Skin discoloration caused by carbon monoxide poisoning

Reality vs. Holocaust eye-witness testimony
By Thomas Kues
Published: 2008-12-15

1. Introduction

According to orthodox Holocaust historiography, carbon monoxide from engine exhaust was used to kill approximately 2 million Jews in Poland, in Serbia and on occupied Soviet territory between 1941 and 1944. The majority of these supposed victims were allegedly killed in stationary gas chambers located in three “pure extermination camps” in the Polish General Government – Belżec, Sobibór and Treblinka – while the remainder is said to have been killed in mobile “gas vans” that were either stationed at the Chelmno (Kulmhof) camp in the Warthegau area of occupied Poland or accompanied Einsatzgruppen or SD units operating in Serbia, the Baltic states and on occupied Soviet territory. Below is listed the victim figures for each “killing center” as currently held by the orthodox historians:

<table>
<thead>
<tr>
<th>Location</th>
<th>Victim Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belzec</td>
<td>434,501[1]</td>
</tr>
<tr>
<td>Sobibór</td>
<td>171,000–250,000[2]</td>
</tr>
<tr>
<td>Treblinka</td>
<td>750,000–900,000[3]</td>
</tr>
<tr>
<td>Chelmno (Kulmhof)</td>
<td>152,000–360,000[4]</td>
</tr>
<tr>
<td>Other “gas vans”</td>
<td>100,000 approx.</td>
</tr>
<tr>
<td>Total</td>
<td>1,607,501–2,046,501</td>
</tr>
</tbody>
</table>

According to most eyewitness testimony, diesel engines from captured Soviet tanks were used as killing agents Belżec and Treblinka, while at Sobibór, the historians claim, a petrol (gasoline) engine of unclear origin was used to produce the lethal carbon monoxide gas. As for the “gas vans” supposedly employed at Chelmno, those are commonly held to have been modified Saurer trucks.

The danger of diesel exhaust has long been debated by revisionist scholars. Since the early 1980s, American revisionist writer and engineer F.P. Berg has published a number of articles dealing with this issue. Their conclusion: Because diesel engines only generate small amounts of carbon monoxide, and since diesel exhaust contains much oxygen, the use of diesel engines as killing agents in homicidal gas chambers is preposterous. Witness testimony claiming that diesel engines were utilized for murderous purposes are thus objectively false. To those witnesses belongs Kurt Gerstein, a certified mining engineer.

This article will not further discuss the diesel engine issue. Instead, I will for reason of argument follow the assumption that the (hypothetical) German perpetrators used engines capable of producing lethal amounts of carbon monoxide gas. Given this, I will pose a number of questions related to the physical effects of the poison gas. How would
the carbon monoxide (CO) affect the bodies of the victims? What would they look like post mortem? And, most important: what does the eyewitnesses to the alleged carbon monoxide gas chambers have to say about the look of the corpses?

2. Previous research

The main revisionist study on the issue of skin discoloration caused by carbon monoxide consists of an online article by revisionist and engineer F.P. Berg, entitled “Blue Women on the Beach – and the False Toxicity of CO₂ in Diesel Exhaust”. It was written as a rebuttal to an article by Charles D. Provan, “The Blue Color of the Jewish Victims at Belzec Death Camp – and Carbon Monoxide Poisoning”, which had previously appeared in the May 2004 issue of The Revisionist. Below I will provide a summary of the relevant articles written by Berg and Provan between 1983 and 2007.

Berg’s first articles on the issue of diesel gas chambers

The first of F.P. Berg’s writings to deal with the issue of the alleged carbon monoxide gas chambers, and especially the claim that diesel engines were used to generate the lethal gas, was an article originally presented at the 1983 International Revisionist Conference and later, in 1984, published in The Journal for Historical Review, “The Diesel Gas Chambers: Myth Within a Myth”. In it he among other things dissected the witness account of a supposed mass gassing at Belzec in 1942 that was left by the former SS hygiene technician Kurt Gerstein in a French prison in 1945. Referring to the text of one of Kurt Gerstein’s “reports”, Berg writes:

According to the last sentence of the text quoted, “the bodies were tossed out blue, wet with sweat and urine.” Here we have a flaw as far as the death-from-carbon-monoxide theory is concerned because victims of carbon monoxide poisoning are not blue at all. On the contrary, victims of carbon monoxide poisoning are a distinctive “cherry red,” or “pink.” This is clearly stated in most toxicology handbooks and is probably well known to every doctor and to most, if not all, emergency medical personnel. Carbon monoxide poisoning is actually very common because of the automobile and accounts for more incidents of poison gas injury than all other gases combined.

As sources for this passage Berg gave references to two standard works on toxicology. The above argument was then reiterated in a revised and expanded version of the same article which originally appeared in the revisionist anthology Grundlagen zur Zeitgeschichte (1994) under the same title and later in translation (in Germar Rudolf (Ed.), Dissecting the Holocaust, Theses & Dissertations Press 2003) as “Diesel Gas Chambers: Ideal for Torture – Absurd for Murder”. In this appearance the above quoted passage was furnished with yet another reference to recently published specialist literature.

The 2004 article by Charles D. Provan

In this article, Provan asserts that bluish color or bluish tinge attributed to the Belzec victims by Gerstein and later Pfannenstiel can be explained as cyanosis. “Blue”, Provan writes, “is a regular (and documented) color for carbon monoxide poisoning, especially when the victims are alive, but also when the victims are dead.” In regard to fatal cases of CO poisoning, Provan quotes a number of studies indicating that “in some cases” of
fatal poisoning there is “no cherry-red coloring of the skin”, that in some cases the appearance of the victim is instead “cyanotic”, and that the cherry-red discoloration might be “slight” due to low saturation (i.e. low carboxyhemoglobin level) and in some cases obscured because of “associated cyanosis”. Provan takes the above as evidence that what Gerstein and Pfannenstiel said in regards to the color of the corpses is “possible”, and that Berg in his previous articles had reached the wrong conclusions.

