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Abstract— This paper puts forward a simultaneous
infrastructure-free cooperative relative localization (RL) and
distributed formation control strategy for unmanned aerial
vehicles (UAVs) in GPS denied environments. Instead of
estimating relative coordinates by detecting specific patterns
using image processing methods, an onboard ultra-wideband
(UWB) ranging and communication (RCM) network is utilized
to provide both relative distance sensing and information
exchanging for RL estimation. Without any external
infrastructures prepositioned, each agent cooperatively
conducts the proposed consensus-based fusion method to
estimate relative positions with respect to its neighbors
real time though some UAVs may not have direct range
measurements to their neighbors. The RL estimates together
with relative velocity and inter-UAV distance measurements
are applied to control a UAV swarm. Both cooperative RL
and formation control are executed in a distributed way.
Extensive real-world flight tests are presented to corroborate
the effectiveness of our proposed simultaneous RL and
formation control system.

I. INTRODUCTION

Formation control of multi-robot systems has been a
popular research topic in recent years [1]. It is one of
several commonly studied motion control strategies intended
for the realization of robotic swarms with many potential
applications. Briefly, the aim of formation control is to
organize multi-robot systems to move in a prescribed spatial
pattern.

Formation experiment results, particularly those involving
quadcopter UAVs, already exist, but most still depend on
some external infrastructure for positioning. Examples in-
clude GPS [2], [3], motion tracking systems [4], [5], and
radio-based positioning such as ultra-wideband (UWB) net-
works [6]. However, infrastructure dependence is disadvan-
tageous. GPS is unreliable in cluttered urban environments,
and the mentioned alternatives require careful setup in the
operation area and have limited range. Even in [2], where
the formation is distance-based and thus intended for use
with inter-agent range measurements without infrastructure,
the experiment reported was still GPS dependent.

Conversely, infrastructure-independent examples also ex-
ist, but are still deficient in some ways. In [7], a vision-based
method was presented using onboard markers for relative
localization (RL). Although promising, it is inherently re-
stricted by limited view angles, occlusion and lighting, and
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Fig. 1: The simultaneous infrastructure-free cooperative
relative localization and distributed formation shape con-
trol strategy is proposed to overcome the shortcomings of
widely used global positioning and/or pattern detecting
required UAV swarm applications: (a) (b) and (c) show
the distributed formation shape flights in different scenes;
(d) illustrates the distances, displacements and relative po-
sition with respect to three UAVs during their simultaneous
movements. For clarity, all variables are depicted at different
instants.

heavy computation. In [8], a Bluetooth-based RL method
was proposed and intended for collision avoidance, but
experiment results show restrictions in flight duration and
test area. In [9], Wang et al. formulated convex optimization-
based RL. However, the method has high computational cost
and thus requires centralized implementation.

In this paper, we present a complete autonomous multi-
quadcopter system for distributed formation control utilizing
infrastructure-free cooperative RL. The system is validated
by both simulations and experiments on a group of three
quadcopters. The RL method uses only onboard sensors and
computation, and inter-agent range measurements leveraging
the same UWB technology as reported in our previous
works in [10], [11]. It is also cooperative, which improves
performance and ensures robustness to dropouts. Unlike [2],
the system here is complete, integrating RL estimates and
range measurements with a suitable controller. Moreover, we
propose a control algorithm which extends the work of [12]
for formation shape control to the discrete case with noise
and leverages the availability of both range measurements
and relative positions, and group motion is governed by
velocity consensus. The major contributions are:



o A cooperative RL strategy independent of infrastructure
using only onboard sensors and inter-agent ranging. The
RL estimation is bounded with consideration of noise;

« A consensus-based RL fusion to enhance robustness to
dropouts. Experiment results verify the effectiveness of
this approach;

o A distributed distance-based formation control law us-
ing RL estimates and range measurements. Bounded
convergence of the algorithm with noise is provided;

« A formation of real quadcopter UAVs demonstrating the
complete system of RL and formation control utilizing
a customized UWB ranging and communication (RCM)
network.

