspirin reactions have both higher basal urinary LTE$_4$ levels and greater aspirin-induced increases in LTE$_4$ levels than patients who experience lesser reductions in airflow. Drugs that inhibit CysLT$_1$R or 5-LO attenuate the severity of respiratory symptoms and blunt the reductions in FEV$_1$ that occur during aspirin reactions, validating the role of cysLTs. Although the efficacy of these drugs justifies their use as prophylaxis for desensitization to aspirin, therapeutic responses to them are not uniform among patients with AERD, and some experience severe aspirin-induced reactions despite prophylaxis. Therefore it is likely that mediators other than cysLTs contribute to the disease in general and to the reactions to COX-1 inhibitors in particular. However, little is known about these other mediators.
COX-1 and COX-2 convert AA to prostaglandin (PG) H2, which is converted to PGE2, PGD2, PGF2, thromboxane, and prostacyclin (PGI2) by cell type–restricted synthases. PGE2 can induce bronchodilation,

13 suppress activation of mast cells and eosinophils, and block 5-LO activation.

14,15 Although PGE2 is thought to play a protective role in patients with AERD, less is known about the roles of other COX products. PGD2, the major COX product of mast cells, and its metabolite, 9α,11β-PGF2α, induce bronchoconstriction in asthmatic patients,

16 and asthmatic patients are hyperresponsive to PGD2 compared with healthy control subjects.

17 PGD2 is also a vasodilator

18 and is chemotactic for eosinophils, basophils, TH2 cells, and type 2 innate lymphoid cells by acting at chemokine receptor homologous molecule expressed on T42 lymphocytes (CRTH2), also known as the D prostanoid (DP) 2 receptor.

21,22 Plasma levels of 9α,11β-PGF2α in patients with AERD exceed those in patients with ATA and healthy control subjects and increase modestly within minutes of aspirin challenge.

23 Bronchoalveolar lavage fluid levels of PGD2 remain unaffected by endobronchial challenge of patients with AERD using lysine aspirin, whereas metabolites of other PGs decrease.

24 These studies suggest that COX function and production of PGD2 in patients with AERD might be at least partly resistant to aspirin. Although the bronchocostriction, vasodilation, and inflammation-promoting actions of PGD2 fit with a role in patients with AERD, its functions in patients with the disease remain largely unexplored.

We identified a subset of patients with AERD who did not tolerate desensitization to oral aspirin. Despite prophylaxis with the CysLT1 antagonist montelukast, these patients did not advance beyond a threshold dose of aspirin or had difficulty tolerating escalating doses of aspirin caused by ongoing cutaneous symptoms, gastrointestinal symptoms, or both. We hypothesized that differences in eicosanoid generation might account for differences in reaction severity and the development of systemic extrapulmonary symptoms in this subgroup. Here we demonstrate that patients with AERD who are unable to tolerate desensitization display markedly dysregulated production of PGs, particularly PGD2, the levels of which increased dramatically during their reactions. The production of PGD2 correlates with the severity of airflow obstruction during clinical reactions. We also show that patients who are successfully desensitized and then treated with high-dose aspirin exhibit sharply reduced systemic production of PGD2, but not cysLTs, and demonstrate that reduced tissue flux of classical effector cells (eosinophils and basophils) is potentially a beneficial consequence of reduced PGD2 generation.

METHODS

Patient selection and stratification

Patients with AERD who underwent aspirin desensitization at Brigham and Women’s Hospital (Boston, Massachusetts) between 2009 and 2014 and signed informed consent forms to have urine samples, blood samples, or both collected were included in the study. All subjects had a history of asthma, nasal polypsis, and characteristic respiratory reactions upon ingestion of COX-1 inhibitors. All were offered desensitization because of refractory rhinosinu-

sitis, nasal polypsis, or both, as specified in the 2007 practice parameters.

20 Aspirin desensitizations were performed while patients were not receiving the 5-LO inhibitor zileuton so that the production of cysLTs could be monitored. Patients took their regularly prescribed inhaled corticosteroids (ICSs) with or without long-acting β-agonists the morning of desensitization, as applicable. ICS use at the time of desensitization was recorded as low, medium, and high dose.

21 All but 2 subjects received montelukast (10 mg) the evening before and the morning of aspirin desensitization to attenuate the severity of respiratory symptoms during the reaction.