The rebuttal of F.P. Berg[9]

Berg opens his rebuttal stating that the assertion of blue corpses “is totally at odds with the claims (...) that the toxic ingredient [in the exhaust gas used as the killing agent] was carbon monoxide.” The texts on cyanosis referenced by Provan, Berg notes, “fail to use the words “blue” or even “bluish” at all”. “The simple fact”, Berg further contends, “is that the blue appearance of “cyanosis” does not correspond at all to the general “blue” appearance of the “blue corpses” that Gerstein or Pfannenstiel allegedly saw (...)”. Corpses may be multi-colored, and thus “blue” cyanosis may appear on one part of the body, while the rest of it displays a cherry-red color. Cyanosis occurring in connection with carbon monoxide poisoning is “associated” with the poisoning and not in itself a product of any reaction between carbon monoxide and the victim's blood. Reactions of carbon monoxide with blood are more or less bright red, never blue. Provan is wrong in defining cyanosis as a “medical term for blue coloring occurring in a patient or corpse” since “cyanotis” is not simply the medical term for blue coloring, but only applies to some varieties of blue discoloration. One would not be able to conclude a case of CO poisoning from the mere presence of cyanosis; the color of the victim's blood would also be examined.

While cyanosis may appear in some fatal cases, “the appearance of a generally “blue” corpse is extremely rare if it ever occurs at all” (Berg). Below a carboxyhemoglobin level of 30% a living body or corpse may indeed display cyanosis without accompanying bright red discoloration, but as the lethal level for most individuals lies around 60%, an overwhelming majority of corpses would definitely show some nuance of red. Variations and exceptions to this occur in only around 6% of all cases. Also, the reddish color when occurring “tends to be extremely intense and dramatic whereas cyanosis is an extremely subtle coloring in which most of the skin is merely pale” (Berg). A lay observer would thus have a hard time noticing any cyanotic cases, whereas the red discolored corpses would be immediately noticeable. “There is good reason to believe”, Berg writes, “that a cyanotic description in our context does not really mean blue at all — but merely blue by contrast or in comparison to other parts of the same or other bodies.” In regards to the Pfannenstiel testimony, Berg remarks that Pfannenstiel “noticed nothing special about the corpses” except for a bluish tinge to the face of some of them, and that no mention of any red discoloration is made, two things which combined speaks against the reliability of this witness. Berg also strongly criticizes Provan's way of mixing fatal and non-fatal cases of poisoning, as well as “immediate” fatal cases with “delayed” ones. Living victims of CO poisoning may be partially cyanotic and partially red (with a “flushed” or pink appearance) or cyanotic with only negligible or unnoticeable red discolorations. Dead CO victims on the other hand are usually red or cherry-red. In the rare cases (around 9% of all cases) when cyanosis appears associated with fatal CO poisoning, it tends to be appear restricted to parts of the body where the skin is more translucent, such as the lips or nasal openings.
The alleged observations of Gerstein and Pfannenstiel are thus not reconcilable with known medical facts.

The difference between fatal and non-fatal cases of CO poisoning

In discussing the issue of discolorations in the skin of CO gassing victims, it is important to note the difference between fatal and non-fatal (i.e. clinical) cases of CO poisoning. In the writings of anti-revisionists, we often find quotes from medical literature such as:

The classic findings of cherry-red lips, cyanosis, and retinal hemorrhages occur rarely.[10]

Or:

The classic ‘cherry-red’ skin coloration is actually rare, and patients are more likely to appear pale or cyanotic.[11]

As F.P. Berg points out, statements such as those above appear to refer mainly to clinical cases of carbon monoxide poisoning, i.e. cases where the poisoned person was found alive and received treatment before he or she either survived, or died (therefore the word “patients” in the second quote). A statement similar to the ones quoted above can be found in the standard work *A guide to general toxicology* (1983):

> Carbon monoxide poisoning may result in blisters or bullae over pressure areas but the classic cherry red color of the skin is rare.[12]

When, however, the text within which this quote appears is read more closely, it becomes evident that the author(s), without stating this explicitly, is referring mainly or even exclusively to clinical cases.[13] In fact, specialist literature on toxicology and emergency medicine by its very nature normally focus on clinical cases, while cases involving untreated fatal cases are normally treated in writings related to forensic medicine.[14] An article from 2007 authored by Nicholas Bateman, a professor in clinical toxicology, indirectly confirms that deep red or “cherry pink” discoloration is rare among surviving victims, but more common in fatal cases:

> Skin blistering may occur if the patient lies unconscious for some hours before being discovered, and the skin is more likely to be cyanosed than to have the cherry-pink colour that is described to be a classical feature of CO poisoning, but rarely seen in living patients [my underlining].[15]

The well-known letter by Bruno Simini to *The Lancet* in which it is stated that “cherry-red discoloration in CO poisoning is quite rare” and that “most doctors overestimate the frequency of cherry-red discoloration in CO poisoning” is also clearly referring to clinical cases of poisoning, since it only refers to “surveys of patients” i.e. treated victims of CO poisoning.[16]

The case reports and medical papers which I will quote and refer to in the next section clearly proves that deep red or cherry red discoloration of the skin is very common, if not always present, among fatal cases of CO poisoning. In the section after that I will
contrast the contents of the medical case reports and findings with statements made by professed eyewitnesses to the alleged homicidal gas chambers and “gas vans”.

