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Abstract— This work intends to contribute to the study
of wood texture classification by implementing and evalu-
ating the performance of several feature extraction methods
applied in combination with a variety of classification
techniques. An exotic wood texture images dataset has
been used to test the generated code. Implemented feature
extraction methods comprise gray level cooccurrence matrix,
mathematical morphology, ranklets, curvelets, wavelets and
local binary patterns; tested classification techniques in-
clude k-nearest neighbour, linear discriminant classifiers,
quadratic discriminant classifiers, neural networks, and
support vector machines. Results have been evaluated
based on computation time and classification accuracy, the
highest success rate having been achieved by a novel
scheme integrating X and X features introduced in this
report.

I. Introduction

Texture analysis can be a challenging task in many
respects, especially in terms of generalisation, as gen-
erally tailoring to the required application is needed.
Indeed, no general method exists that can be applied
to any kind of texture [1]. Many different methods for
feature extraction, clustering and classification exist in
different areas of use with proven good results. Textural
properties carry useful information for discrimination,
and they are particularly interesting in applications
requiring discrimination between materials, as their
texture is the fundamental property to be classified.

In this work, classification of wood texture is under-
taken. An exploration on the different feature extraction
techniques and their applicability to this particular case
of classification has been developed, as well as the
subsequent study of different classification algorithms
and their efficiency when applied in combination with
the implemented texture analysis techniques.

For the evaluation of results, different objectives have
been stated in the search for an optimum discriminative
and fast method. Firstly, the tested techniques have
been evaluated in terms of their efficiency and error
rate, and in relation to their computational require-
ments. Secondly, it has also been an aim to achieve
robustness to pose and scale variation, as well as it
has been attempted to generate a method that can deal
with illumination variations.

This report is organised as follows. Section § IV is
devoted to the different feature extraction methods that
have been applied, initially presenting their general

characteristics, and then describing the variations and
improvements generated. Section § VI is dedicated to
the different classifiers that have been used, with a
brief description for all of them. Section § VII focuses
on the implementation and the results that have been
achieved, and finally Section § IX presents the conclu-
sions that have been drawn.

II. Database

The provided database contained 23 classes that
could be divided into further subclasses of wood
species. The dataset was acquired by a specially de-
signed device to capture a close up of a wood section.
Initially the dataset had about 4000 training and 512
test images. However after a first inspection of the
dataset duplications were discovered. With a MD5
checksum script all duplications were detected and
deleted, leaving a training set of 1180 images and a
test set of 517 images.

After further inspection of the dataset was discov-
ered that the set of training images of each subclass
seemed to be taken from a single sample with an
enormous overlap between the images, the same hold
true for the test set exemplary, figure 1 illustrates this
fact on the Balau 1 class. Even if the training and test
data seem to be from different samples and do not
show obvious overlapping, the partially great variety
between the subclasses make this classification task
nearly a one-to-one classification. The classifier will be
trained on the features of mostly one image and tested
against the features of only one image. This assumption
is supported by the fact, that the classification with
ranklets for instance is nearly as good for subclass
specific classification as for classification on the 23 main
classes.

After the discovery of the duplications and the low
variety within the classes, another dataset was made
available. This dataset showed similar overlapping
then the first set and was organized in a different way.
Instead of an Excel file indicating the the scientific and
common names for each class, this dataset is ordered by
the scientific family name only. Moreover this dataset
was not separated into a training and test set and not
all classes of the first set were contained in the second
class. We decided to do not use this dataset, because
we were not sure how to merge them correctly.
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Fig. 1: The huge overlap of the images in the database shown on the example of all available training images
from Balau 1. The coloured markers indicate distinguishable holes, which can be find in many of the images.
Please note, that not the positions of the markers is the most relevant, but the depicted area in between them.
This area is to great extent the same. Please note also, that images with numbers missing in this collection have
been removed, because they had the same MD5 checksum as some images shown here.

It has also to be stated out that since this second
dataset was not separated into a training an test set, the
use of a N- fold cross validation as done in [2] (while
working on this dataset) is very questionable, since it
is very likely that one trains the classifier that has huge
overlaps with the test images. Moreover, the use of
the separated data from the first dataset will also not
lead to interpretable results, because the training and
test set are very limited. Especially a highly adaptive
classifier such as a SVM with radial kernel or an

neuronal network with many layers or nodes might
be overfitted to the test data, if tuned too much. Even
a simple feature reduction method lead to overfitting
if the amount of features is tuned too much, as shown
later.

The dataset has several other drawbacks that have to
be corrected or taken into account. Firstly, the illumina-
tion is very uneven between the images of one class and
a strong non-uniform illumination can be found on the
images. Additionally, some images have a strong blur.



This happens mostly at the borders, but some images
are completely blurry.

III. Preprocessing
A. Illumination Correction

1) Using Gaussian Filter: The idea of illumination
correction using a Gaussian filter is to approximate
the overall illumination of the image by convolving
the image with a Gaussian of a big standard deviation
and kernel size. Doing so, the image gets smoothed
out by the low pass filter and only the light as a
global structure remains. This light pattern can then
be simply subtracted from the original image to obtain
an illumination corrected version. As a side effect, the
average image intensity is normalized as well. This can
be a particular problem if different classes are mainly
distinct by there brightness.

The disadvantage of this method is that a convolu-
tion with a large kernel is very time consuming and a
single convolution will often not lead to good results,
because coarse structures such as big holes might still
be distinguishable in the illumination approximation.
Therefore, one needs to convolve the image several
times with a large scale Gaussian filter, in case of
this project good results were obtained by applying
iteratively 4 Gaussian filters with a standard deviation
of 500 and a kernel size of 50x50 pixel.

2) Using Wavelet Decomposition: Similar to the Gaus-
sian approach, the illumination of an image can be
approximated by the use of wavelet composition to
a large scale. Since the approximation coefficients of
a wavelet decomposition are obtained by a low pass
filter, if they are removed only details will remain. If the
decomposition is done with enough levels the approx-
imation coefficients will only encode the illumination.
Therefore, to remove the influence of the illumination,
simply the approximation coefficients have to be set to
zero before the image is composed again.

In order to get good results, it is crucial to use a
wavelet with appropriate vanishing moments, that are
able to model the illumination source. A wavelet can
approximate a polynomial function with order of n− 1
by n vanishing moments. It is therefore necessary to
choose a wavelet function with few vanishing mo-
ments. On the other hand low vanishing moments lead
to artefacts in the composition if the approximation is
removed.

For this work, the wavelet composition was done
with the symmetric wavelet 2 from the Matlab tool-
box, with 7 levels. The wavelet based illumination
correction on the images takes about 0.4 and so is
twice as fast as the convolution with Gaussian and
the results are much better, even visually. The images
are much more equalized and more sharp then after
applying the Gaussians. All cluster segmentation based
methods increased their performance significantly after
the illumination correction.

(a) Global Illumination model computed from the training set
images (combination of wavelet and Gaussian result)

(b) Wavelet difference MIP (c) Gaussian difference MIP

Fig. 2: Illumination correction. 2a shows the estimation
of the global illumination. That all images lay under the
influence of similar illumination conditions is shown
with the maximum intensity projection in figures 2b
and 2c. Details can be found in the text.

B. Illumination Model

Even if the images of the dataset were acquired by
a specially for this purpose designed device, suppos-
edly screened from external illumination influences,
the images of the dataset show all a strong non-
uniform illumination. However, due to the screening
there is a strong suggestion that there is an underlying
illumination model that is the same for all images.
This hypothesis was not verified into detail, since all
available images have the dominating wood pattern
which makes errors in the estimation of the illumina-
tion model very likely. Nevertheless simple tests were
performed, which support this thesis. In figure 2 the
results of these tests are shown. Very important are
figures 2b and 2c. These images show the maximum
intensity projection (MIP) of the difference of between
estimated model and the illumination corrected result.

The MIP show the maximum values that were
changed from original version to the illumination cor-
rected one in any of the training images. For both
methods a black upper right corner is visible. This
means in none of the 1080 training images this area
was corrected significantly. This is expected in a con-
stant light distribution, since both methods, Gaussian
and wavelet approach, remove the bright parts of the



image, the image is normalized to its darker regions.
In the other parts are changed according to the surface
properties of the wood. Interesting are also the artefacts
produced by the wavelet decomposition.

Once it is verified that a general illumination model
exist and a proper estimation would be done, it could
be simply subtracted from each wood image which
would make a efficient illumination correction possible
that can be performed in an instant.

C. Rotation Alignment

As shown in section II, all wood types have year
rings which appear nearly as lines due to the mag-
nification. These lines can be used for an easy angle
adjustment with the objective to make rotation variant
feature extraction methods rotation invariant and to get
access to orientation based features.

1) Line Estimation Hough Transform: Even if the now
implemented version is a very straight forward strat-
egy, more complex approaches were tested at the be-
ginning. The most exhaustive tries were done with
Hough transforms for lines, that are provided as Matlab
toolbox. However, any attempts to solve the problems
were unfruitful, the Hough transform turned out to
have a very low robustness on the wood dataset. Prob-
lems that arose with Hough transform reached from
the detection of too small line segments in arbitrary
direction, or even showing a systematic direction that
was somehow not correlated with the year rings at all.
All approaches to fix that bad behaviours, including
tuning of the function parameters, pre and post pro-
cessing with mathematical morphology operations and
image sharpening and smoothing filters failed.