22 Patients were assigned to either group I (those who tolerated desensitization, n = 23) or group II (those who did not tolerate the procedure because of intractable abdominal pain, rash, or unresolved lower respiratory tract symptoms; n = 6). Demographic and clinical data were extracted from medical records at the time of desensitization.

Control subjects with ATA had a history of physician-diagnosed asthma and had tolerated a COX-1 inhibitor in the past 6 months. All subjects were nonsmokers.

Aspirin desensitization protocol

Two subjects from group I had a history of a previous reaction to nonsteroidal anti-inflammatory drug ingestion that required epinephrine administration and underwent aspirin desensitization in our medical intensive care unit. All other subjects underwent desensitization in our outpatient clinic. Oral aspirin desensitizations started with 40 mg of aspirin, followed by dose increases (81, 162, and 325 mg) every 90 minutes.

23 Patients were observed for respiratory symptoms, ocular injection, flushing, rash, and abdominal pain. The aspirin dose that caused upper and/or lower respiratory symptoms was recorded as the provocative dose. FEV1 for each patient in the outpatient clinic was recorded at baseline, before each dose, and at the time of reaction.

Urinary eicosanoid measurements

Basal (before aspirin administration) urine samples were collected from all subjects. Urine was also collected for patients with AERD 180 minutes after the onset of aspirin-induced reactions. Fourteen patients with AERD also provided urine samples after at least 8 weeks of 1300 mg/d aspirin. Patients with ATA provided basal urine samples that were collected off of all nonsteroidal anti-inflammatory drugs for more than 1 week. A subset of patients with ATA (n = 5) also had urine collected 3 hours after ingestion of 325 mg of aspirin. All urine samples were stored at −80°C and analyzed by using gas chromatography–mass spectrometry at Vanderbilt University. As described previously, concentrations of LTE4,

24 the major urinary thromboxane metabolite 11-dehydrothromboxane B2 (TXB-M),

25 the major PGD2 metabolite 9α,11β-dihydroxy-15-oxo-2,3,18,19-tetranorprostaglandin E1 (PG-E1), and the prostacyclin metabolite 2,3-dinor-6-keto-PGF1α (PGI-M) were measured and reported as picomoles per milligram of creatinine (Cr).
Peripheral blood leukocyte counts

Blood from subjects at baseline and during high-dose aspirin therapy was collected for complete blood counts (LabCorp, Burlington, NC) in a subset of group I subjects (n = 11).

Statistics

All data presented are means ± SEMs and were normally distributed. Baseline clinical characteristics and signs of the reaction to aspirin were compared between group I and group II patients with AERD by using a 2-tailed t test or by using a Fisher test for categorical data. Basal and post-aspirin ingestion eicosanoid levels from group I and group II patients with ATA were compared by using a 1-way ANOVA, followed by unpaired, 2-tailed tests if the ANOVA P value was less than .05. P values reported represent t test results. Basal and reaction eicosanoid levels for each subject were compared by using a paired 2-tailed t test. The Pearson correlation coefficient was used for comparisons between urinary eicosanoid levels and decreases in FEV1 or change in blood eosinophil counts. For all analyses, a P value of less than .05 was considered statistically significant. All analyses were performed with GraphPad Prism version 6.03 for Windows (GraphPad Software, La Jolla, Calif; www.graphpad.com).

The Brigham and Women’s Hospital Human Subjects Institutional Review Board approved the study, and all subjects provided written consent.

RESULTS

Clinical characteristics of patients and reactions

Between 2009 and 2014, 111 patients with AERD underwent aspirin desensitizations at our institution and agreed to participate in clinical research. Of these, 29 patients provided urine for eicosanoid analysis, and 11 provided blood for complete blood counts before desensitization and after 2 months of aspirin treatment. Twenty-three (group I) completed the desensitization and successfully initiated treatment with high-dose aspirin, while 6 (group II) were unable to tolerate the desensitization because of marked extrapulmonary symptoms (n = 5) or failure of lower respiratory tract symptoms to resolve (n = 1). Age, race, baseline FEV1 (percent predicted), FEV1/FVC ratio, ICS use, total IgE levels, and peripheral blood eosinophil counts were not statistically different between the groups (Table I). Use of ICSs or oral steroids remained the same throughout the study.