Illustration 1: Reddish flush in a non-fatal case of CO poisoning. [17]

Illustration 2: Typical red discoloration in victim of fatal CO poisoning. [18]
Illustration 3: A fatal case of CO poisoning displaying distinctive pink discoloration.[19]

3. Verified cases of discoloration resulting from carbon monoxide poisoning

Below I will provide brief summaries of a number of case reports and medical papers concerned with skin discoloration as an effect of CO poisoning.

Item 1: The man with the red face

The following case from mid-60’s America involved the suicide attempt of a 21-year old white male of Italian descent:

When seen on the morning following his admission the author was struck by the appearance of the patient's cherry-red face. Additionally, he was thick-tongued in speech, lethargic and showed impairment of orientation as regards time and place. Confusion as to what had brought about his admission was noted.

The writer's initial impression was acute brain syndrome but one whose etiology might involve carbon monoxide poisoning. Thus, the patient was questioned closely as regards the circumstances and details of his suicide attempt. Elicited from the patient were additional facts that he had fallen asleep in his car with the engine running and the windows closed. Twelve hours later, he awoke and returned home to tell his parents what he had done. At that time his clothes were covered by vomitus. It became apparent that a most important clinical sign and area of his history had been over-looked previously.[20]

Thus it is apparent that cherry-red skin discoloration can be highly visible even among survivors of carbon monoxide poisoning. Red discoloration of the skin is thus not limited to the livor mortis of fresh corpses, but appears in the still living victim’s body as the mechanical result of carbon monoxide being absorbed by the bloodstream. This is because, as F.P. Berg writes in his rebuttal to Provan, “when carbon monoxide reacts with human blood, it forms carboxyhemoglobin which above concentrations of 30% is a bright red, becoming brighter and more intense as the concentration increases”. The degree to which this discoloration is visible to the untrained eye varies widely however due to a number of factors, as will be shown by the case studies referred to below.

Item 2: A dead girl in Italy

This case involved a 21 year old white female found dead in a country house owned by her family. It was later determined that her death had been unintentionally caused by a gas water heater. We are told by the authors of the case report that “[t]he pale cherry pink colour of the victim immediately suggested a carbon monoxide poisoning.” A spectrophotometric measurement of the blood showed a carboxyhemoglobin level of 60%. The report also mentions that among survivors of CO poisoning, the mean carboxyhemoglobin level is 28.1%, while among fatalities the mean level is 62.3%. At a level of 50%, the probability of survival is more or less 50%.[21]

Item 3: A German report on six unusual cases of fatal CO poisoning
This article states that, despite the presence of indicative death scenes and/or characteristic findings of the external (coroners’) examination, about 40% of all unintentional fatal cases of carbon monoxide poisoning remain unrecognized until the autopsy. To illustrate possible reasons for this, the authors describe six individual cases. In case 1 and 2, involving a middle-aged couple, the bodies were found in a state of extreme putrefaction, so that the cause of death could only be recognized through spectrophotometrically analyzing the carboxyhemoglobin level of the oedema fluid that had gathered in the scalps of the victims. Case 3 involved a young truck driver, found dead in the closed cab of his vehicle and not displaying any clear external signs of CO poisoning, despite a carboxyhemoglobin level of 83%. Case 4 involved a 19 year old male found dead in a flat. Despite a carboxyhemoglobin level of 65% his body lacked “the bright pink coloration of livor mortis”. Case 5 involved a 27 year old male discovered dead in his flat with a carboxyhemoglobin level of 80%. His body was found in a state of advanced decomposition. Case 6 involved a 42 year old female found dead in the garage beside her car. The body did not show any clear external signs of CO poisoning despite a carboxyhemoglobin level of 46%.[22]

Item 4: An American case of CO poisoning without cherry-red discoloration

According to the authors of this article, carbon monoxide poisoning “typically causes so-called cherry-red livor of the skin and viscera.” They then report of a case of CO poisoning in which this cherry-red livor did not develop. It involved a 75 year old white male found dead in his car during a cold winter. His carboxyhemoglobin level was measured as 86%. The authors inform us that “the curious absence of cherry-red livor” was studied and the decedent’s tissue and blood specimens tested at various temperatures. The tests showed that neither the blood nor the tissue of the victim had a tendency to develop cherry-red color, regardless of temperature.[23]

Item 5: An optical study of discolorations

In this South African study of 10 fatal cases of carbon monoxide poisoning, the skin color of the victims’ bodies was analyzed by the help of reflectance spectrophotometry, with the values converted to visual equivalents. It was found that several circumstances contribute to the difficulty of identifying the cherry-red color in the skin, among them low CO concentration in the blood, skin pigmentation, washing-out of previously high CO concentrations, and deep venous dilatation combined with superficial vasoconstriction (narrowing of the blood vessels), producing the impression of cyanosis. It was further found that the color of the altered blood “depends on the way the red cells are massed together, their depths below the surface, and the brightness of the background against which they are viewed.”[24]

Item 6: A study of 15 CO victims at an Indian hospital

This study, published in 2001, was carried out at a hospital in a provincial Indian city which is located on an altitude of 5000 ft above mean sea level. It involved findings in 40 cases of accidental carbon monoxide poisoning, 25 of the clinical, 15 of them post mortem. The autopsy findings revealed “deep red discoloration of skin and serous membranes” in 12 of the 15 corpses.[25] This study is important for the topic of the present article, since it shows that deep red discoloration is displayed by a majority of
victims of lethal carbon monoxide poisoning, even when the skin of the victims are of a
darker pigmentation than the average Caucasian’s.