In order to increase the strength and continuity of the
gradients, which were seen as reason for the low per-
formance, finally segmentation of the image intensity
values by k- means clustering was tested. Even if the
segmentation results looked promising, the lines of the
wood are seemingly not straight enough for a Hough
transform. Other line detectors found, where also not
announced to be robust enough. The opposite is often
the case in the literature, where modern researchers
focus on detection of very straight, but intersected or
interrupted lines. It was considered to use a adapted
snake model to find the lines before the following
method was discovered.

2) Gradient Based Orientation Estimation: Finally a
very robust solution in the orientation estimation could
be found by simply calculating the angle of the gradient
of each pixel and finding the peak in the gradient
histogram.

The main idea behind this approach is that the wood
images contain mainly lines and circular holes. While
along the lines many pixel will have a similar gradient
direction, the boundaries of the holes will not have
dominating gradient direction since they equalize each
other around the circular edge. If now the histogram

of the gradient directions is done, it will show a peak
perpendicular to the lines.

The implementation is very simple. The direction
of the gradients for each pixel are calculated by the
use of sobel filters in horizontal ∆y and vertical ∆x
direction. Then both results are normalized by their
magnitude and finally the angle is computed with
tan ∆y

∆x
. The maximum of the histogram is detected by

simply taking the highest value and interpolating its
neighbourhood with a second order polynomial.

The resulting histograms look as exemplary in figure
3b and 3d. Note the huge difference in the histogram,
which are used as feature as explained later in section
IV-J. The other two images in 3 show the approximated
direction of the lines. Note here that the lines in this
particular wood types are not straight (figure 3a) even
though they are extremely clear or hardly visible (fig-
ure 3d). This images where chosen to underline the
robustness of this approach. An exhaustive control of
the results on the training set shows that there only a
few significant failures (if a main part of the image is
blurry). For the rest of the images the error is estimated
to be maximal at 5◦.

This method is not implemented very efficiently at
the moment, but the calculation of the angles could be
made very fast by the use of look up tables instead
of the tangent calculation and other tricks from the
robotics and embedded community.

D. Segmentation

1) K-Means Segmentation: An completely unsuper-
vised and fast segmentation method was implemented
via a k-means clustering based on the intensity val-
ues of the histogram. Since it is histogram based the
running time is very stable and the image size has
nearly no influence on it. On the other hand, the
simple version of a intensity based segmentation is
very prune to non-uniform illumination. Therefore, it is
very crucial to do a illumination correction as described
above before the use of k-means segmentation.

The original k-means algorithm uses random seeds
as cluster center. This cannot be tolerated in a automatic
segmentation, because each run the clusters would
belong to different regions of the image. To get a stable
result, the seeds are simply fixed. For the training
images this version produces stable results in about
0.07 seconds per image. The number of clusters used
here is 6, to allow some clusters for noise or transitions
and also to give a reasonable cluster amount for the
most complex types of wood.

The segmentation result is not perfect in terms of giv-
ing perfect segmented lines and holes of the wood any
time, but the segmentation is good and stable enough
to generate strong gradients for the angle estimation
and some feature extraction as described later. 4



(a) Estimation of line direction in
keledang2007
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(d) Angle histogram of bitis3002

Fig. 3: Angle estimation, the green line indicates the main line direction. These images have a high resolution,
zoom in for a better inspection.

(a) k-means segmentation of Keledang2007 (b) neighbourhood based fuzzy k-means seg-
mentation of Keledang2007 (no improve-
ment to k-means)

(c) neighbourhood based fuzzy k-means seg-
mentation of Balau1006 (strong improve-
ment to k-means)

Fig. 4: Comparison between k-means and neighbourhood based fuzzy k-means

2) Fuzzy K-Means Segmentation: Later in the project
the fcm fuzzy c-means function of Matlab was discov-
ered and tested. It gives not much nicer segmentation
results at the same computation time as the traditional
k-means segmentation, if used on histograms as well.
On the other hand fuzzy k-means gives one segmenta-
tion image per cluster. Each of them could be evaluated
in the same way as wavelets or other image transforms
are processed to obtain features.

However, for the reasons stated above, stable seeds
are necessary to get repeatable results and to avoid
outliers. This is not possible with the Matlab function.
Time constraints did not allow to realize an augmenta-
tion of the k-means clustering and is strongly advised
for future, to improve the features which are based on
k-means clustering and the angle estimation (section
IV-J).

3) Cluster Segmentation using Neighbourhoods: An-
other way to employ cluster based segmentation is by
taking not only the pixel intensity of a single pixel into
account, but also of its neighbourhood. Unfortunately
this cannot be implemented as histogram based ver-
sion, and therefore the computation takes very long.
However tests on the training images showed, that
it is enough to use only the neighbours in north,
east, south and west, even without taking the pixel of
interest directly into account. Fuzzy k-means clusters

here very good, separating in the most cases holes,
lines and wood texture. Even in difficult cases it keeps
giving meaningful results, that can be used for feature
extraction as explained later.

This approach was not followed further, because
even with optimizations it takes about more then 10
seconds per image, which is considered to be too much
for a simple preprocessing.

IV. Feature Extraction

A. Ranklets

Ranklets introduce a different way of treating pixel
intensities. Ranklets technique analyses the rank of the
pixels instead of the pixel intensity itself. This way,
information about the intensity is transformed into
relative placement of a certain pixel intensity within
a window. Namely, essential feature of ranklets is the
invariance to monotonic transformations of brightness
where they prove to be robust.

1) Ranklet transform: Ranklet transform implies cal-
culation of pixel rankings within windows of various
orientations and size. Features are extracted from ran-
klet images obtained from different resolutions and
orientations of the ranklet transform [3]. Feature extrac-
tion consists of doing ranklet transform - calculating
ranklet coefficients, and using proposed method [3]
to extract descriptive features from the collection of



Fig. 5: Vertical, horizontal and diagonal sub-sets of an
image crop.

coefficients. The aim of the feature extraction task is
to code the variations of grey-scale intensity. Ranklet
transform accomplishes that by analysing image in
multiresolution and for different orientations [4]. More-
over, the analysis is non-parametric. Eventually, the
output of the transform is number of non-parametric
ranklet images - depending on resolutions and orienta-
tions considered. More resolutions or orientations leads
to more image crops, therefore more ranklet images
[3]. Sensitivity to orientation for each crop is achieved
by dividing the crop into sub-crops, subsets T and C
(figure 5). Subsets are defined for different orientations,
strategically aligned and positioned so that total score
of each crop describes sensitivity of pixel rankings
to horizontal (T1,C1), vertical (T2,C2) and diagonal
orientation (T3,C3). Similarly as in Haar basis functions
of Mallat and square sub-regions used in face detection
algorithm by Viola and Jones, regions are opposed
against each other, making total score orientation sensi-
tive. Ranklet coefficient of a crop of a certain size (Ri, i =
1(hor), 2(ver), 3(diag)) is obtained by counting the sum of
ranks of pixels from T region for different orientations.
The score is normalized so that it converges to +1 if
all pixels from Ti, i = 1(hor), 2(ver), 3(diag) have higher
ranking than pixels in Ci. Likewise, the score values
close to -1 if as many pixels from Ci have higher
ranking than the pixels from T j. Hence, close to zero
score means weak horizontal, vertical or diagonal vari-
ation in ranking. Rankings are calculated within each
crop. Instead of brute force direct comparison, which
is computationally demanding, relative rank of pixels’
grey-level values is calculated instead of doing “one-
on-one” comparisons, giving as output a normalized
value taking the interval [−1,+1], as shown in [3]. This
way, computational complexity becomes O(N log N) in-
stead of O(N2). Such approach uses Quicksort algorithm
to compute the Wilcoxon statistic of Haar-like ranklet
scores [5]. Generally, computational expense is the main
obstacle in application of ranklets due to the usage
of sorting algorithms. Fast algorithm for computation
of ranklets was introduced in works of Smeraldi (
[5]), with computational complexity O(

√
N + k) giving

significant speed-up in calculation time. This algorithm
is based on Distribution Counting algorithm for calcu-
lating Ranklets with linear complexity [5].

2) Features extraction: To sum up - ranklet transform
takes out image crops for different scales calculates

vertical, horizontal and diagonal ranklet coefficients
(R1,R2,R3) ranging from -1 to +1. Next step is ex-
traction of significant features from quantized ranklet
images. Quantization is carried through by quantizing
coefficients so that they take values ranging from -1
to +1, with step 0.1 resulting in 21 bin as suggested
in [3]. Each ranklet image ends up having 11 features
obtained from ranklet histogram (RH), equation 1 and
ranklet co-occurence matrix, (RCM), equation 2) of
ranklet coefficients as suggested in [3] and [6].