Patients with AERD in both groups I and II experienced reductions in their FEV1 (15% ± 3% for group I and 30% ± 10% for group II, P < .05, Table II) during reactions to aspirin. The provocative aspirin dose (log2) that triggered the reaction was not significantly different between the 2 groups (Table II) and did not correlate with PG metabolite levels. Abdominal pain during reactions was more common (P < .05) and more severe in group II, with 4 subjects reporting sharp stabbing pain, 3 reporting nausea, and 1 experiencing watery diarrhea. A rash appeared during the reactions in all subjects in group II, whereas none of the subjects in group I had a rash (P < .001). The rash consisted of an erythematous and pruritic macular eruption that involved the palmar and plantar surfaces (Fig 1), spread proximally, and was not associated with urticaria or angioedema. Five of the 6 subjects in group II were unable to tolerate aspirin therapy with dose escalation because of the persistence of gastrointestinal symptoms, rash, or both. The 1 subject in group II who eventually was able to tolerate aspirin therapy required a slower desensitization spaced over 2 days, as she continued to have a rash and lower respiratory reactions with each successive dose of aspirin.

Urinary eicosanoid measurements and relationship to clinical outcomes

Basal urinary LTE4 levels were higher in group II patients with AERD (2.9 ± 1.0 pmol/mg Cr) than in the ATA control group (0.2 ± 0.09 pmol/mg Cr, P < .01, Fig 2). Compared with their respective prerreaction basal levels, the urinary LTE4 levels in both groups of patients with AERD increased during the reaction

Table I. Baseline clinical characteristics according to group stratification

<table>
<thead>
<tr>
<th>Clinical characteristics</th>
<th>Patients with ATA (n = 10), mean ± SEM</th>
<th>Group I, patients with AERD (n = 23), mean ± SEM</th>
<th>Group II, patients with AERD (n = 6), mean ± SEM</th>
<th>P value (group I vs group II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>36.3 ± 3.3</td>
<td>47.3 ± 2.3</td>
<td>47.3 ± 1.7</td>
<td>.99</td>
</tr>
<tr>
<td>Male sex</td>
<td>40%</td>
<td>39%</td>
<td>50%</td>
<td>.67</td>
</tr>
<tr>
<td>Baseline FEV1 (% predicted)</td>
<td>91% ± 6%</td>
<td>84% ± 3%</td>
<td>86% ± 4%</td>
<td>.63</td>
</tr>
<tr>
<td>FEV1/FVC ratio</td>
<td>80% ± 3%</td>
<td>73% ± 2%</td>
<td>71% ± 2%</td>
<td>.87</td>
</tr>
<tr>
<td>Total IgE (IU/mL)</td>
<td>168.0 ± 35</td>
<td>344.4 ± 85</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Peripheral blood eosinophils (K/µL)</td>
<td>0.66 ± 0.11</td>
<td>0.40 ± 0.20</td>
<td>.16</td>
<td></td>
</tr>
<tr>
<td>ICS + LABA</td>
<td>90%</td>
<td>91%</td>
<td>100%</td>
<td>.33</td>
</tr>
<tr>
<td>High</td>
<td>0%</td>
<td>9%</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>10%</td>
<td>57%</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Oral prednisone</td>
<td>0%</td>
<td>13%</td>
<td>17%</td>
<td>1.0</td>
</tr>
<tr>
<td>Montelukast use</td>
<td>40%</td>
<td>91%</td>
<td>100%</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Data are shown as means ± SEMs.

FVC, Forced vital capacity; LABA, long-acting β-agonist.

Table II. Clinical characteristics of patients with AERD stratified by group after the provocative dose of aspirin

<table>
<thead>
<tr>
<th>Clinical characteristics during aspirin desensitization</th>
<th>Group I, patients with AERD (n = 23), mean ± SEM</th>
<th>Group II, patients with AERD (n = 6), mean ± SEM</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum change in FEV1</td>
<td>−15% ± 3%</td>
<td>−30% ± 10%</td>
<td><.05</td>
</tr>
<tr>
<td>Abdominal symptoms</td>
<td>26%</td>
<td>83%</td>
<td><.05</td>
</tr>
<tr>
<td>Rash</td>
<td>0%</td>
<td>100%</td>
<td><.001</td>
</tr>
<tr>
<td>Provocative aspirin dose (mg)</td>
<td>113 ± 16</td>
<td>68 ± 30</td>
<td>.18</td>
</tr>
</tbody>
</table>

Data are shown as means ± SEMs.