To keep the paper brief, only proof sketches are provided.
Detailed analysis will be provided in the extended journal
version.

The organization of this paper is as follows: first the
problem formulation is introduced in Section II. Then we
propose a UWB network based RL initialization strategy fol-
lowed by consensus-based RL fusion in Section III. Section
IV discusses a discrete-time formation control algorithm by
using the RL estimates. Flight experiments are conducted in
Section VI and the conclusion is summarized in Section VII.

II. PROBLEM OF INTEREST

Consider a UAV team consisting of N agents working
collaboratively to localize themselves with respect to their
neighbors and conduct formation control simultaneously. De-
note by N the UAV7’s neighbor set in which it can achieve
the distance measurement d*/ and receive data packets from
UAVj for j € N;. Leveraging on this sensing information,
UAVi aims to estimate the relative coordinates x;’, with
respect to UAVj at ¢ = t; in UAV¢’s own frame F;
as depicted in Figure 1(d). Note that two scenarios are
considered here: (1) UAV3 is able to sense UAVj and conduct
RL estimation directly, i.e., UAVj is a primary node for
UAVi; (2) UAVi is only able to range and communicate with
UAVr which is a neighbor of UAV, but fails to sense UAVj
directly, and UAV; herein serves as a secondary node. The
first objective is to develop a RL estimator such that each
UAVi can estimate ), within its neighbor set. With these
RL estimates and inter-UAV distance measurements, the next
objective is to design a distributed distance-based formation
control for real-world UAV swarm applications.

III. CONSENSUS-BASED COOPERATIVE RELATIVE
LOCALIZATION

In this section, we first present a RL initial estimation
strategy based on UWB RCM network and then two local
RL estimators are introduced with consideration for noise.
To enhance the robustness of our RL estimation, we propose
a consensus-based RL fusion method to fuse the local RL
estimates.

A. RL Initialization

In this section a non-linear regression (NLR) based method
[6] is applied to estimate the coordinates of the static

UAVs before they take off, and these estimates will serve
as an intial guess of the RL estimators in Section III-B
to improve RL accuracy. For a network with N UAVs,
we will group these coordinates into one vector as p =
[Z1y1 212292 22 ... TN YN 2N ]T. In the context of
a non-linear regression problem, the known coordinates will
be in the set of error-free independent variables « and the
unknown will be in the set of parameters ¢ to be estimated.

Our non-linear model f(x,¢) is a N(N —1)/2 x 1 vector
of all of the distances arranged in a particular way as follows
[ i di3...dy, a8 &t...azy,... a7

The observed dependent variables d*/ are these distances
subject to some noise €, or d¥ = d'7 + €. d is a stack
of all distance measurements d”/. To apply the non-linear
regression method, we start from some initial guess ¢, and
seek to improve our estimate of ¢ by the following recursive
steps:

of (z, p)
Je = Ji(®, ¢y) = = (la)
* HE P ¢ P=0oy,
Ad=d— f(z,d,) (1b)
Ap = (JEW T ' TEWAd (1c)
D1 = P + AP (1d)

where £k = 0,1,2,3... and W is a weight matrix to signify
the comparative importance between the measurements.

Remark IIL.1 The local referential system is somewhat ar-
bitrary; the polygon can be translated and rotated as needed
by the user. Thus, for a three-UAV team, UAVO can be simply
defined as the origin, UAV1 is set along the x—axis (its y
value assigned to zero), and all the UAVs’ heights z can
be set as zero during the initial phase [13]. These mild
initial settings constrain the system to three unknowns for
regression for a group of 3 UAVs. In our work, this RL
initialization method has been simulated and shown to be
feasible. To apply this technique, a UWB RCM scheme is
developed in Section VI.