RH(bin) =
n(bin)∑21

j=1 n j
, bin = 1, ..., 21 (1)

RCM(bin1, bin2) =
nd,θ(bin1, bin2)∑21

i, j=1 nd,θ(i, j)
, bin1, bin2 = 1, ..., 21

(2)
where n is the number of coefficients taking one of
the discrete bin levels, nd,θ number of occurences of
two bin values d pixels apart, along angular rota-
tion θ. Details about co-occurrence matrix (for grey-
levels) are available in section (§ ??). Generally, his-
togram expresses probability distribution function of
binned ranklet coefficient values, while the ranklet co-
occurence matrix (RCM) does the same for possible
transitions between discrete pairs. A short overview of
the eleven extracted features, according to [3] is shown
in section § ??. Average of four co-occurence matrices
with ranklet coefficient was used in order to be rotation
invariant, at least at 45 degrees. Therefore, four ranklet
coefficient CMs are averaged: those that correspond to
angular rotations of θ = 0◦, 45◦90◦and135◦. rcmAvg =
1
4 (RCM1,0 deg + RCM1,45 deg + RCM1,90 deg + RCM1,135 deg)
Distance (d) is fixed to 1 and the information extracted
is qualitatively statistical - mostly moments of first and
second order. There is no need for higher values of d
because multi-resolution is already supported.

3) Ranklet features: labelsec:rankFeat
• Mean convergence is expressed as∑21

i=1
1
σ |bin(i)RH(i) − µ| where bin(i) =

[−1, 0.9, ..., 0.9, 1] is discrete ranklet value µ, σ
are mean and standard deviation of the ranklet
coefficients, respectively. This feature uses the
ranklet histogram (RH).

• Code variance,
∑21

i=1(bin(i)−µ)2RH(i) is variance of
ranklet coefficients.

• Code entropy,
∑21

i, j=1 RCM(i, j) log RCM(i, j)
• Uniformity,

∑21
i, j=1 RCM(i, j)2

• First order element difference model,∑21
i, j=1 |i − j|RCM(i, j) gives an estimate of the

transition probability, weighted by the signed
intensity of transition

• Second order element difference model,∑21
i, j=1(i − j)2RCM(i, j) gives an estimate of the

transition probability, weighted by the unsigned
intensity of transition



TABLE I: Classification accuracies obtained using
eleven Ranklet features (section § ??) for different
resolutions. RW8, RW16 and RW32 represent features
obtained using window sizes 8× 8, 16× 16 and 32× 32,
respectively. W8 + 16 represent concatenated features
of W8 and W16, similar stands for W16 + 32 and
W8 + 16 + 32.

Features NB 1NN 3NN 5NN QDC LIN

RW8 0.238 0.150 0.162 0.158 0.609 0.497
RW16 0.286 0.207 0.219 0.230 0.412 0.402
RW32 0.228 0.143 0.161 0.145 0.240 0.250
RW8+16 0.398 0.333 0.340 0.356 0.648 0.594
RW16+32 0.346 0.288 0.288 0.279 0.449 0.387
RW8+16+32 0.420 0.364 0.375 0.389 0.573 0.594

• First order inverse element difference
model,

∑21
i, j=1

1
1+|i− j|RCM(i, j), gives an estimate of

the transition probability, weighted by the inverse
signed intensity of transition

• Second order inverse element difference
model,

∑21
i, j=1

1
1+(i− j)2 RCM(i, j), gives an estimate of

the transition probability, weighted by the inverse
unsigned intensity of transition

• Energy distribution of the ranklet CM, ed1 =∑13
i=9
∑13

j=9 RCM(i, j) takes values from the certain
range - expresses transition energy in particular
band.

• Energy distribution of the ranklet CM, ed2 =∑15
i=7
∑15

j=7 RCM(i, j) − ed1 takes values from the cer-
tain range - expresses energy in particular band.

• Energy distribution of the ranklet CM, ed3 =∑19
i=3
∑19

j=3 RCM(i, j)− ed1− ed2 takes values from the
certain range - expresses energy in particular band.

Since the ranklet coefficients are computed from their
relative ranking within an image sub-window - these
features are robust to variations of gray-scale. Therefore
- different types of grey-scale transformations (linear,
gamma,...) do not affect these features. This character-
istic can be advantage or disadvantage, depending on
the type of texture.

B. Ranklets - Results

Ranklet features calculated using window sizes 8, 16,
and 32 have been tested with different classifiers and
with the train and test dataset described in introduc-
tion, without taking into account subclasses. Obtained
accuracies are shown in table I. General conclusion
is that quadratic classifier performs better than the
others with ranklet features. Accuracies become better
as features involving at least two (or more) window
sizes are used. This can be treated as extension to
multi-resolution, therefore recommendation to use ran-
klet features together. Best accuracy is obtained using
PRTools4.0 quadratic classifier for concatenated fea-
tures of window size 8 and 16, giving 64.8% accuracy.

Fig. 6: Confusion matrix for the classification of 24
classes using Naive Bayes and concatenated ranklet
features for windows 8, 16 and 32.

It is important to mention computational time per-
formance of ranklet feature extraction. Due to sorting
algorithms used, feature extraction for one 576 × 768
pixel image can last several minutes. To overcome this,
Fast algorithm for computation of ranklets was used
[5]. MATLAB code for ranklet transform was borrowed
from professor F. Smeraldi for academic purposes.
Moreover, images were resized to 256× 256 size before
feature extraction. All of these steps resulted in 66
seconds of execution time needed for one image on
2GHz CPU, which was significant improvement.

Generally ranklets did not perform well with other
classifiers apart from linear and quadratic. Naïve Bayes
had the best performance with the usage of all three
window sizes (42%), having multi-resolution informa-
tion available. Reason for such performance can be in
one of the most important quality of ranklets - robust-
ness to grey-scale transformations. Overall difference in
brightness could be useful in classifying given wood
textures. For instance, some wood species have similar
texture, but one is brighter, or reflecting more light than
the other. This can cause misclassification as shown in
confusion matrix for the case of RW8+16+32 features
and Naïve Bayes classifier (figure 6). Since ranklets
do not analyse shapes and morphology, this brightness
difference can be missed discriminative characteristic.

It might be useful to mention that there was an
attempt to individually make a C MEX file that would
speed up the execution time due to many for loops in
Matlab. However, the code did not manage to perform
significantly faster and the output was not the same as
the output of the Matlab code in all the cases, hence the
transform itself was carried out using prof. Smeraldi’s
code.

C. Curvelets

Following the concept of Fourier transform, wavelets
use basis functions to transfer signal from one space
to another trying to localize signal’s frequency and
the moment when frequency occurs. Wavelets could,



therefore, be considered as the generalization of Fourier
transform - an attempt to localize signal in both
time and frequency. One of the disadvantages of this
method is "blindness" of classic wavelets to sense direc-
tion: edges, geometry. Solution for the problem is us-
age of direction-sensitive (anisotropic) basis functions.
Ridgelet tend to be a good tool for straight lines, how-
ever, lines can be curved as well. To cover wider range
of discontinuities, we need additional generalization.

Moreover, directional wavelet transforms use basis
functions that are sensitive to orientation, so that trans-
formation does localization in orientation, too. Curvelet
transform goes even further. The idea is that image or
function is represented in different scales (multiscale
approach, already widely implemented in image pro-
cessing or compression). In this case, localization of
orientation in orientation depends on scale - anisotropy
changes with the scale applied [7]. Furthermore, the
whole transform is non-adaptive.

Curvelet transform works similarly as various other
wavelet-like transformations. Discrete transform is
used to obtain curvelet coefficients. Coefficients have
been obtained using MATLAB curvelet toolbox Curve-
lab 1. For the purpose of extracting texture features,
computational speed plays an important role. There-
fore, C++ MEX implementation available from Curve-
Lab was used. The texture features are derived from the
Discrete Curvelet Transform [7] and the discretization
of the continuous curvelet transform that uses “wrap-
ping” algorithm [7].

Several works have focused on texture classifica-
tion using curvelets and its improvement. Most of
the implementations have shown good performance
compared to ridgelets or other wavelet families that
take into consideration the geometry or the curves
[8]. Since the wood texture given contains such curve-
like shapes, such feature extraction seemed like an
interesting choice. However, most of the implemen-
tations of curvelet coefficients were accomplished in
medical imaging - computer tomography [8], space
imaging, satellite imaging, or on general collection of
textures like bricks, clouds, grass, etc. [9], [10]. Gener-
ally speaking, the extraction pattern stays similar in all
the applications:
• Candes and Donoho introduced a novel multi-

scale transform -designed to handle curved sin-
gularities. Main idea is to zoom into an image
patch, so that curves eventually become “straight”.
Transformation is applied with different scales and
different angle orientations set as parameter of the
transform (figure ??). What makes the curvelets
special is that - the more we go to finer scales, the
more the transform becomes sensitive to angle ori-
entations - therefore establishing good frequency-
space localization, better sparsity, less coefficients

1http://www.curvelet.org

(a) Scale s = 1, angle orienta-
tion w = 1 curvelet sub-band.