Item 7: An Austrian study on 182 cases of fatal CO poisoning

This study consisted of an analysis of autopsy reports of postmortems performed at the
Viennese Institute of Forensic Medicine between 1984 and 1993. The aim of this survey
was to determine whether the cherry-pink coloring of livor mortis[26] is a reliable
finding for the coroner to suspect a carbon monoxide-related death immediately at the
death scene. It involved 182 cases of unintentional carbon monoxide-related deaths: 92
females and 90 males. The authors found a strong association between the
carboxyhemoglobin level (i.e. the level of CO concentration in the blood’s hemoglobin)
and the cherry-pink coloring of livor mortis: in 98.4% of the unintentional deaths due to
carbon monoxide poisoning livor mortis were “clearly cherry-pink.” It was determined
that fresh corpses with carboxyhemoglobin levels greater than 31% show “a clear
cherry-pink coloring of livor mortis.” The survey further indicated that the Viennese
coroners’ inability to recognize cases of unintentional carbon monoxide fatalities
immediately at the death scene was correlated to the age of the victim: the older the
victim, the worse the coroner’s recognition.

In conclusion, the authors of the article suggest that coroners should be recommended to
examine naked corpses thoroughly, and especially the color of livor mortis. In this way,
they write, a carbon monoxide-related death can be recognized immediately and the
source of the gas release identified, thus protecting other people from the risk of
poisoning.[27]

Item 8: A survey of 388 car exhaust gas suicides in Denmark 1995-1999

This study from 2005 consisted of a survey of 388 cases of suicide by means of engine
exhaust gas carried out in Denmark between 1995 and 1998. Of the suicides 343 were
males and 45 females. It was found that in 11 cases (2.8%) putrefaction or burns were
so extensive that livor mortis could not be found, while “the characteristic pink livor
mortis” was found in 353 cases (91% of the total cases, 93.6% of those with livor
mortis). Only in 9 cases (2.4% of those with livor mortis) did the victims show a normal
colored livor mortis. In 3 of those 9 cases the victim had survived more than a day after
the poisoning, suggesting a correlation between the cherry-red discoloration of livor
mortis and the carboxyhemoglobin level. In 15 cases the author of the autopsy report
had neglected to write down the color of livor mortis.[28]

Summary of the medical evidence

From the above listed cases we may conclude that:

- Cherry-red discoloration appears in non-fatal cases of CO poisoning, i.e. it is
visible also in ante-mortem states (Item 1). According to available medical
literature, such cases are not the rule, but on the other hand not highly
exceptional. Such discoloration would appear more or less directly after
the blood cells had absorbed the carbon monoxide. The visibility of the deep red
discoloration is related to the concentrations of CO in the blood (i.e. the
carboxyhemoglobin level), as well as other factors such as pigmentation (Item
5). In the case of the alleged gas chamber victims it is reasonable to assume that their carboxyhemoglobin level would be much higher than that of the average CO poisoning survivor (that is 28.1%, whereas in fatal cases the concentration averages 62.3%; cf. Item 2), thus increasing the number of individual cases with cherry-red discoloration showing already ante-mortem or prior to the appearance of livor mortis.

- In cases of fatal CO poisoning, deep red discoloration of the livor mortis is visible in many cases even when the victim’s pigmentation is much darker than that of the average Caucasian (Item 6).
- In fatal cases of CO poisoning, absence of cherry-red lividity is regarded as “curious”. Individuals whose blood and tissue lacks the tendency to develop the cherry-red color are very much an exception (Item 4). In many of the fatal cases where discoloration could not be detected, this was due to the corpse having entered the stage of advanced decomposition; alternatively from having suffered severe burns (Items 3, 8).
- Deep red/cherry-red discoloration of the livor mortis is present in at least 95% of all fatal cases of carbon monoxide poisoning (Items 7 and 8).

4. Eyewitness descriptions of alleged carbon monoxide victims at Belżec, Sobibór, Treblinka, and Chelmno

Witness 1: Kurt Gerstein.

As a captive of Allied forces in France, former SS hygiene technician Kurt Gerstein wrote a number of reports in which he claimed to have witnessed a mass gassing at Belżec in August 1942. In the two reports indisputably written by Gerstein in French on April 26, 1945, the bodies of the gassing victims are described in the following way:

The blue bodies are thrown, damp with sweat and with urine, the legs full of excrement and menstrual blood.[29]

In the German language Gerstein reports designated T III and T VI by Henri Roques the word “blue” is not present. It is likewise not present in the French text T Va, dated to May 6, 1945. The German text T IV contains no corresponding passage.

Regarding the blueness of the Belżec corpses and the issue of cyanosis, see Section 2 above.

Witness 2: Wilhelm Pfannenstiel

The professor of hygiene at the University of Marburg-Lahn Dr. Wilhelm Pfannenstiel allegedly accompanied the aforementioned Kurt Gerstein on his trip to Belżec in August 1942. After the war, Pfannenstiel was arrested but never sentenced to prison. Instead he was on a number of occasions summoned as a witness for the prosecution in trials dealing with the alleged homicidal gas chambers at the Reinhardt camps. In 1950 he testified before a court in the German city of Darmstadt:

I noticed nothing special about the corpses, except that some of them showed a bluish puffiness about the face. But this is not surprising since they had died of asphyxiation.[30]
Since Pfannenstiel was without question familiar with the texts of the Gerstein reports, it is fully possible that he also derived his description of the corpses from one of the two French texts. As an alternative, it can not be excluded that Pfannenstiel, with his thorough background in medicine and hygiene studies, was familiar with asphyxiation symptoms and thus also able to fabricate a vague description with the ring of authority. As for the Pfannenstiel testimony I once again refer to Berg's article summarized above.