B. RL of Mobile UAVs

1) Persistent Excitation-based RL Estimation : Suppose
each UAVi is able to measure the relative distance d;’ of
its neighbor j at sampling time instants ¢; ;. Meanwhile,
UAV: will transmit certain information to its neighbors
(e.g., UAVj) including wv;y, local RL estimates, etc, by
decoding the data packet entrained in one ranging request
command. Although UAVj can acquire its own velocity v; ;
continuously, the sampled value v;y at t = ¢;; is actually
chosen for calculation once w;j received. Note, however,
that the larger the data packet the longer the time duration
for one ranging slot and thus, practically, a trade-off between
ranging precision and the quantiy of data transmission should
be considered precedently for a UWB RCM protocol design.
We aim to design an estimator for each UAV in a certain
team based on the available information to localize the
relative position x* in its own local frame (i.e., j’s relative
coordinate in ’s moving frame at ¢ = ¢; . is xfjk ).



Since all quadcopters carry compasses, the orientations
of reference frames F; and F; for i # j are consistent, it
follows that x;/,, = x;/ + Tv};] where T is the samphng
1nterva1 and the duality of the RL problem 111ustrates Xk =
—Xj - Taking the derivative of both sides of dt =||Ix7|?
with respect to time in continuous-time version and we

71 311 ,','T 1 . . . . .
can get d?‘dg = vy x;’. By discretizing it, one obtains
ddy = v} x;. By taking into account the sensor noise,
the RL estimation from UAVi at { = ¢; ;41 is written as (2).

X:Jkﬂ X7 kT TV e 7TV7 k (d”d - V7 k 5(:]1«) 2

where v, d? and d, are the measurements of Vﬁfk, dy
and d}g respectively at the kth time step. v € R is a
tuneable constant gain. Bounded RL estimation in noise-
corrupted case can be proved and due to the space limitation,
the complete proof will be shown in our extended version.
Note that the underline of each variable throughout this paper
presents its corresponding measurement.

2) Filter-based RL Estimation: An EKF structure is pro-
posed herein to account for the noise of the difference of
the increment of UAVs’ displacements and their relative
distances. The state space consists of relative position X/
and relative velocity v}/, with the system dynamics given as
follows:

Xk+1_Xk +V T+* ”TQ

3

ij
Vk+1 = Vk + 0,7,

where g;] is the acceleration difference between UAVi and

UAVj at t = t;. In the case when the acceleration is not

available, {Q } can be treated as a white noise sequence with
T

the covariance E(Qk gk ) = diag(03,02,02). Note that o,
can be set as the maximum acceleratlon on the x-direction
(* = z,y, 2) for a conservative but consistent estimation.

The observations are the relative range d;’ and relative
veloctiy v}’ between UAVi and UAV; as below

d?f = ||X |+ 7k,

Zk = Vk +Culj,k7

“

Assume that both the process and measurement noises are
Guassian white noise. Finally, a standard Kalman filter is
conducted after linearizing the measurement equation.

Consider a team of m homogeneous UAVs. Each UAV F;
features m-1 EKF estimators to keep track of the other mem-
bers’ relative position and uses their outputs to determine its
formation control command as seen in Section IV.

Convergence time of EKF has to be considered for real
flight tests. Unreasonable RL estimates before convergence
of EKF may cause our system to move dramatically or even
crash. Thus, in real applications an autonomous initialization
method III-A is conducted prior to the RL estimator. The
intial RL guess will be fed into our proposed RL estima-
tor III-B.1 and III-B.2. These two estimators are executed
simultaneously, and due to the robusness to sensor noise,

the estimates from EKF based estimator will be utilized for
control if the error covariance of the estimates is acceptable
(less than a certain threshold). RL estimation (2) can serve
as an excitation estimator, when the deviation of EKF based
estimator is large or even diverges (i.e. caused by outliers or
instant large maneuvering), to provide emergency informa-
tion to guarantee a basic and safe flight as well as recover
the EKF based estimator.

C. Consensus-based RL Fusion

In the presence of unexpected disturbances such as wind,
one UAV may suddenly change its trajectory at some time
step such that the true relative positions to other regular
moving UAVs will be changed hugely. In this paper, a
consensus-based fusion procedure is proposed to mitigate
this potential danger by fusing the direct and indirect RL
estimates as described in Section II. The proposed fusion
strategy is able to make the RL estimation error less violent,
i.e., the error curve is smooth around the upper bound even at
the instant where the unexpected change occurs. The details
are introduced as follows.