(b) a = 1/2, θ = 0.
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Fig. 7: Curvelet coefficients of different scales (s) and
orientations (w) in spatial domain. Many features are
extracted from texture characteristics of such images.

for a given accuracy. Sparsity could cause the
problem in this application, however a couple of
feature-parameters was revealed in [10] that actu-
ally adopts to sparsity giving quite discriminative
features as outputs.

• Discrete curvelet transform is applied on set of
texture images. Discrete transform means - discrete
set of scales and angles for each scale. The output
of the transform is sub-band decomposition: image
is decomposed into sub-band images of curvelet
coefficients. Each scale is represented with the
group of coefficients - each one for a different
discrete angular orientation.

• Images with curvelet coefficients (figure 7) need to
be characterized in some way. The final outcome
of that process is a feature, a description. Although
some papers propose different approach [9], we
will follow the classic approach where obtained
curvelet coefficient images for different scales and
orientations are described with already established
co-occurence matrices features, similarly as it was
the case with ranklets. On top of that, additional
features, such as parameters of an Generalized
Gaussian Distribution (GGD) are calculated - α and
β. Inspiration for using such parameters as features
comes from the work of Gomez [10]. They proved
to be quite useful in wood classification task that
was given.

D. Curvelet Features

It is convenient to separate the features into three
groups:

http://www.curvelet.org


• Curvelet statistical features

– Mean (M) - mean value of the coefficients in
sub-images (first order statistics)

– Standard deviation (SD) of the coefficients in
sub-images (second order statistics)

• Curvelet Co-Occurence features Co-Occurence
matrix is formed for each sub-band of the Discrete
Curvelet Transform (figure 7). As with grey-level
co-occurence matrices, spatial information about
the distribution of the values is taken out using
following features:

– Energy and Entropy (EE)
– Contrast (Con)
– Cluster Shade (CS)
– Cluster Prominence (CP)
– Homogeneity (H)
– Local Homogeneity (LH)

Formulas that express calculation of these pa-
rameters are available in literature [11], and the
well known paper of Haralick that introduced co-
occurence matrices.

• Generalized Gaussian Density Parameters [10]
Each sub-band of the curvelet space (figure 7) is
used for estimating the parameters of a statistical
model. The role of a statistical model is to capture
the distributions in several parameters, similarly
as mean and standard deviation fully describe
Gaussian distribution. Curvelet coefficients are dis-
tributed sparsely - therefore a need for a param-
eter that would be better at modelling marginal
distribution. It is suggested in work of Gomez
[10] that the information about the edges is well
captured in the moments of Generalized Gaussian
Density (GGD). The aim is to calculate α (variance)
and β (parameter describing the decreasing rate
of the GGD) from the GGD definition p(x;α, β) =

β
2αΓ(1/β) exp−( x

α )β where Γ represents already defined
mathematical function [10]. Two parameters are
estimated by fitting the given data to p(x;α, β) dis-
tribution using Maximum Likelihood optimization
(figure 8).

– α (first GGDcoeff parameter)
– β (second GGDcoeff parameter)

Suggestion (/citeGomez09) was that the textures should
be classified by measuring the distance between them
(as it is the case with euclidean 1NN or kNN), just
that the distance used is “KullbackLeibler”. Definition
of the distance is available in paper that proposes
the usage of GGD coefficients. After applying it on
two GGD coefficients obtained for different scales and
angle orientations, to be used in classification, the
performance was not better than it was when using
ordinary euclidean 1NN - around 40%. However the
option to use such distance measure is still available in
myKNN.m.

Fig. 8: Histogram of curvelet coefficients from the
sub-band. GGD distribution was used as model. Red
approximation of blue distribution was plotted using
estimated parameters.

To summarize: image is transformed into collection
of images (sub-band images) containing curvelet co-
efficients (figure 7), and features are extracted from
each of the sub-images. Hence, amount of features
depends on number of sub-images - therefore number
of discrete scales and angles. Going deeper into scale
or discretizing more the angular direction has as a
consequence extremely high number of features.

E. Curvelets - Results

Features were extracted using Discrete Curvelet
Transform (“wrapping method”) [7] with
• 3 scales and 16 angles of the second coarsest level
• 5 scales and 16 angles of the second coarsest level

as parameters. Due to computation time costs, each
image was resized to 256×256 before the transform was
executed. Results were similar for both scales. Table II
showcases accuracies obtained for those feature combi-
nations that had the best performance when combined
together. Curvelet based features yielded accuracies
ranging from 20% up to 66% for combination of 8
features and Linear classifier (table II). Since the results
were not as expected, additional feature selection has
been done. Total of 162 features that performed the
best were reduced using PCA and Fisher mapping.
With a simple 1NN classifier applied, accuracy was
calculated for different feature reductions. The outcome
is improvement of accuracy for certain reductions. As
figure 9 shows, maximal accuracy was obtained when
reducing to 95 features.

F. Gray-Level Co-Occurrence Matrix (GLCM)

Much has been said about Gray-Level Co-Occurrence
Matrices (GLCM). They were often used for texture
characterization, however not as often in wood clas-
sification ( [12], [13]). Some references are available in
case of the given dataset ( [12]) or some other datasets
[14]. Algorithmically, GLCM is a statistical tool, textures
are characterized with statistics of different orders.
More details on construction of the GLCM, parameters,



TABLE II: Classification accuracies obtained using curvelet transform features (section § IV-D). Transformation
was accomplished with 3 scales and 16 angles at the coarse level. Image was resized to 256 × 256 prior to
transformation.

Features selected NB 1NN 3NN 5NN QDC LIN

GGDcoeff 0.373 0.298 0.304 0.292 0.205 0.489
SD 0.251 0.416 0.422 0.406 0.435 0.306
GGDcoeff+M 0.377 0.338 0.315 0.309 0.186 0.530
CORR+SD 0.340 0.416 0.422 0.406 0.338 0.424
M+CORR+LH 0.466 0.191 0.193 0.174 0.068 0.429
SD+Con+CS 0.338 0.470 0.470 0.474 0.056 0.460
EE+SD+CORR+CS 0.476 0.435 0.439 0.435 0.081 0.516
M+SD+Con+CS 0.340 0.484 0.468 0.455 0.052 0.491
GGDcoeff+SD+CORR+LH+CS 0.474 0.460 0.468 0.447 0.118 0.632
M+SD+Con+H+CS 0.360 0.484 0.468 0.455 0.037 0.513
GGDCoeff+EE+M+SD+CORR+CS 0.474 0.453 0.460 0.466 0.106 0.646
GGDcoeff+M+SD+CORR+LH+H+CS 0.474 0.453 0.460 0.466 0.097 0.654
GGDcoeff+M+SD+CORR+LH+CP+H+CS 0.472 0.259 0.271 0.279 0.041 0.663
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Fig. 9: Total number of 162 features that gave the best
performance in curvelet classification were reduced
to N features using PCA and LDA (fisher mapping)
reduction 1NN classification. For each reduction (x
axis), accuracy was plotted (y axis). Finally, the best
accuracy (72%) was obtained with 95 features out of
162.

features is available in [15]. With GLCM an assump-
tion is made that the characteristics of the texture are
contained in spatial relationship of the pixel grey level
values one with another /citekhalid2008design. Spatial
relationship implies probability of the occurrence of
same pixel values at particular distance and particular
angular direction. For this work, GLCM with distances
of d = 1, 3, 5, 7and9 have been implemented together
with angular directions of 0, 45, 90, and135◦. Several
values of distances have been used to have some kind
of multiresolution. GLCMs for different directions are
averaged so that the rotational invariance of 45◦ is
present. One of the issues that was not explored deeper
in this work is the possibility of multiresolution -
choosing appropriate d to deal with particular texture.
Several papers are proposing a solution for this.

Features extracted from Gray level co-occurence ma-
trix are:

TABLE III: Classification accuracies obtained using
combinations of ten available GLCM features calcu-
lated for distances d = 1, 3, 5, 7, 9 (section § IV-F).
Short names represent features concatenated together.
Number of features that characterize one image is 45.

Features NB QDC LIN 1NN 3NN

ASM+Corr+Ent+ 0.338 0.603 0.677 0.304 0.319
CS+IDM+Var+Con
ASM+Corr+ 0.346 0.569 0.646 0.304 0.319
CS+IDM+Var+Con

• Angular Second Moment (ASM) ( [12])
• Contrast (Con)
• Correlation (Corr)( [12])
• Entropy (Ent)
• Inverse Difference Moment (IDM)( [12])
• Inertia (Ine)( [13])
• Local homogeneity (LH) ( [13])
• Maximum probability (MP) ( [13])
• Cluster Shade (CS)( [13])
• Cluster Prominence (CP) ( [13])

More details about the formulas that are atypical can
be found in cited references. GLCM components are
averaged for all directions. Components for different
distances are concatenated together (attempt to have
multiresolution).

G. GLCM - Results

GLCM showed significant performance with certain
selection of features. As previously said, ten types of
features were calculated. To sum up those that had the
best performance when combined together are shown
in table III. Meanings of the short names can be read
in section § IV-F).