Peripheral blood leukocyte counts

Blood from subjects at baseline and during high-dose aspirin therapy was collected for complete blood counts (LabCorp, Burlington, NC) in a subset of group I subjects (n = 11).
Subjects (61.3 ± 6.0 pmol/mg Cr, P < .001) and TX-M (2.4 ± 0.7 vs 0.7 ± 0.1 pmol/mg Cr, P < .001) levels during the reaction were significantly higher in the post-aspirin urine of group II than group I (Fig 3, A). Total PG metabolite levels in the urine of group II subjects were significantly greater than total metabolites in the urine of group I subjects during reactions (85 ± 22 vs 21 ± 3 pmol/mg Cr, P < .001, data not shown). All PG metabolite levels decreased in the urine of the control subjects with ATA (n = 5, data not shown) after ingestion of 325 mg of aspirin, with the exception of 1 subject who had an increase in PGD2 levels. Fig 3, B, shows the log2 of the fold change (post-aspirin compared with basal levels) of each metabolite in all 3 subject groups.

Basal and reaction eicosanoid levels were assessed for correlation with a decrease in FEV1 during aspirin reactions. Both basal urinary LTE4 (r = −0.461, P < .05) and PGD-M (r = −0.438, P < .02) levels inversely correlated with maximum decrease in FEV1 during the reaction (Fig 4). Reaction PGD-M (log2) levels also correlated with decrease in FEV1 during reactions (r = −0.41, P < .05, data not shown).

To determine the effect of high-dose aspirin therapy on the production of eicosanoids in patients with AERD, we compared basal levels of urinary PG metabolites and LTE4 with levels after 8 weeks of high-dose aspirin therapy in group I subjects (n = 14). Aspirin therapy resulted in significant decreases in PGE-M (8.7 ± 2.1 pmol/mg Cr, P < .01), PGI-M (0.14 ± 0.03 pmol/mg Cr, P < .01), TX-M (0.2 ± 0.1 pmol/mg Cr, P < .001), and PGD-M (2.2 ± 0.8 pmol/mg Cr, P < .001) levels from basal levels, but there was no change in LTE4 levels (2.7 ± 1.2 pmol/mg Cr, P = .24, Fig 5). The 1 subject in group II who went on to tolerate high-dose aspirin also demonstrated a decrease in PGD-M levels from baseline after 8 weeks.

Peripheral blood leukocyte counts and relationship to urinary PGD-M levels

Absolute peripheral blood eosinophil, basophil, and neutrophil counts were assessed in group I patients with AERD (n = 11) at baseline and again during high-dose aspirin therapy. While receiving high-dose aspirin therapy, eosinophil counts increased in all subjects (0.31 ± 0.06 to 0.93 ± 0.19 10^3/µL, P < .01), and basophil counts increased or stayed the same (0.06 ± 0.02 to 0.09 ± 0.20 10^3/µL, P = .08). Neutrophil counts did not change (Fig 6). The percentage increase in eosinophil counts during high-dose aspirin therapy tended to inversely correlate to the percentage decrease in urinary PGD-M levels from baseline during high-dose aspirin therapy (r = −0.51, P = .16, data not shown). The 1 subject in group II who went on to tolerate high-dose aspirin showed a decrease in PGD-M levels from baseline after 8 weeks.

FIG 1. Rash observed after the provocative dose of aspirin in 3 group II patients with AERD.

FIG 2. Basal and post-aspirin (ASA) urinary LTE4 levels. Basal and aspirin-induced urinary LTE4 levels analyzed by using gas chromatography–mass spectrometry from control subjects with ATA (basal, n = 10; after aspirin, n = 5), group I patients with AERD (n = 23), and group II patients with AERD (n = 6) are shown. Data are expressed as means ± SEMs. ★P < .05 and ★★P < .01.
aspirin also demonstrated an increase in absolute peripheral blood eosinophil counts at 8 weeks.

DISCUSSION
AERD involves complex dysregulation of proinflammatory (cysLTs and PGD\textsubscript{2}) and anti-inflammatory (PGE\textsubscript{2}) eicosanoid mediators. Clinical reactions to drugs that block COX-1 are characterized by increases in urinary LTE\textsubscript{4} levels and have been thought to be largely driven by the effector functions of cysLTs.32 To our knowledge, ours is the first comprehensive examination of PG generation in patients with AERD undergoing a therapeutic desensitization procedure. Unexpectedly, subjects unable to tolerate the procedure because of cutaneous and gastrointestinal symptoms (despite the use of a CysLT\textsubscript{1}R antagonist) not only generate higher levels of cysLTs than those who tolerate the procedure but also do not suppress several prostanoids at a threshold dose of aspirin. In particular, subjects unable to tolerate the procedure generate markedly more PGD\textsubscript{2} during reactions than do those who tolerate desensitization. These findings imply a potential role for "aspirin-resistant" PGD\textsubscript{2} as a mediator of AERD. Additionally, the suppression of PGD\textsubscript{2} that results from high-dose aspirin therapy might prevent the recruitment of PGD\textsubscript{2}-responsive effector cells to the target tissue. This could account for why therapy with high-dose aspirin improves disease control, while leaving the high baseline urinary LTE\textsubscript{4} levels typical of patients with this disease unaltered,24,33,34 and increasing blood eosinophil and basophil counts.