Based on the bounded estimation of a local RL estimator,
limy oo |[X7|| < c is achieved from (2)-(4) for each UAV
where c is the upper bound of the RL estimation error.
Inspired by the equation (8) in [14], we consider a noise-
corrupted consensus-based RL fusion strategy as (5).

i i iy i i
T =m0, T TV + bij [Xi,k ""z‘,k]
2: i ij (5
+ Qir [Xr,k - Wi,k]
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where 5(? & 1s an indirect relative estimate obtained by UAVi
through an intermediate UAV7T and X/, = X', + . The
fused RL estimate 7;” in (5) will asymptotically converge
to the relative coordinate x*/ with a bounded estimate error.
The details of proof will be found in our future work due to

page restrictions.

IV. DISTRIBUTED FORMATION CONTROL

In this section, a distributed formation control integrated
with RL estimates is proposed and its discrete-time case with
noise is applied for real-world flights in Section VI-D. The
complete system workflow is summarized as follows.

A. Formation Control Design using RL Estimates

In [12], a continuous-time algorithm that combines flock-
ing and distance-based shape control is proposed and a
double-integrator model of the system is given. However,
in our cases, this continuous-time version cannot be imple-
mented directly since the UWB RCM network only allows
UAV; ranging and talking to its neighbors for a time period T’
and then conducting a RL estimate at the end of each such
interval. This section adopts a discrete-time algorithm that
combines the proposed relative localization estimates with
distance-based formation shape control, where the distance
and relative velocity measurements are considered being



contaminated by Gaussian noise. The discrete-time formation
control implemented on UAV: with noises is given by

Dik+1 =Pip +TVik

ij ij2 * ij
Vik+1 =Vik +TK Z vy +7T Z (dkj - de) b
JEN; JEN;
(6

where K is the consensus gain, y; and o are small positive
constants, and d7; is the desired relative distance between
UAVi and UAVj. Note that the relative position term in (6)
adopts our RL estimate 7, . Here the proof on convergence
is omitted and the details of proof can be found in our journal
version.

B. Algorithm Realization

The preceding two subsections III-B and III-C present
the proposed distributed cooperative RL estimator and
consensus-based fusion method respectively. Persistent ex-
citation (PE) based RL method in Section III-B.1 is robust
to the intial RL estimates while the EKF-based estimator in
Section III-B.2 is a bit sensitive to the initial guess especially
in the case where the initial RL guess is quite far from the
true relative position, but on the other hand, considering the
disturbance rejection ability, the accuracy of RL estimates
from persistent excitation-based RL is proportional to the
magnitude of sensor noises. Thus, in the practical applica-
tions, we propose to combine these two methods to make
full use of their respective strengths. PE-based method can
aid EKF-based estimator when it significantly deviates from
the true value or even diverges. The fused RL estimates from
Section III-C will enhance the robustness of RL estimation
especially in presence of unexpected maneuverings of a
certain UAV. The details of our proposed RL algorithm are
presented in Algorithm 1. Here we use left subscripts ,.Xx
and .r¢Xx to distinguish the RL estimates obtained from
Section III-B.1 and Section III-B.2.

V. NUMERICAL SIMULATIONS

A. Simulation of RL Initialization
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Fig. 2: The output of the NLR algorithm to estimate the
coordinates of 11 UAVs after 32 iterations. The current
estimated location of the UAVs are marked by the larger
coloured circles. The true location of a UAV is marked by a
smaller circle of the same colour but with a black centre.