Witness 3: Karl Alfred Schluch.

SS-Unterscharführer Karl Alfred Schluch was posted at Bełżec from June 1942 until early summer 1943. His work at the camp up until December 1942 supposedly involved accompanying the naked Jewish victims through the camouflaged “sluice” which led to the gas chambers. Schluch was acquitted at the trial of former Bełżec camp personnel held in Munich in 1963. In connection with this trial the witness made the following statement regarding the bodies of the gas chamber victims:

The corpses were at least partially besmirched with excrement and urine, others in part with saliva. The lips and nose tips of some of the corpses had turned blue. With some the eyes were closed, with others the eyes had rolled.[31]

Now it is possible that the lips, and possibly also the nose tips, of carbon monoxide victims would look purple-bluish as a result of cyanosis. The problem is that this is the only kind of discoloration that the witness claims to have been aware of. Are we to believe that Schluch noticed a few purple-bluish lips, but completely missed the large red discolorations?

Witness 4: Adolf Eichmann

RSHA:s Adolf Eichmann testified during his trial in Jerusalem that he had visited three camps were carbon monoxide was allegedly used to exterminate Jews: Chelmno (Kulmhof), Treblinka, and an unidentified camp in the Lublin area commonly assumed to have been Bełżec. Only in regard to the first camp does Eichmann claim to have witnessed the bodies of the alleged victims. This is how Eichmann described the murder of Jews in “gas vans” at Chelmno:

I went myself to a small wood and just as I got there the omnibus also arrived, it pulled up beside a pit which had been dug up, the doors were opened and out of them poured corpses, down into the pit. One upon the other. It was a ghastly inferno. No, a super-inferno. To me they looked as if they were still alive. But now each and all of them were dead.[32]

Thus according to Eichmann the corpses of the victims looked the same way as when they had been alive. The vagueness of the description makes the testimony weak evidence in any case, but it might be assumed that Eichmann would have noticed and remembered large red discolorations on the corpses from the gas vans, if he had in fact seen any.

Witness 5: Jankiel Wiernik.
Jankiel Wiernik is one of the earliest and most important Treblinka witnesses. Wiernik included the following description of the victims’ countenance in his account *One Year in Treblinka*, originally published in Poland in 1944:

They no longer shouted, because the thread of their lives had been cut off. They had no more needs or desires. Even in death, mothers held their children tightly in their arms. There were no more friends or foes. There was no more jealousy. All were equal. There was no longer any beauty or ugliness, for they all were yellow from the gas.[33]

The arguably most important of the Jewish Treblinka witnesses thus describes the gas chamber corpses as yellow, a color hardly confused with cherry red.

Witness 6: Rudolf Reder.

The witness Rudolf Reder, born in 1881, is supposed to have spent a significant portion of his nearly four month long stay at Bełżec dragging corpses from the camp’s alleged gas chambers to massive burial pits. On December 29, 1945, Reder was interrogated by the Polish Judge Jan Sehn. Regarding the physical appearance of the gas chamber victims, the witness stated:

I was often on the ramp at the moment the doors were opened, but I never smelled any odor, and on entering a chamber right after the doors were opened I never felt any ill effects on my health. The bodies in the chamber did not show any unnatural discoloration. They looked like live persons, most had their eyes open.[34]

The Bełżec key witness Reder is thus clearly of the opinion that the gassing victims displayed no cherry-red discoloration.

Witness 7: Eliahu Rosenberg

The Jewish witness Eliahu (Elias) Rosenberg supposedly spent several months working in close proximity of the alleged Treblinka gas chambers, dragging thousands of corpses from the “death chambers” to mass graves. In a 12-page typewritten deposition in German which Rosenberg left in Vienna on December 24, 1947, the appearance of the gas chamber victims is described thus:

The corpses were very bloated, their skin looked gray-white and easily peeled off, so that it hung from them like shreds. Their eyes protruded and the tongues hung out of their mouths.[35]

Rosenberg’s description of the hue of the corpses is clearly not consistent with the red discoloration resulting from carbon monoxide poisoning.

In addition to the above seven eye-witnesses, Yiddish writer Rachel Auerbach writes in her essay “In the Fields of Treblinka” from 1946 that “the bodies were naked; some of them were white, other were blue and bloated.”[36] Auerbach had not herself been interned at Treblinka, but visited the remains of the camp in 1945 as part of an official inspection tour. Her essay is reportedly based on written testimony and talks she had with former Treblinka inmates. Another secondary account derives from the writings of a certain Jacob Mittelberg, who spent only a few hours in Treblinka before being
transferred to Majdanek. Mittelberg visited the site of the “death camp” after the war in the company of Rachel Auerbach and a number of former Treblinka inmates, who told him that “when the doors of the gas chambers were opened, the people were blue and so pressed together as to be unrecognizable.”[37]

It should be noted that the above survey of eyewitnesses is to be considered preliminary. There may well be other descriptions of alleged gassing victims. The author of this article hopes to find more such descriptions and would be grateful for any kind of assistance.

