INTRODUCTION

Shagbark Hickory-dominated forests are found in the eastern United States and are known for their high productivity and nutrient cycling. These forests are characterized by a closed canopy and a rich understory, which are important for biodiversity and ecosystem services. The study of these forests is crucial for understanding the ecological and meteorological controls on forest canopy processes, which can help in managing and conserving these valuable ecosystems.

METHODS

Four oak species and two hickory species (see Table 1) were selected for this study. The species were chosen based on their ecological importance and the availability of data on their nutrient cycling and biogeochemical processes. The study was conducted at the Southern Research Station in Tuscaloosa, Alabama, where the climate is humid subtropical with mild winters and warm summers.

RESULTS

Table 1 summarizes the species characteristics of the chosen oak and hickory species. The data show that each species has a different canopy density and nutrient cycling pattern. For example, Shagbark Hickory has a higher canopy density than the other species, which may indicate a higher rate of nutrient cycling.

CONCLUSIONS

The results of this study provide insights into the nutrient cycling and biogeochemical processes in oak and hickory-dominated forests. The study highlights the importance of understanding these processes for effective forest management and conservation. The findings can be used to inform the development of sustainable forest management practices and policies.