Naturally, accuracies could be improved by increas-
ing number of used distances, however such acrobatics
was not the purpose of this study, but to check possible
performance of such features. Possible improvement
could be finding a way to optimally estimate the



Fig. 10: Using PCA reduction, Fisher mapping and 1NN
classification – accuracy of classification using GLCM
reaches 72% when reducing the set of features to 95
features at the PCA reduction stage.

d parameter. Moreover, with the application of PCA
reduction, LDA reduction and simple 1NN classifier,
accuracy improves up to 72% (figure 10).

H. Wavelets
Wavelets are wave-like oscillations that are described

by a function referred to as mother wavelet. It has
been shown that a signal or image ( i.e. 2D signal)
can be expressed in terms of the details and approx-
imation derived using dilation and translation of a
wavelet. Wavelets have powerful capability of pro-
viding a multi-scale analysis of a signal in special-
frequencies space. In other terms, what let provide
a good approximation of “what is where” in a sig-
nal or image. As textures can be characterized with
their intrinsic frequencies and the location of each
frequency , wavelets are appropriate tools to extract
such characteristics from texture. For characterization
of a texture, it is decomposed into sub-bands. Each of
the sub-bands represents the response of the texture to
the high-pass and low- pass filter in certain direction
(horizontal, vertical, diagonal) at a certain scale (see
figure 11 for illustration). It means each sub band
contain information about different frequencies their
location and their direction. It is common to decompose
wavelets using high pass and low pass filters (Figure
11 ) and extract features from decomposed sub-bands
using some non-linear functions.

These features can express the scale dependant char-
acteristic of texture in that sub-band. In a texture clas-
sification paradigm there are several factors one needs
to consider when extraction features from texture using
wavelet. These factor which affect the distinctiveness of
feature space are : choice of mother wavelet, method
of decomposition, number of levels of decomposition
and the method used for extracting features from sub-
bands.

1) Choice of mother wavelets: The feature are extracted
from the response to certain filters (high pass and low-

Fig. 11: wavelet decomposition into Sub-bands using
high pass and low pass filters.

Fig. 12: Pyramid Decomposition.

pass) which are determined by mother wavelet. Thus,
the choice of mother wavelet is important as the filter
should be in suitable providing a proper localization
of frequency elements. As it is not clear how much
distinctive the response of a certain wavelet is before
evaluation of classifier. In this work various families
of wavelet has been used to study the correlation of
features features extracted using each one. It has been
suggested that the most suitable wavelets for texture
classification are “texture matched wavelets”. These
wavelet can be derived to maximize the discriminatory
power over a training set of textures.

2) Method of decomposition: Another factor which
needs to be explored is the method of decomposition.
The most common way of decomposition is using
wavelet pyramid in which one sub band from a higher
level is decomposed to form the sub-band of a lower
level. An example of such decomposition for 3 levels
is shown in Figure 12 . Most commonly the LL sub
band is decomposed further. But variant of pyramid
decomposition select the sub band with highest energy
for further decomposition.

Alternatively, it is possible to decompose all sub-
bands further and derive an over complete basis this is
referred to as wavelet packet decomposition (see Figure
13). This method provides a higher definition of sub-
bands spectrum but it also yields feature redundancy.
As this method yields a high feature vector dimension
is it common to use feature reduction methods such as
PCA and LDA to remove redundant features which do
not contribute to classification.



Fig. 13: Wavelet Packet Decomposition.

Fig. 14: Feature generation from the wavelet coefficients

3) Feature computation: As we are dealing with a
classification problem we need one feature vector per
texture. There are several method for extracting fea-
tures based on wavelet decomposition. The most com-
mon is using energy based features. For example norm
Energy feature represents the average magnitude of
the response of filter on that particular sub-band and
direction. Several common energy based features are
given below .

As above feature are derived from sub-bands which
correspond to different directions (horizontal-vertical ,
diagonal) they are not rotation invariant. It has been
shown that rotation invariance can be achieved by
averaging the features in different direction (averaging
features of HL,LH, HH sub bands). Other than single
value representation of sub-band (energy based fea-
tures), histograms can be used to measure the occur-
rence of different responses to the filter at each scale
and orientation. For even richer and more expressive
representation of response of wavelet at certain scale
and orientation we can use co-occurrence matrix of sub-
bands. This method yield a feature vector for each sub-
band using different statistics on co-occurrence matrix
(see GLCM section for more information). Such feature
vector is much h more representative of sub-band thus
when this feature vector are concatenate they provide
a high dimensional but more descriptive of feature
space for the texture. One should note that this process
is highly time consuming and yield a bulky feature
vector. Alternative to feature computation it is possible
to use the value of the co-efficient from each image as
feature vectors. For this purpose

TABLE IV: Summary of Results of individual Feature
extraction methods

Feature extraction KNN-1 QDC

Bior F1 37.71 52.224
Bior F2 15.47 5.802
Bior F3 40.81 28.433
Coif F1 39.26 47.775
Coif F2 15.86 5.802
Coif F3 40.61 10.251
Db F1 33.46 49.129
Db F2 15.66 1.934
Db F3 40.81 27.079
Haar F1 40.23 51.512
WPT Bior 28.67 4.835
WPT coif4 32.8 11.605
WPT db8 36.75 7.54
WPT sym8 33.07 12.37

In order to find the best features for texture represen-
tation different method have been implemented. Vari-
ous mother wavelets families (e.g. Haar, Daubechies,
Bior, Coifet, Symlet) have been tried out to see it there
is a correlation between features derived from different
mother wavelets. In each families various versions have
been used (e.g. Daubechies 6-8, Bior 2.6 & Bior 3.7 etc.)
Both normal and rotation invariant features has been
implemented. Wavelet packet and wavelet pyramid
decomposition have been studies with different levels
of decomposition. The aim is to span the feature space
as much as possible then select the set of features which
can complement each other for better classification. it
is important to study the correlation of features and
remove the features that are highly correlated. After
the feature extraction correlation matrix of all features
is computed. The correlation matrix shows that the fea-
tures extracted from same wavelet families are highly
correlated(e.g.Bior 3.7 & Bior 2.5). Further, There exist
rather high correlation between wavelet families such
as Coifet and Bior and Daubechies. In order to select
best set of feature subspace feature selection method
has been used which is explained in following.

4) Wavelet Experiments: As the first experiment we
evaluate the performance of each feature extraction
method. Feature extraction method are grouped based
on the feature computation method and wavelet fam-
ilies. F1 feature are normal energy features extracted
from different scales. F2 Features are rotation invariant
features and F3 are the maximum coefficients at a
each level of decomposition. Several classifiers such as
Quadratic , K-NN. The results show that different fea-
ture extraction methods have variable performances on
different classifiers. The best performance is achieved
using quadratic classifiers and Bior-F2 that is 52%.
Table below shows the summary of the result this
experiment.

Using the table IV we can have the first clue of which
feature extraction methods is more suitable. However
one should note that even the method with low perfor-



mance can have provide complementary information
when combined with other methods. That is why we
do the feature selection step. In this step all feature
are concatenated and the PCA-LDA projection is made
to derive the most discriminative features. As the next
experiment we concatenate all features above together
and perform PCA projection. This experiment shows
that the result can be improved to 55% with 100 eigen-
vectors (i.e. a feature space dimension reduced from
2729 to 100). However, the performance plateaus and
does not increase with higher feature dimensions. As
the next Experiment we use the PCA+LDA projection
and using 1-NN classifier the performance increases
to 70%(200 eigenvectors). combining the results with
morphological features and curvelet features and a sub-
sequent PCA+LDA projection a performance of 80%
was reached using 1-NN classifier. Overall from the
experiment we can conclude that while being quick
to compute (0.05s for F1) wavelet feature extraction
alone is not a appropriate method for this texture clas-
sification problem. This is due to the fact that several
classes of features have similar responses to wavelet
families. however as some texture classes are classified
using this method it is possible that the complementary
information can be provided when combined with
other features.

I. Local Binary Pattern

1) State-of-the-art: Local Binary Pattern (LBP) is a
texture analysis operator that has been widely used for
feature extraction and texture classification in computer
vision, due to its simplicity and its computational
efficiency [?]. It was first described in 1996 by Ojala
et al. [?] and has since then enjoyed a wide popularity.
Based on the binary comparison of a centre pixel value
against its neighbours, the original algorithm used a
3x3 neighbourhood, thus giving 8 neighbours P8 =
p1, p2...p8 for each studied pixel pc. Then, the following
array of values is generated:

t(s(p1 − pc), s(p2 − pc), ..., s(p8 − pc)) (3)

where

s(x) =

{
1, if x ≥ 0
0, otherwise

This definition makes LBP invariant to monotonic
grayscale transformations, as it uses the sign of change
between the considered pixel and its neighbours and
not the values themselves [1]. Each binary array is then
converted to decimal notation by choosing a starting
pixel and weighting.

pnew
c =

N∑
n−1

s(pn − pc)2n−1

Fig. 15: Thresholding and weighting in LBP

Fig. 16: Neighbourhoods of different number and ra-
dius

Fig. 17: LPB patterns

Finally, the obtained value is assigned to the central
pixel that generated the array. Figure 15 from [2] il-
lustrates the described process. A 3x3 neighbourhood
is used in (a), and the resulting thresholding with
the central pixel results in (b). Weighting the obtained
array, starting from the right pixel in counterclockwise
direction, gives the new value of the central pixel (c)
as shown in figure 15.