5. The appearance of lividity

Science writer Jessica Snyder Sachs describes the appearance of livor mortis as follows:

The color progression of lividity begins with the proverbial pallor of death in an already light-skinned person, as blood begins to drain out of the upper surfaces of the body. As soon as fifteen to twenty minutes after death, an experienced observer can see the first diffuse blotches take form on the underside of the body. The seepage likewise becomes visible in dead-end crannies such as earlobes and skin folds. Within an hour or two, the telltale discoloration becomes obvious to even the untrained eye. The pink “slap” of early livor gradually darkens to a dull, bruiselike red before progressing through shades of purple and blue as oxygen gradually disappears from the blood.[38]

Forensic scientist Vernon J. Geberth writes on the same subject:

Postmortem lividity. Also known as livor mortis, this is caused by the pooling and settling of blood within the blood vessels from the effect of gravity. It appears as a purple discoloration of the skin. During life, the pumping action of the heart maintains a constant flow of blood through the numerous vessels of the body. Upon death, the pumping action ceases, and the blood pools within the dependent portions of the body. The location of livor mortis is determined by the position of the body after death. If the body is lying face down, livor will develop on the front of the body rather than on the back. […]

Lividity begins about 30 minus after death, with full development after 3 to 4 hours, and becomes “fixed” in 8 to 10 hours. Fixed means that the livor has settled in one position for more than 8 hours and can no longer be significantly shifted by changing the position of the body. However, parts of the body that remain in direct contact with an object, such as the floor, a piece of pipe or wood, or even the weapon, will remain white because the pressure will not allow the blood to settle into the dependent capillaries.

When lividity first develops, if the investigator presses his finger firmly against the discolored skin, the pressure will cause “blanching.” When pressure is released, the discoloration returns. After 4 or 5 hours, the discoloration becomes clotted and pressure will not cause blanching.[39]

Geberth also briefly treats the issue of livor mortis discoloration:

The investigator should know that the discoloration will not be the same for all types of death. For instance, a person whose death was caused by inhalation of carbon monoxide
or cyanide or whose death occurred under extremely cold conditions will have a livor mortis which is cherry-red in color. If a person lost a great deal of blood, little or no discoloration will be seen; in cases where death was caused due to heart failure or asphyxia, a deep purple color will be present.\[40\]

Illustration 4: Crime scene photo showing male corpse with deep purplish discoloration as well as white pressure areas of “blanching” due to contact with hard surface. Described by Geberth as “a classic example of lividity” (Source: Geberth, p. 240, Figure 9.10).
Illustration 5: Morgue photo of postmortem lividity with pinkish discoloration on back of victim (Source: Ibid, p. 241, Figure 9.11).

6. Rebuttals to possible counter-arguments

Below I will discuss four possible counter-arguments which may be raised against the revisionist critique of the eye-witness testimony.

Argument 1: The studies cited by revisionists are irrelevant because they refer to livor mortis.

As has been explained above, the cherry-red discoloration appears as soon as the carbon monoxide has been absorbed by the blood cells and is thus visible on post-mortem bodies (especially pronounced in the livor mortis) as well as in ante-mortem states (to a variable degree) and even in some cases where decomposition has set in. The medical studies and case reports quoted in this article and others are therefore relevant, whether referring to livor mortis or ante-mortem appearances of red discoloration.

Argument 2: Most or all of the victims were deeply anemic.

Anemia is medically defined as a qualitative or quantitative deficiency of hemoglobin, the molecule found inside red blood cells which causes the blood to look red. Anemia results either from excessive blood loss (due to hemorrhage or chronic loss of smaller volumes of blood), excessive destruction of blood cells, or a deficient production of new red blood cell. The idea of the counter-argument is that severe anemia would prevent the red discoloration from appear on the gassing victims.

In the case of the Jewish deportees, anemia might have been caused either by inadequate intake of vitamin B12 and/or folic acid (leading to macrocytic anemia), or by iron deficiency (causing microcytic anemia). While mild anemia caused by iron deficiency among women of childbearing age is not uncommon even in the western world of today, it is very rare among men and children. How common then was anemia among the populations of the wartime Jewish ghettos of Poland, where malnutrition, starvation and epidemics indeed took their toll on the inhabitants? This question is very difficult to give a definitive answer to, but a number of indications may be gleaned from the book Hunger Disease. Studies by the Jewish Physicians in the Warsaw Ghetto, edited the former Director of the Columbia University Institute of Human Nutrition, Dr. Myron Winnick [41] In this volume, Winick presents a report on nutrition related diseases prepared by a group of Jewish physicians in the Warsaw Ghetto between 1940 and 1942. The group, led by Dr. Israel Milejkowski, worked out the details of the study in secret meetings, had medical equipment smuggled into the ghetto, and later the finished manuscript smuggled out of it. The small team of 28 Jewish medical experts included Dr. Mieczyslaw Kocen, a specialist in blood diseases who himself was later allegedly exterminated at Treblinka. The manuscript of the report, which escaped the war tumult relatively unscathed, was published in limited Polish and French editions by the American Joint Distribution Committee. It remained most obscure however, until it surfaced in the United States in the late 1970s and was published in edited form by the aforementioned Winick. [42]
Regarding the changes of blood characteristics in hunger disease victims the ghetto physicians noted the following:

Red blood cells examined in 80 cases decreased from 3 million per cubic millimeter to between 1.5 and 1 million and in some cases even below. Hemoglobin decreased to 60 to 70% and in some cases ranged as low as 10%. Color index was usually 1 or less, and rarely reached 1.15. Examining a drop of fresh blood we noticed that the red blood cells do not aggregate normally into rolls but remain single or group into small clusters. Anisocytosis and even more often microcytosis are present, macrocytosis is rare, and there are no nucleated red blood cells. Often the red blood cells are colorless and irregularly shaped. These are symptoms of hypochromic anemia in the recovery phase as indicated by a high percentage of reticulocytes.[43]

The Warsaw doctors pointed out that “hunger disease” does not result in a decrease of the blood volume of the victim:

In cachexia and hunger edema there is no anemia in the strict sense because blood volume is not decreased in proportion to body weight. Since there is a low percentage of red blood cells in a drop of blood, this would be classified as normovolemic oligocytemia.[44]

Rather than a decrease of the total number of red blood cells, “hunger disease” tends to cause a dilution of the blood through the increase of the water content:

In normal specimens plasma contains 89 to 90% water and red blood cells contain 63 to 67% water. In our patients’ specimens plasma contained 93 to 94% water and red blood cells only 58%.