Algorithm 1: Pseudocode for RL ﬂ;]k Estimation

Procedure: RL Initialization
1 Ranging and communication, then conduct NLR:
while A¢p > « do
2 for i < 1 to N do
if t == N, j < 0; otherwise j <— i+ 1
UAV: sends range request and data package

to UAVj N
5 Calculate the relative distance dj’
6 Ji + (la), Ad < (1b), A¢ < (1¢),
Ppgr < (1d)
7 Each UAV stores the initial RL estimates
Xi < (z,8)

Procedure: Cooperative RL Estimation
8 while CooperativeRL do

9 for i < 1 to N do

10 if : == N, j < 0; otherwise j < i+ 1

1 UAV: sends range request and data package
to UAVj y

12 Calculate the relative distance dj’ ‘and indirect
rela_ti_ve velocity measurement g;j

13 peXijn © (2)

14 kX1l Ve < (3)

15 conduct EKF procedure referring to [10]

16 update ekff(gk“ and P; 141

17 if || P; k+1]| < 7 then

18 t output ekfk:ﬁ'?k_,’_l

19 else

20 | ensXilers 4 peXi s reset Pigy

21 | X;Jk+1 — ekfféi,jkﬂ’ 7';,)1«+1 +(5)

22 Calculate the control command <« (6)
23 Send command to flight control board

In this section we present a simulation on the the use of
NLR algorithm to estimate the positions of UAVs on start-up
where all of them are static. In Table I, the true coordinates
of the UAVs are listed. We choose to fix the x coordinates
of UAV1 and 2, y coordinates of UAV2 and 3, and = and
z coordinates of UAV4 since they are at the farthest extents
of the localization area. In this simulation we also added
a random Gaussian noise with standard deviation 0.05m
into the distance measurements which is the documented
specification of the UWB device by the manufacturer. For
3 UAVs, the coordinates can be initialized as Remark III.1.
The results of the NLR algorithm in the beginning and after
32 iterations are shown in Figure 2. From a very poor initial
guess, it can be seen that only after 32 iterations the x and
y estimates are almost the same with the true values.

B. Cooperative RL Simulation Results

Six mobile UAVs are involved in this section with the
sensing graph depicted in Figure 3(a). UAVZ2, 3 and 4 have



TABLE I: True positions of the agents, the numbers in bold
are the fixed values .

UAV X y z UAV X y z
01 51 | 715 1 07 075 | 1.4 | 0.6
02 52 -1.5 0.5 08 085 | -3.1 | 07
03 53 7.5 25 09 -3 0.1 | 09

04 -5.4 7.8 0.6 10 1.2 -5 1.5
05 2.5 0 .
-1.75 | 0.55

direct range measurements to UAV1 while UAV5 and 6
can only have indirect estimate through their neighbors. To
demonstrate the proposed RL estimation scheme, we set
UAV1 as a relative target to estimate since it is globally
reachable due to the sensing graph. In the simulation, UAV4
conducts a sudden velocity deviation at £ = 100s as shown in
Figure 3(b). Distance noise and velocity noise are considered
as Gaussian white noise with N(0,0.12) and N(0,0.2%).

Choose T' = 0.05s, v = 0.5, by = [y7iia, and
ai; = m where |N;| is the cardinality of N, and

o5 = 1if UAVi has a direct measurement of UAVj, and
oy = 0 otherwise. Therefore, every UAV has its own local
estimate 7r§fl, 1 =2,...,6 and these RL estimates converge
to the true relative coordinates as shown in Figure 3(d).
The evolution curves of the estimation errors ||m;1 — X1
are depicted in Figure 3(c) and converge within a bound
of 0.21m. Note that, in Figure 3(c), the fused estimates
m31, ™51 and e fluctuate slightly in the presence of a
big variance of 74y at £ = 100s, and this demonstrates that
our proposed cooperative RL method is robust to unexpected
maneuverings.
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Fig. 3: RL estimation results with sudden change of the
path of UAV4: (a) the sensing graph; (b) trajectories of six
UAVs; (c) the evolution of RL estimation error ||7;1 — X ||
calculated on UAVz, 7 = 2,...,6; (d) comparison between
fused RL estimates and true values in x-y plane.