Multiresolution can be attained with LBP by using
neighbourhoods (N) of different sizes and interpolating
pixel coordinates in order to allow any radius (R)
[16]. The notation (N,R) then summarises the adopted
approach, with LBP(8, 1) being similar to the original
LBP. Figure 16 illustrates different (N,R) combinations:

2) Rotation invariance: The original LBP can be made
rotation invariant by choosing as a starting point in
the circular neighbourhood that element yielding the
binary array of minimum possible value. This approach
needs many descriptors [2], as exemplified in Figure
17 for a neighbourhood of 8, which can be expressed
as LBPri

8,R, with ri meaning rotation invariance. These
detectors correspond to image patterns like bright and
dark spots (0 and 8, respectively) and edges (4).

3) Uniform patterns: Introduced in [17], the use of
uniform patterns applies the rotation invariance de-



scribed before solving the storage issue by means of
reducing the number of patterns to be used. Instead
of patterns, spatial transitions (bitwise 0/1 changes) [?]
between binary values are applied, with categorization
into classes for patterns with up to two transitions, and
assignation to a miscellaneous class for those having
more. As noted by [?] a properly selected set of patterns
forms an efficient texture description improving the
classification rates of the whole LBP histogram. The
notation used here is LBPriu2

N,R with N + 2 pattern classes
for N neighbours [16]:

LBPriu2
8,R =

{ ∑N
n=1 s(pn − pc), if U(LBPN,R ≥ 2)

N + 1, otherwise

where

U(LBPN,R) = |s(pN−pc)−s(p1−pc)|+
N∑

n=2

|s(pn−pc)−s(pn−1−pc)|

4) Adaptive LBP: Adaptive LBP [?] also incorporates
directional statistical features to improve the efficiency
of LBP. In particular, mean and standard deviation of
the local absolute differences are applied, together with
least square estimation to minimize the local difference.
Given an nxm image, a central pixel gc, and its P
neighbours gp, these present an orientation 2pi ∗ p/P
with radius R, where p is the orientation. The first
and second order directional statistics of |gc − gp| along
orientation 2pip/P are µp and σp, and thus the mean
vector and the standard deviation vectors are µ̄ =
[µ0, µ2, ..., µp−1] and σ̄ = [σ0, σ1, ...σp−1], where:

µp =

N∑
i=1

M∑
j=1

|gc(i, j) − gp(i, j)|/(M ∗N)

σp =

√√√ N∑
i=1

M∑
j=1

(|gc(i, j) − gp(i, j)| − µp)2/(M ∗N)

These directional statistical features carry useful in-
formation for texture discrimination, and thus can be
used to improve the classification results. Figure 18 il-
lustrates the shift in the obtained vectors corresponding
to a shift in the rotation of the texture image in LBP(8, 1)
[?].

Based on these vectors, the ALBP algorithm is devel-
oped by introducing a parameter wp so that the direc-
tional difference |gc−wp ∗gp| can be minimized, which is
solved using a least square estimation technique where
ḡc is a column vector containing all gc pixels, and ḡp
the corresponding one for all gp pixels.

wp = argmin(
N∑

i=1

M∑
j=1

|gc(i, j) − wgp(i, j)|2)

Fig. 18: Rotation of texture image and vectors

TABLE V: Global statistical texture measures

m =
∑L−1

i=0 zip(zi) σ =
√
µ2(z) R = 1 − (1/1 + σ2)

µ3 =
∑L−1

i=0 (zi −m)3p(zi) U =
∑L−1

i=0 p2(zi) e = −
∑L−1

i=0 p(zi)log2p(zi)

wp = (ḡT
p ḡc)/(ḡT

p ḡp)

Finally, ALBP is defined as:

ALBPP,R =

P−1∑
p=0

s(gp ∗ wp − gc)2p

5) Proposed method: statistical measure incorporation to
LBP: A variant of LBP has been devised in an attempt
to improve the accuracy of the attained classifications,
with successful results. This algorithm implements the
multiresolution rotation invariant uniform pattern ver-
sion of LBP in combination with the use of a selection
of different extracted global statistical texture measures,
the latter as described in [?], and listed in table V.

In this way, different global measures are used to
complement the locality of LBP, improving the classifi-
cation obtained with other versions of LBP. As grey lev-
els are important in the application of image moments,
illumination correction has been undertaken before the
extraction. The first measures are the mean, a measure
of the average intensity, and the standard deviation, a
measure of average contrast. Then smoothness is cal-
culated, and the third moment, giving the skewness of
the image histogram. Uniformity can also be estimated,
and finally entropy, a measure of randomness. All of
these have been calculated and implemented according
to the formulation shown in Table V.

6) Other developments: Due to its efficiency, simplic-
ity, multiresolution possibilities and both grayscale and
rotation invariance, LBP has been used in a variety
of applications, such as texture classification, product
inspection and face analysis [2]. In [18], LBP is extended
to colour images by computation of texture features for
every band and statistical measures application. In [?],



TABLE VI: Computing times, in seconds, for each configuration

LBP 8 LBP 16 LBP 24 LBP 8-16 LBP 8-24 LBP 16-24 ALBP SLBP

0.2207 0.4282 0.6872 0.6334 0.6354 0.8488 0.1901 1.0896

TABLE VII: Error rates of classification for each configuration

knn-1 knn-3 knn-5 knn-7 knn-9 knn-11 Bayes-1 Parzen Bayes-2

LBP 8 0.547 0.540 0.544 0.542 0.545 0.565 0.569 0.538 0.445
LBP 16 0.410 0.419 0.417 0.415 0.425 0.413 0.292 0.396 0.348
LBP 24 0.364 0.385 0.406 0.412 0.429 0.435 0.366 0.379 0.362
LBP 8-16 0.406 0.429 0.458 0.449 0.466 0.472 0.304 0.431 0.429
LBP 8-24 0.294 0.346 0.335 0.364 0.368 0.379 0.292 0.302 0.458
LBP 16-24 0.400 0.462 0.499 0.507 0.511 0.536 0.219 0.458 0.687
ALBP 0.580 0.598 0.603 0.613 0.607 0.629 0.534 0.574 0.942
SLBP 0.279 0.296 0.311 0.323 0.340 0.348 0.164 0.277 0.870

an LBP with Fourier features is presented, computing
image descriptors from discrete Fourier transforms of
LBP histograms, with good results. Monogenic-LBP,
presented by [?], integrates LBP with two rotation
invariant measures: local phase and local surface type
computed by the first and second order Riesz trans-
forms, improving the results of other state-of-the-art
methods. Finally, [?] present a hybrid scheme, with
global rotation invariant matching and local variant
LBP texture features. The methods mentioned here
have not been implemented in the present project, and
remain as options to be explored in the future.

7) Implementation: The implementation here under-
taken has made use of different versions of the LBP
algorithm. The standard version has been used, with
8, 16, and 24 neighbourhoods (LBP 8, LBP 16, LBP
24), and also combinations of them have been applied
to implement a multiresolution approach by making
use of different radiuses (LBP 8-16, LBP 8-24, LBP 16-
24). The uniform patterns method has been applied,
as described in the previous subsection (riu2), as well
as the adaptive LBP algorithm (ALBP), together with
the generated statistical LBP method (SLBP) also pre-
sented in 5.3. Running times required by each feature
extraction method to extract the features of one image
(balau1001.bmp, previously converted to grayscale),
including the whole LBP process, from image load to
storage of results, are shown in Table VII :

The generated code implements the following pro-
cess, for each algorithm configuration:
• extraction of features for all images in the training

set
• generation of classifiers from the training set fea-

ture data
• extraction of features for all images in the testing

set
• application of the classifiers to the testing set fea-

ture data
• estimation of classification error
Code has been organised following the scheme

above. The extraction of features uses the LBP code

v.0.3.2 by Heikkilä and Ahonen to generate 8, 16 and
24 neighbourhood maps, using the riu2) mapping type
for uniform rotation-invariant LBP. Different config-
urations have been studied and tested, as explained
before, using multiresolution, a novel algorithm, and
the ALBP version by Guo et al. [?] v.1.0. In the pro-
posed algorithm, a set of statistical measures have
been tested in combination with the best configuration
for multiresolution LBP, after applying illumination
correction. These measures have been extracted as sug-
gested by [?], and comprise, as explained, the following
measures: mean, standard deviation, smoothness, third
moment, uniformity, and entropy. Results were, as
expected, improved with this approach. Indeed, the
best classification rates of all those attempted have been
attained by this method, as it is shown by error rates
computation.