The changes described in the water content of the blood can produce a pseudoanemia in patients with cachexia or hunger edema. The dryness of the red blood cells explains the presence of microcytosis.[45]

In a study of child victims of hunger disease it was observed:

Anemia was usually mild (3 to 3.5 million red blood cells, but sometimes under 2 million, or color index about 1). Even in advanced anemia no young red blood cells were found. In evaluating the degree of anemia, we had to consider “blood dilution,” which was present in every case of severe malnutrition, even the dry form without edema. […] Dr. Apfelbaum's research on the volume of blood in adults suffering from hunger disease has demonstrated an increase in blood volume per kilogram of body weight. This factor must also be considered in evaluating the degree of anemia.[46]

On the subject of child victims of malnutrition, Winick comments:

One might assume that since these children, especially the older ones, were reasonably well nourished before the war (unlike most children in developing countries) they had built up significant reserves of vitamin A prior to contracting hunger disease. […] Finally, vitamin A requirements, like those for other vitamins, might decrease during semistarvation.[47]
Winick further notes:

This results not only in hemodilution which, as we shall see, contributed to the anemia and leukopenia reported in the next chapter, but also in a reduction in the efficiency of the blood as a carrier of nutrients. Thus the vascular system is forced to supply more of the “poorly nourished” blood to the “hungry” tissues and organs. The absolute anemia [...] reduces the amount of oxygen carried by the blood and again increases the total blood requirements of the tissues even though they are consuming less oxygen.[48]

Another study of the Warsaw physicians showed that some degree of anemia was common among patients of hunger disease but that:

of 32 cases only six had 4 to 5 million red blood cells. Thus anemia was prevalent. The largest group of people had 3 to 4 million blood cells. Therefore we consider this number as average for slightly advanced hunger disease.[49]

However, according to the table following this paragraph 10 of the cases displayed a level of 3-4 million red blood cells per cubic millimeter, while 9 cases displayed a level of 2 million or less. Thus only a minority of the studied cases suffered from what could be defined as severe anemia. Further among the conclusions we read that:

Anemia is normochromic or hyperchromic and only very rarely hypochromic. There is anisocytosis with a predominance of macrocytes.[50]

Winnick summarizes the post-mortem case studies performed as follows:[51]

They [the physicians] report on 492 autopsies performed in the 2 ½ years that preceded the deportations. These were cases of “pure” hunger disease with no other complications. This represented about 15% of the total number of autopsies performed in their departments during the same period. They divided their material into four periods beginning in January 1940 and ending on July 22, 1942, and point out that the number of cases of hunger disease increased with time.

In a series of tables the authors document the following gross changes:

1. Pale cadaver-like skin in 82.5% of the cases. Dark brown colored skin in 17.5%.
2. Edema in one third of the cases. Effusions were most frequent in the abdominal cavity when they occurred.
3. Edema was rare in cases of “brown skin,” whereas the pale skin group had either the edematous or the dry form of the disease.
4. Severe atrophy occurred in heart, liver, spleen, and kidney.
5. Brain weight remained unchanged (these were adult patients).
6. Marked skeletal muscle atrophy.
7. Edema of the small intestinal wall with swollen reddish discolored mucosa and mucus appeared in 27.2% of the cases.
8. Thin watery bile in 77.7% of the cases.
9. Reduced number of fat bodies in the adrenals in 50% of cases.
10. Jellylike consistency in bone marrow of certain cases.
11. Emphysema in 13.8% of cases.
12. Anemia in only 5.5% of cases.
13. Almost 50% of the cases had intestinal changes that could be classified as pseudodysentery. An equal number of these cases fell into the edematous and nonedematous groups. [52]

This could be taken as an indication that even among fatal cases of malnutrition, anemia was far from always present. Even if no definitive answers may be found regarding this questions, it seems rather far-flung to assert that a majority of the Jewish deportees who arrived at Treblinka were afflicted with anemia severe enough to prevent the appearance of a visible livor mortis or other variants of skin discoloration.

Argument 3: The lighting may not have been adequate for the eye-witnesses to see the colors of the corpses properly.

This argument is easily dismissed. Rosenberg, Reder and Wiernik claims to have worked not only with removing the corpses from the gas chambers, but also with transporting them to the mass graves. It is generally asserted by the historians that this activity was mainly carried out during the day, so that in most if not all cases the worker prisoners engaged in the corpse-dragging must have been able to observe their macabre burden in full daylight.

Argument 4: The inmates working with transporting the corpses might not have noticed the color of the livor mortis since it would have appeared on the half of the bodied turned towards the ground.

There are two obstacles to this argument. On its way from the gas chamber two its final place in one of the mass graves the corpse would have made two stops, first close to the gas chambers, where the “dentists” would check its teeth and pull out any gold present, the second at the edge of the burial pit, where it had to be arranged with the other bodies in some fashion. In order to efficiently arrange the huge number of bodies in the mass graves, a portion of them would most likely have had to be turned around. In any case it seems logical to assume that a great many of the hypothetical gassing victims would have been turned over at least once on their way to the burial pits.