C. Combining Cooperative RL and Formation Control

Consider a three-UAV team where each UAV can mea-
sure the distance to the other two UAVs. The control goal

is to form two triangular formation shapes with velocity
consensus by utilizing the RL estimates. In the simulation,
weset K =1,v =1, 79 = 1.4 x 1072, and adopt the
same parameters of RL estimation introduced in Section V-
B. In addition, we set the maximum flight velocity is 5m/s,
formation error is 1m and the velocity consensus error is
0.5m/s. Note that here we use fused RL estimate 7’
generated from Algorithm 1 for our formation control and
two equilateral triangular formation shapes are preconfigured
with side length of d;; = 15m and 30m sequentially.

Compared with the noiseless case (without distance and
velocity noises and using true relative position, see Figure
4(a)), in Figure 4(b), two equilateral triangular formation
shapes are formed in succession and sustained by using noisy
distance and velocity measurements, as well as RL estimates.
Due to the introduction of noise, the UAV team has to keep
updating formation control commands and maintaining the
formation, and thus the flight trajectories in Figure 4(b) are
not perfect as Figure 4(a). The desired two formations are
achieved at 11s and 15s respectively and the inter-UAV
distances are maintained at 30m finally as shown in Figure
4(c). From Figure 4(d), we observe that both of these two
cases achieve velocity consensus where the fluctuations of
relative velocities in the beginning indicate the switch of
two desired formations.

VI. FLIGHT EXPERIMENTAL EVALUATIONS

In this section we present extensive flight experimental
evaluations to demonstrate our proposed simultaneous coop-
erative RL and distributed formation shape control system.
At first the performance of cooperative RL is evaluated in
terms of average absolute error with comparison of VICON®
ground truth (a motion capture system with milimeter-level
positioning accuracy). Then, this cooperative RL combined
with the proposed distributed formation shape control is
demonstrated by three-quadcopter flights. Actually, numer-
ous simulations of both RL estimation and combined forma-
tion shape control have been carried out before starting the
flight experiments and the corresponding results are omitted
here due to page restrictions.

A. System Configurations

Figure 5 illustrates the hardware configuration and signal
flow of the UWB based RL system. UWB modules PulsON
440® were installed on three quadcopters. Due to the large
bandwidth (from 3.1 GHz to 5.3 GHz), UWB is robust
to multipath and non-line-of-sight effects, and provides a
reliable long distance ranging with an accuracy within 10cm.
All of the algorithms, sensing and communication drivers are
exectuted on a credit-card sized mobile-level Raspberry Pi2®
with an ultra-low power processor ARM Cortex-A7 running
at 900MHz. The quadcopter is equipped with Pixhawk®,
integrating inertial measurement unit and flight controller on
board, as well as Px4Flow® for onboard velocity estimation.
Note that other equivalent velocity or displacement sensing
systems can be adopted as well. The UWB module on each
quadcopter actively sends ranging requests to neighboring



Trajectories of 3 UAVs without noise using True RL onrajectories of 3 UAVs with noise using RL Estimates

250

200

50

20 0 3 10

-50 40
250 200 150 100 50 0 50 200 50 -100 50 0 50
(@ North (m) : (b) North (m) .
100 Inter-UAV Distances: d“ 20 sumDeltaVel: Y |||
—m —Noiseless
80 a2 5 —Noise+RL estimates

420

=]
=]
o

N
(=)
o

Velocity error (m/sL
Y
S

Distance error (m)

[N
=]

o
=]

0 100 200 300 0 100 200 300
(c) Time (sec) (d) Time (sec)

Fig. 4: Simulation results of formation control using
RL estimates in noise-corrupted case and the system
dynamics are governed by (6): (a), (b) show the flight
trajectories of 3 UAVs using true RL in noise-free conditions,
and using RL estimats in noise-corrupted case respectively;
(c) depicts the evolutions of inter-UAV distances; (d) presents
sum of the 2-norm of the relative velocities: noiseless
distance measurements + true RL (red) and noisy distance
measurements + RL estimates (blue).
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Fig. 5: Flight platform and diagram of system workflow.