Once features are extracted for each configuration,
values are labelled and stored in .mat files, for both
normalised and non-normalised versions. The classi-
fiers are trained using the .mat files corresponding to
the training images, and then used to classify the data
in the .mat files corresponding to the testing images
for each method implemented. Finally, error rates are
calculated. Applied classification techniques include k-
nearest neighbour (knn) classifiers, Bayes-1, Bayes-2
and Parzen, which are not described here due to space
limitations. The use of the new SLBP with most of these
classifiers has proven to be more accurate than most of
the rest of current-day approaches.

8) Results: Error rates have been computed for each
of the LBP feature extraction methods in combination
with different classifiers. Table VII shows the obtained
results:

As it can be seen in the results of table VII the novel
algorithm here introduced presents very good results in
comparison to the rest of present-day studied methods,
outperforming most of them in combination with most
of the tested classifiers. Indeed, SLBP seems to offer
the best configuration among the LBP-based algorithms
for the classification of the wood textures in the given
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Fig. 19: Performance of LBP. This plot shows the result
of feature extraction. The features were reduced to N
features using PCA and LDA (fisher mapping) reduc-
tion and classified with 1NN.

dataset. Two factors are taken into account to reach
this conclusion, both the processing speed for training
and feature extraction, and the accuracy of the results.
It must be noted, however, that the time needed by
this method is slightly superior to the rest, of around
1 second. In terms of accuracy, on the other hand, it
ouperforms all other methods when applied with all
the tested k-nearest neighbour algorithms, and with
Bayes-1 and Parzen. Only with Bayes-2 the error rate
does not decrease with the implemented method. As
it can be seen, error rates are as low as 0.16 with
Bayes-2 and around 0.77 with Parzen and some of
the k-nearest neighbours. In conclusion, the proposed
algorithm seems to offer a good compromise between
timing and accuracy, which may be further investigated
in the future.

The use of a feature reduction with PCA and LDA
(fisher mapping) reduction and final classification with
1NN raised the performance up to 90% (see figure
19). The plot oscillates, which was not expected. This
however, might be a result of overfitting to the test set.
Normally it would be expected that the classifier be-
comes better, the more features are added and reaches
one peak and finally the performance declines from
there.

J. Angle Based Features
The observation that different classes of wood show

a very different angle histogram (compare for instance
figure 3b with 3d), led to the implementation of de-
scriptors of this histograms. Based on inspection of dif-
ferent histograms five simple descriptors were chosen.

Figure 20 summarizes the extracted features. First a
haar like scheme, inspired from the famous Viola and
Jones detector [19], is used to compute the differences
between different regions of the histogram. To compute
this features, first sums between the regions A, B, C of

Fig. 20: Features extracted from an angle histogram at
the example of keledang2007 (see fig. 3a). First all the
values within the equal coloured regions are summed
and the permute differences of these sums are taken as
first features. Additionally kurtosis (variance from flat
histogram or peaky shape) and skewness (represented
by white line) are computed as features.

the same colour shown in figure 20. The orange region,
for instance, sums the bins from 1 to 30 and 91 to
180. The three different summarized regions are now
compared with each other as follows

featureA =
∑

A +
∑

B −
∑

C
featureB =

∑
A −
∑

B +
∑

C
featureC =

∑
A −
∑

B −
∑

C
(4)

To make the description more complete additionally
the skewness (µ3

σ3 ) and kurtosis (µ4

σ4 − 3) are calculated,
where µn is the nth central moment and σ the standard
deviation and used as features 4 and 5.

K. Orientation Based Segment Projection (OBSP)
The orientation based segment projection was de-

signed to create a simple descriptor of the wood, based
on its main features observed by human perception.
These are the lines, which vary in thickness, intensity,
frequency of repetition and straightness, further there
are holes which can appear black or bright and vary in
amount, size, regularity, shape and connectivity. Finally
the space between can be more rough or flat.

In this approach several properties of the wood
are described together. The segments of an image are
processed by simply counting the amount of pixel of
the picked segment on a ray that is laid over the image.
By shifting this ray over the image, a kind of histogram
is created, which is then described by its statistical
values.

For computational reasons, the implementation pro-
vided projects the cluster values only horizontal, verti-
cal and in both diagonal directions. However, it seems
that with this four angles the most of the properties of
the sample image are extracted.



Fig. 21: Projection (and summation) of the value of the
blue cluster. The histogram like projections are then
bases of statistical feature extraction.

To build the final descriptor the following entropy
and sparsity are extracted from each of the generated
histograms as ninth feature the normalized ratio of each
cluster is taken. While the entropy is calculated with the
usual formula, the sparsity checks how many elements
in the histogram that lay above a adaptive threshold
have neighbours that fall below the threshold. This
measure will therefore give the highest value when the
histogram values alternate with a high frequency.

No exhaustive research has been done, but many
more statical measurements could be though of to be
calculated from the histograms.

This method relies heavily on a either (visually) good
or (intra class) distinctive clustering and a very good
orientation adjustment. Especially if the lines are an
important feature the proper angle alignment is very
necessary to preserve the peakiness of the histograms
of this cluster.

The implementation takes with clustering, but with-
out necessary illumination correction and orientation
detection about 1.25 seconds on a 2.13GHz computer.
Even if the code is written in Matlab, except with the
use of compiler options, it is not realistic to improve
the speed much more, since as much vectorization as
possible was used and the main computations fall on
the rotation of the image.

L. Morphological Spectrum
At the beginning of the project, morphological spec-

tra [20] were considered as feature extraction method.
Morphological spectra are an implementation of a dis-
crete convolution of a signal with itself. Doing so,
valuable shape features can be extracted. Even if not
correct at the end, primary it was assumed that a

Fig. 22: Workflow of the feature extraction of the angle
features, orientation based segmentation features and
morphological features.

segmentation is needed to generate a morphological
spectrum, which led us solve the segmentation problem
first. Another reason, why the decision was made to
turn first to segmentation was, that the wood holes
could be used as important feature, following [21],
where morphological spectra are used to classify cells
that can be hardly distinct even by a trained human.
Over the segmentation task and new opportunities the
morphological spectra have been forgotten for a while.

However, at the end phase of the project the idea
was followed again, but without time for an exhaustive
literature review. One important paper seems to be [22],
which can be used for further exploration of this topic.

Even if a true realization was not possible, a small
attempt has been made, by simply generating features
from the dilation of the clusters, obtained by k-means
clustering with different shapes and sizes of kernels.
This turned out to give 10 % more accuracy with
Naive Bayes at the time of union with the angle based
features and the features from the orientation based
segment projection. On the other hand this different
simple features show a very high correlation.

It can be clearly stated that it is highly advised to
do research in this field, it seems to be very promising
and it is used in many fields successfully.

M. Combination of Angle Based, OBSP and morphological
features

The final feature was combined from the angle based
feature extraction, orientation based segment projection
and the morphological features. It gave with naïve
bayes classifier about 63%, after processing with PCA
and LDA and the use of the first nearest neighbour
classifier 82% (see figure 23 on page 19 ).

N. Overview of the Used Features
This section is intended to give an overview of the

feature extractors we experimented with. The features
are summarized in table VIII, but in general it can be
said that complex feature extractors such as wavelets,



TABLE VIII: Overview over the used feature extractors, summarizing their pros and cons that should be
considered in a future implementation

Feature Extractor Speed Pros Contras

Curvelets 5-15 sec

! emulate 2d curves well 7 number of features can be quite high
! multi-scale 7 features amount depends on number of scales & angles
! sensitive to edge direction 7 complex to implement the transform
! take into account the geometry 7 long computation time

7 computation time increases with the size of the image

Ranklets 60 sec
! illumination invariant 7 extremely time consuming
! 45◦ rotation invariant 7 multi-resolution is not inherited
! brightness transform invariance 7 do not give information about shape

GLCM 2-5 sec

! extracts spatial relationships 7 do not give information about shape
! acceptable computation time 7 multi-resolution is not inherited
! distinctive accuracy
! easy for implementation
! has a certain degree of rotational invariance

Wavelets 0.5 - 1
sec

! Multi scale & direction analysis 7 Low discriminatory power
! Fast feature computation 7 No guideline for setting Mother wavelet
! Scale invariant(not used) 7 No guideline for setting N-levels
! Rotation invariant 7 many parameters

LBP 0.2 - 1
sec

! easy to implement
! very fast

Angle Features 1.2 sec

! integrated in angle detection 7 relies on segmentation result
! brightness invariant 7 at current state not very discriminant
! scale invariant
! few features
! histogram descriptors extendable
! easy to implement
! no parameters (except for segmentation)

OBSP features 2 sec

! very fast 7 relies on segmentation result
! few optimized features 7 only images center used
! rotation invariant 7 not very scale invariant
! histogram descriptors extendible
! no parameters (except for segmentation)

Morphological
features 0.4 sec

! very fast 7 not very descriptive alone
! easy to implement 7 not very scale invariant
! rotation invariant 7 does not extend by use of different masks

Gabor Filter 1 sec ! 7

! 7

curvelets and ranklets did not perform as well on this
dataset, then more simple approaches. Especially the
combination of LBP, angle features, OBSP features and
morphological features perform very well and can be
computed together in less then 5 seconds, where the
later three show a low correlation and complement
each other quite well. However, they can improve the
very good performance of LPB only within a few per
cents.