7. Conclusion

In a medical article from 2004 we find the following stated regarding the appearance of cherry red skin discoloration in cases of carbon monoxide poisoning:

The classical cherry red appearance is not seen in all cases of acute poisoning, and may not be apparent even in cases of severe toxicity. [53]

However, in the case of the alleged mass gassings at the Aktion Reinhardt camps and Chelmno, all victims may reasonably be regarded as victims of acute poisoning, and since the witnesses to the alleged gassings supposedly observed – often at very closely distance – not only one or two corpses, but hundreds, thousands, even tens of thousands of corpses, it natural follows that witnesses such as Reder, Wiernik and Rosenberg would have observed a very large number of bodies showing cherry red discolorations. That not a single one of the alleged eye-witnesses to mass gassings at the above listed camps mention the highly eye-catching type of discoloration that most often accompany lethal carbon monoxide poisoning is in itself enough to throw doubt upon the alleged
truthfulness of their statements. When the same key witnesses reports the corpses to have been yellow, grayish, or even without any discoloration whatsoever, we can be certain that something is not right with their gas chamber testimonies.

Notes

[1] The Belżec camp was opened in early 1942, ceased operating in mid-December 1942 the same year, and was fully dismantled during the following year. The so-called Hoeffe telegram, discovered in 2000 by historians Peter Witte and Stephen Tyas, shows the number of Jews deported to the Reinhardt camps up until December 31, 1942. The total stated for Belżec is 434,508. It is alleged by historians that merely 7 Jewish prisoners managed to escape from the camp (cf. Carlo Mattogno, *Belzec in Propaganda, Testimonies, Archeological Research, and History*, Theses & Dissertations Press, Chicago 2004, p. 51) – I have subtracted this number from the total.

[2] In a recent work Dutch-Jewish writer Jules Schelvis makes a convincing case that at the most 171,000 Jews were deported to this camp (Jules Schelvis, *Sobibor. A History of a Nazi Death Camp*, Berg Publishers/USHMM, Oxford 2006, p. 110, 198); the older “official” figure of 250,000 is however still to be seen in many encyclopedic and academic texts.

[3] 750,000 is the figure championed by Raul Hilberg in the “definitive” revised edition of his standard work *The Destruction of the European Jews* from 1985, while the 900,000 figure is advanced by German historian and court expert Wolfgang Scheffler (cf. Adalbert Rückerl, *NS-Vernichtungslager im Spiegel deutscher Strafprozesse*, dtv, Frankfurt 1977, p. 199). From the aforementioned Hoeffe telegram we know that a total of 713,555 Jewish prisoners were sent to Treblinka during 1942.

[4] The lower figure is an extrapolation from German deportation statistics, most importantly the so-called Korherr report. It can be found in a number of works, and appears to be the most commonly held figure today. The higher figure is taken from Martin Gilberg, *Endlösung. Die Vertreibung und Vernichtung der Juden. Ein Atlas*, Reinbek, Rowohlt 1982, p. 169. At the International Military Trial at Nuremberg it was claimed that 340,000 Jews had been killed at Chełmno (IMT, Vol. VIII, p. 364).

Friedrich Paul Berg, “Blue Women on the Beach – and the False Toxicity of CO2 in Diesel Exhaust”; Online: http://www.nazigassings.com/Provan.html

Indications that the authors are referring to clinical cases in this paragraph can be found in the following sentences (Ibid): “Once exposure to carbon monoxide ceases, however, the circulatory concentrations begin to decrease. […] Although the presentation of carbon monoxide poisoning is highly variable and depends on the patient […] the severity of the clinical presentation generally correlates with the severity of the exposure. […] Central nervous system symptoms and signs include headache, dizziness, emotional lability, confusion and convulsion. Respiratory symptoms include shortness of breath ranging from mild dyspnea on exertion to fainting […]. Carbon monoxide poisoning may result in blisters or bullae over pressure areas but the classic cherry red color of the skin is rare. Focal neurological defects in 30% of survivors who arrive in the emergency room in coma.”

Another example. In the article “Carbon monoxide intoxication: an updated review” by L.D. Prockop and R.I. Chichkova (in *Journal of the Neurological Sciences*, Vol. 262 No. 1-2 (November 2007), pp.122-130) we read: “The classic cherry-red discoloration of the skin and cyanosis are rarely seen.” This sentence is however found in an article section headed “Clinical findings”, and again we can also glean from the context that the authors are referring to treated patients, for the following sentence reads: Varying degrees of cognitive impairment have been reported.

Image found at http://www.acsu.buffalo.edu/~lcscott/carbonmonoxide.html (This as well as the two following illustrations were found and used by Friedrich Paul Berg in his rebuttal to Provan.

Livor mortis, also known as post mortem lividity or hypostasis, is an indicator of death. The term refers to the settling of blood in the lower portions of the body, causing purplish red discoloration of the skin. The state is due to red blood cells sinking through the serum (the liquid component of the blood) when the heart is no longer pumping the blood through the blood vessels. Due to capillary compression, discoloration does not appear in areas of the body that are in contact with the ground or other surfaces. Livor mortis appears 20 minutes to 3 hours after death, while maximum lividity occurs within 6 to 12 hours. When the authors of the article speak of a “cherry-pink coloring of livor mortis” they are referring to a discoloration of a nuance distinct from that normally characteristic of livor mortis.

Donat, p. 36.

[50] Ibid, p. 185.
[51] Ibid, pp. 190-191.
[54] It should be noted that another characteristic sign of carbon monoxide poisoning is retinal hemorrhages, i.e. bleedings within the eye’s retina. As far the author is aware, this symptom, which would likewise be quite visible, has not been mentioned by any “gas chamber” eyewitness. Cf. R.A. Etzel, “The “fatal four” indoor air pollutants”, *Pediatric Annals*, Vol. 29, No. 6 (June 2000), p. 346.