The demographic and physiologic characteristics of the 23 subjects who tolerated the desensitization procedure (group I) were comparable with the characteristics of those who did not tolerate the procedure (group II, Table I). Every subject in group I had respiratory symptoms during the procedure, but these resolved, and all subjects successfully continued on to higher aspirin doses without additional symptoms. The subjects in group II had greater bronchoconstriction (Table II) and were unable to complete the procedure because of ongoing abdominal pain, an atypical rash, or both (Fig 1). The development of a rash during

FIG 3. PG levels at baseline and after aspirin (ASA).

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{PG levels at baseline and after aspirin (ASA). A, Basal (left panel) and post-aspirin (right panel) urinary PG levels in patients with ATA (basal, n = 10; after aspirin, n = 5), group I patients (n = 23), and group II patients (n = 6) are shown. B, Log\textsubscript{2} of change from basal urinary PG levels induced by aspirin administration is shown for the 3 patient groups. Data are expressed as means ± SEMs. *P < .05, **P < .01, and ***P < .001.}
\end{figure}
desensitization signaled a more challenging desensitization for subjects. The gastrointestinal manifestations could well reflect the actions of mediators released from gut mast cells during the reaction to aspirin. The dose of aspirin that provoked symptoms was not statistically different between the groups (Table II) and did not correlate with reaction PGD-M levels, which is consistent with previous studies reporting that neither the severity of reactions nor the changes in urinary LTE4 levels depend on the dose of aspirin ingested. We cannot exclude the possibility that the subjects in group II would achieve desensitization using an alternative protocol with intranasal ketorolac, which might be better tolerated than the standard oral aspirin desensitization protocol used in our study.

The correlation between basal LTE4 levels and the decrease in FEV1 (Fig 4, A) is consistent with the observations of Daffern et al, who reported that basal urinary LTE4 levels predict the severity of airflow obstruction during aspirin challenge. Unlike the study by Daffern et al, however, all but 2 subjects in our cohort were pretreated with a CysLT1 antagonist. Thus the fact that basal urinary LTE4 levels correlated with the decrease in FEV1 in our subjects suggests that the cysLT1-dependent component of airflow obstruction involves receptors other than CysLT1Rs. Because we found that PGD-M levels at baseline and during reactions also correlated with the decrease in FEV1 (Fig 4, B), the bronchoconstricting effects of PGD2 could account for a portion of the bronchial response to aspirin that resists CysLT1 blockade.