UAVs for distance measurement and communication based
on the two-way time of flight (TWToF) ranging method and
a customized network protocol introduced in Section VI-B.
In this UWB RCM network, an instant distance estimate
obtained by UAV¢ will be calibrated through linear regression
and its corresponding parameters have been determined by
a series of experiments in different environments [10]. This
corrected range together with the received information then
goes through the outlier detection before it is stored in the
database. To reduce the computation and avoid excessive
repetition of similar data, only selected distance measure-
ments and neighbor’s information are recorded and stored.
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Fig. 6: Diagram of flight control workflow

TABLE II: TDMA slotmap configuration for 3 UAVs

Slot | Requester ID | Responder ID | Data package (16 bytes)
01 200 201 yes
02 201 202 yes
03 202 200 yes

Note that the RL initialization algorithm is processed first
and its output serves as the initial state estimate for PE- and
EKF-based RL estimators. Finally, the fused RL estimate
update will be fed into the flight controller for quadcopter
navigation as depicted in Figure 6. All the processes above
are controlled by Raspberry Pi2® and XBee® only receives
each UAV’s global position and velocity from VIOCN as
ground truth.

B. Ultra-wideband Ranging and Communication Network
Configuration

A contention-free Time Division Multiple Access
(TDMA) time-slotted network is used to coordinate com-
munications and range measurements. The basic mechanism
of TDMA is a common network clock which is used to
drive an airtime slotmap. In addition, each node transmits its
previous range and velocity of range measurement provided
by UWB firmware, together with its current velocity estimate
as data embedded in the range request packet. All nodes
overhear this data and optionally provide it to a co-located
host processor. An example of a slot map supporting three
network nodes, with unique identifiers 200—202 (i.e., UAVO0-
2) is given in Table II. Each slot supports a TWToF range
conversation with associated data package. On completion of
slot 3, the process will repeat from slot 1.

C. Experimental Evaluations of RL Estimation

To verify our proposed RL system, on-board tests were
carried out on three simultaneous moving UAV platforms
at Internet of Things lab as seen in Figure 1(c) where a
VICON system is installed for the ground truth. Each UAV
concurrently conducts ranging measurement and communi-
cates its local estimates with its neighbors. Meanwhile, our
proposed Algorithm 1 will be executed at the end of each
communication in a distributed way.

In order to cover distinct situations, 13 tests were con-
ducted with different speeds and travelling patterns including
Static, Circle, Triangle, Line, random Walk and NTU letters.



Since the RL performances of these three UAVs are similar,
without losing generality, here we show the average absolute
RL estimation errors of UAV2 as an example in Table III
where 2S1C_2 means the second test with two UAVs being
static and one moving in a circle. The statistical results
illustrate that the mean of our proposed RL estimation error
along one axis is around 0.2m in the presence of distance
and velocity measurement noises.

TABLE III: Average absolute RL estimation errors
LS 1 |# — 28T calculated on UAV2. (Unit:m)
X" T X7 X
Test ol [yl | el Byl | Bl [oy]
01.2s1c_1 | 0.132 0.110 | 0.141 0.098 | 0.121 0.111
02.2s1c2 | 0.150 0.101 | 0.136 0.122 | 0.141 0.118
03.281T_1 | 0.245 0.117 | 0.230 0.155 | 0.237 0.122
04_2s1T_2 | 0.258 0.133 | 0.249 0.148 | 0.234 0.161
05.1s2c_1 | 0.267 0.120 | 0.233 0.123 | 0.244 0.131
06.182Cc_2 | 0.296 0.094 | 0.261 0.103 | 0.266 0.139
07.1s2T_1 | 0.202 0.167 | 0.215 0.187 | 0.216 0.151
08.182T2 | 0.227 0.115 | 0.212 0.176 | 0.249 0.133
09.1L2c | 0.190 0.186 | 0.197 0.189 | 0.201 0.182
10_3W 0.203 0.223 | 0.210 0.216 | 0.219 0.206
1137 0217 0.204 | 0.215 0216 | 0.205 0.221
12.3¢ 0.247 0.220 | 0.218 0.237 | 0.232 0.226
13.NTU 0222 0.190 | 0.211 0.208 | 0.238 0.198
mean | 0.219 0.152 | 0.210 0.167 | 0.215 0.161

Figure 7(d) illustrates the plot of overhead 2-D trajectory
recorded on UAV2 from Test no.13. It can be seen that the
average absolute RL estimation errors in « and y directions
are less than 0.4m with the worst case. Since the RL
estimation is conducted distributively, the RL estimation
errors generated on each UAV have the same magnitude even
though there exist slight differences between each pair of
UAVs. Without loss of generality, the evolution curves of
RL trajectories and estimation errors on UAV2 are shown in
Figure 7(a).

D. Quadcopters Formation Flight

In this section, we implemented the proposed distributed
formation control utilizing cooperative RL on quadcopters
with the same configuration as described in Section VI-
A, and conducted a series of real-world flight tests in a
grass field at Nanyang Technological University and an
abandoned basketball court near Science Center Singapore.
These outdoor experiments also demonstrate the robustness
of the systems against wind disturbances. In both these fields,
an equilateral triangle formation of 3 UAVs was achieved
successfully'.

There are three UAVs involved in the experiments, which
comprise of one leader (UAV 1) and two followers (UAV0 and
2). The control of these UAVs are set in a global coordinate
frame with x-axis align with magnetic East and y-axis with
magnetic North. Initially, all three UAVs are placed on the
ground, roughly following a pre-defined configuration for
consistency purpose. In particular, we assign UAVO as a
launching origin and place UAV1 along the East direction
with respect to UAVO in order to keep the flight control

IFlight video can be found in: https://youtu.be/vqZzH_BoMy8U

coordinate and the RL coordinate system consistent. Mean-
while, UAV2 can be put arbitrarily in North zone. Uppon
power-startup, the UWB modules will measure the distances
and start communication, and the Raspberry Pi2® would
then derive initialization configuration and start estimating
relative positions. With estimated relataive positions, control
outputs can be calculated accordingly. Secondly, when on-
board control outputs are available for all UAVs, there pilots
would then manually takeoff and ascend the UAVs to 1.5m
altitude, with respect to terrain. This altitude is chosen to
minimize ground aerodynamic disturance while maintaining
good visual contact for the optical flow velocity estimator.
When the target altitude is reached, two pilots would then
switch their UAVs, from manual flight mode, to formation
flight mode, where the UAV would automatically control
its velocity to satisfy formation requirements. One pilot,
controlling the leader UAV1 would then manually fly the
UAV in predefined trajectories to test the behavior of follower
UAVs. If the follower UAVs could automatically maintain
the predefined shape formation against unknown movements
from leader UAV, the experiment is considered sucessful.
A flight video snapshot is shown in Figure 8, where three
UAVs reach the desired formation of an equilateral triangle
with side length of 37 and maintain the formation with the
movements of the leader UAV. Online inter-UAV distance
measurements and the relative bearing evolutions in the
process of forming the desired formation shape, are depicted
in Figure 9(a) and 9(b), where three different background
colors respectively show the launching, formation keeping
and landing phase. After a period of adjustment, the desired
formation shape is achieved and kept from 56s to 257s with
3m relative distance and 60° relative azimuth angle.

VII. CONCLUSION

This paper proposes a combined distributed cooperative
RL and distance-based formation control scheme for UAV
swarms without infrastructures and global positions. Based
on the capability of the designed UWB RCM network,
each UAV is able to estimate the relative positions of its
neighbours by utilizing our proposed consensus-based RL
fusion scheme. These RL estimates combined with the inter-
UAV distances and relative velocity estimates are directly
fed into our designed discrete-time distributed formation
control law to achieve formation flights. Extensive flight
experiments verify the effectiveness of our proposed system.
The cooperative RL and formation control with applications
to mobile vehicles in frame-free case will be investigated in
our future work.
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