Although previous studies have monitored the production of PGs during aspirin challenges in patients with AERD, none had simultaneously monitored all PG metabolites in subjects with vastly different clinical responses to aspirin. PGE2 suppresses 5-LO activity, and PGD2 and thromboxane A2 are potent bronchoconstrictors, and PGI2 is a vasodilator that decreases airflow when inhaled. Thus all PGs measured in this study are potentially relevant to AERD. The increase in total PG metabolites observed in group II during reactions to aspirin (from 43.2 ± 9.4 to 85.2 ± 22.1 pmol/mg Cr) contrasts with the aspirin-induced changes in PG levels observed in group I and in the control subjects with ATA. Although much of the increase in total PG levels in group II reflects PGD-M levels, TX-M and PGI-M levels tended to increase in response to aspirin challenge in this group, whereas both tended to decrease in group I (Fig 3). Although PGE2 is bronchoprotective in patients with AERD because of inhibition of mast cell activation and 5-LO, PGE-M levels did not change significantly in either group during aspirin reactions. It is possible that the high PGE2 levels generated by the kidney mask changes that reflect aspirin-induced suppression of its production in respiratory tissue at the low doses that elicit reactions. The modest reduction in PGE-M levels observed in group I after 8 weeks of treatment might reflect the ability of high-dose aspirin to interfere with COX-2 (from which most renal PGE2 is derived), as well as COX-1. The fact that both LTE4 and PG levels increased simultaneously suggests that aspirin provokes the release of large quantities of AA in group II subjects by a to-be-determined mechanism. Additionally, the comparative resistance of their PG metabolites to suppression by aspirin at doses that block COX-1 (but not COX-2) suggests that COX-2 activity might mediate PG production in group II subjects. COX-2 protein expression by mast cells is increased in bronchial biopsy specimens from patients with AERD compared with that seen in control subjects with ATA. COX-2 selective antagonists are almost universally well tolerated by patients with AERD, but whether COX-2 antagonists might actually be therapeutic in group II patients with AERD remains to be determined.
Because the effects of high-dose aspirin therapy on PG metabolites had not previously been studied comprehensively in patients with AERD, we sought to determine the effect of high-dose aspirin therapy on urinary eicosanoid levels in group I subjects. The sharply reduced levels of PGI-M, TX-M, and PGD-M in the urine of group I subjects during aspirin therapy (Fig 5) suggest that suppression of these bronchoconstrictive PGs might contribute to the clinical benefit of high-dose aspirin therapy. PGD2 is potently chemotactic for eosinophils and basophils, both of which express D prostanoid receptor 2/chemokine receptor homologous molecule expressed on T112 lymphocytes (DP2/CRTH2). Aspirin challenges induce a reduction in blood eosinophil counts in patients with AERD, potentially reflecting (in retrospect) their recruitment to the tissue. Both eosinophil and basophil counts increase in nasal lavage fluid after aspirin challenge, without an accompanying increase in the concentrations of eosinophil-active chemokines. Remarkably, eosinophil counts, but not neutrophil counts (which lack DP2/CRTH2), increased (Fig 6) in all successfully desensitized subjects in our study and tended to correlate with the reduction in PGD-M levels. We suspect that PGD2, through DP2/CRTH2, might facilitate the persistent eosinophilic inflammation of the respiratory tract that characterizes AERD. The suppression of PGD2 generation by high-dose aspirin therapy might increase the circulating pool of DP2/CRTH2 effector cells by removing the chemotactic gradient that supports their recruitment to the tissue. Suppression of effector cell recruitment could contribute to the therapeutic benefit of high-dose aspirin in patients with AERD, which is clearly not due to changes in cysLT production.24,33,47

Previous studies reported that levels of PGD2 metabolites in urine, plasma, or bronchoalveolar lavage fluid either remain unchanged24,33,47 or increase modestly with aspirin challenge in patients with AERD. The differences between these and our data likely reflect differences in sampling, the heterogeneous nature of AERD,49 and the variable proportions of subjects with the phenotype defined by group II. The pharmacologic properties of PGD2 and its metabolites make it likely that they play a causal role in the severe extrapulmonary manifestations of reactions to aspirin in group II. The significant correlation between basal urinary PGD-M levels and the decrease in FEV1 during aspirin reaction suggests that they also contribute to the respiratory response to aspirin (Fig 4). PGD2-mediated bronchoconstriction is sensitive to blockade with antagonists of the thromboxane receptor.21 PGD2 also causes cutaneous vasodilation by acting at DP1 receptors, and it seems plausible that the rash experienced by subjects in group II (Fig 1) could reflect the direct effects of PGD2 in the skin microvasculature. Finally, the selective changes in blood eosinophil and basophil counts resulting from high-dose aspirin therapy in our study (Fig 6) might well reflect a prominent function for PGD2 in recruiting DP2/CRTH2+ effector cells to the respiratory tissues. Drugs are under development that block thromboxane, DP1, and DP2/CRTH2 receptors. We speculate that these drugs, alone or in combination, could permit safe desensitization to aspirin in the PGD2-overproducing subgroup of patients with AERD and could replicate some of the therapeutic benefits of high-dose aspirin by preventing the chemotaxis of DP2/CRTH2+ cells into the tissues. Our study is a necessary prerequisite to such trials.

We thank Jing Cui, MD, PhD, for her statistical assistance during manuscript preparation.

Key messages

- Cutaneous and gastrointestinal symptoms during aspirin desensitization and failure to tolerate desensitization in patients with AERD are associated with marked increases in PGD2 generation.
- High-dose aspirin therapy in patients with AERD suppresses PGD2 production and increases peripheral blood eosinophil counts.

REFERENCES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.