Saying this it has still to kept in mind, that the dataset
is very special and the low inner-class variance makes
it very difficult to draw final conclusions.

V. Feature Selection
Feature selection is applied mainly for two pur-

poses, First: to reduce the diminution of data: as a

feature space with high dimensionality may contain
high amount of redundant features which do not con-
tribute to the classification. In fact high dimension of
features lead to higher computation time and in some
cases more complex decision boundaries. In such case
classifier will have higher error rate. Second reason for
feature selection is not only to reduce dimension for
reasons mentioned previously but also to find features
which can provide a more separable feature sub-space.
An optimum feature space is the one which the samples
belonging to same class have low scatter and different
classes are as far away as possible from each other.
In other term feature space has la maximum ratio
of between class scatter and within class scatter for
the whole data. Several approaches can be taken for
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Fig. 23: Combination of angle based features with the
features from the orientation based segment projection
and the morphological features. This plot shows the
result of feature extraction. The features were reduced
to N features using PCA and LDA (fisher mapping)
reduction and classified with 1NN.

Fig. 24: Confusion matrix of the combined features with
the naïve bayes classifier. It shows that some classes
have a weaker classification performance then others,
but that from all classes at least some samples are
classified correctly. However it also shows that only
class 2 and 20 are confused regularly.

selection of suitable features for classification.

A. Naive Approach

As the First and the most trivial, it is possible to
study the performance of individual set of features
and discard those which perform poorly. However,
this approach does not take in to account the fact
that even features with low performance can provide
complement information if combined correctly. Further

it is possible that selected features with individual
high performance have high correlation thus simple
concatenation of these features can lead to performance
loss.

B. Correlation

The second approach is to analyze the correlation
between features and remove features that are highly
correlated. The problem with this approach is that it is
time consuming, especially if the dimension of feature
vector is of high. For example wavelets and curvelet
feature extraction method produce a high dimensional
feature vector (approx 2700 and 7000 receptively). Thus
computation of correlation matrix of the combined
feature vector is computationally expensive and the
analysis is laborious.

C. Principal Component Analysis (PCA)

Another way to remove the correlation between
is using Principal Component Analysis (PCA). This
method finds the linear combination of features that
can be used to express the feature space in a lower
dimension. The dimension of feature vector after pro-
jection is dependent on the number of eigenvectors of
the covariance matrix of the original space used. Eigen-
vectors associated with highest Eigen-value represent
the feature with highest variability. The eigenvectors
are sorted with respect to their eigenvalues in a de-
scending order and the first N eigenvectors are used
as transformation matrix to project feature space in to
the reduced sub space with no correlation.

In practice the optimum number of eigenvectors is
found empirically. We start from a specific number
of eigenvectors (minimum dimension) and increase
the number of eigenvectors selected and evaluate the
performance of projected feature space. we plot the
performance over different number of features. An
example of these performance plot be seen in figure
25. If the plot start to plateau after a certain number
of eigenvectors it means that the feature projection is
stable and the this number of features can be used
reliably for classification. on the other hand if the per-
formance oscillates for different number of eigenvectors
this means that selecting the number of eigenvector
that give the best performance will not reflect the actual
capability of the system. But rather the system is over
fitted towards this specific test set.

Moreover, it should be noted that PCA has the issue
of using the covariance matrix to compute the basis(
i.e. transformation matrix for projection to sub space).
Thus the basis derived is dependent on variability of
data and that the subspace derived is not necessarily
optimal for classification. To achieve a subspace which
can separated the data in more suitable way. Linear
Discriminant Analysis (LDA) can be used.



D. Linear Discriminant Analysis (LDA)
LDA attempts to derive the subspace that maximizes

the ration between class scatter and within class scatter,
thus deriving as subspace that can separate features of
different classes more optimally. For Derivation of LDA
subspace we need to find C-1 eigenvectors of S−1

w Sb
where C is the number of classes. This computation
is not possible if the within class scatter matrix (Sw) is
not invertible (i.e. it is rank deficient). In order to assure
that (Sw) is invertible we should project data in PCA
subspace first. With projection of features into PCA and
LDA subspace respectively we can derive the subspace
which is suggested by many studies to be optimal for
classification. In order to test this hypothesis several e
experiments have been carried out.

The problem with PCA-LDA projection is that PCA
is not compatible with LDAs Dimension reduction
criteria thus the dimensions which may be important
for better class separation might be discarded due to
PCA projection. The solution to this problem is given
by Direct LDA (DLDA). In this approach the null space
of (Sb) – that does not contain any useful information
for classification – is discarded and the null space of
(Sw)- that contains critical discriminative information-
is persevered. DLDA achieves this by first diagonal-
izing (Sb) first and then (Sw) that is the reverse order
of the traditional LDA. DLDA is particularly helpful
when the of (Sw) is singular (which is the case for most
of our feature extraction methods). For implementation
of DLDA and guides on techniques for dealing with
high dimensional of (Sb) and (Sw) refer to [23].

VI. Classifiers
At the end of the classification pipeline, after pre-

processing, feature extraction, feature selection and
feature extraction stands the classification itself. As
stated in the very beginning of the report, the variety
of the dataset is very low and the use of very adaptive
classifiers was considered as very useful. The reason
is, that a tuning of classifiers as well as an intensive
feature selection might lead to a good result with the
provided test set, but at the cost of being overfitted
to that very dataset. Cross validation is not applicable
as well, because of the danger to test on data which
the system was trained with, as stated in the section ??
Dataset.

Therefore we did not concentrate our research on
finding an optimal classifier, rather then using simple
settings to test the potential of the extracted features.
The following sections will introduce briefly into the
used classifiers and their advantages.

A. Naïve Bayes
One of the most simple classifiers is the naïve bayes

classifier. It is based on Bayes probability law and relies
on a statistical independence of the features and needs
a inter- class variance above zero. However classifier is

very easy to use, has multi class classification abilities
and is very fast in training and testing and does not
need any tuning parameters, making it to an ideal
testing classifier during the development of a feature
extraction. Therefore the preliminary results of the sin-
gle feature extraction methods, presented above, were
calculated with the use of the naïve bayes classifier. In
the final classification set-up it was replaced by more
sophisticated mechanisms as described below.

The used naïve bayes was the one of the statistical
toolbox of Matlab.

B. k-Nearest-Neighbour

The k-nearest-neighbour classifier is again a very
simple classifier, that searches for a given test sam-
ple for the training sample with the closest distance
over the complete feature space. The class is then
determined with the class label that is assigned to
the majority of the k closest training samples. It is
therefore without modification able to do a multi class
classification.

With its simplicity some disadvantages appear. The
biggest disadvantages are that first the classification
process takes longer with increasing feature space and
with the amount of different samples. The second
drawback is that it suffers much from the curse of
dimensionality.

Despite its simplicity, it was used in the final classi-
fication set-up, which reduced the amount of features
to 24, making the feature space suitable for a 1-nearest-
neighbour classification.

As for the naïve bayes the Matlab implementation
was used.

C. Support Vector Machine

Support vector machines (SVM) are a very powerful
classification tool, natively developed to solve two-class
problems. A SVM maps the feature space into higher
dimensions until it is possible to separate the space
with a specified kernel function. Typically SVM uses
a linear function to separate the space, but also other
functions are possible. Very common kernel functions
are also the non-linear radial functions.

Despite its powerfulness, the SVM is a very tricky
classifier. From previous project we knew that the
SVM depends heavily on the type of feature vectors
it is trained on. In a bag-of-words approach with a
very high dimensional feature vector for instance, the
trained SVM gave much better results, if each feature
was only binary (showing either 0 or 1) instead of
counted integers.

Another problem of SVMs are their limitation to two-
class problems. In order to solve a multi-class problem
it is necessary to adopt the standard SVM with an one-
against-one or an one-against-all scheme.

Even if there was no focus onto SVM in this work,
several libraries have been tested. The PRtools toolbox
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Fig. 25: Combination of angle based features with the
features from the orientation based segment projection
and the morphological features. This plot shows the
result of feature extraction. The features were reduced
to N features using PCA and LDA (fisher mapping)
reduction and classified with 1NN.

comes with a multi-class SVM that was used and also
a simple interface for SVMperf has been programmed
and adopted with an one-against-all scheme. Both ver-
sions gave slightly better results then the simple naïve
bayes and k-nearest-neighbour classifiers, but were still
far away from the final result. Most probably due to a
not very good feature post-processing and the not very
extensive tuning attempts.

VII. Final System

Based on their good basic performance and their
computational effective generation, LBP and the com-
bined features from the angle based segmentation,
OBSP features and the morphological features were
combined to one feature vector. As it can be seen in
figure 25, after feature reduction to 109 features, this
combination is slightly better (with 94%) then LBP
alone which gave a maximum classification result of
about 90% (compare figure 19). This curve shows also
an not expected oscillation, as the curve for LBP does.
As for LBP we think, that this is an result of a kind of
overfitting of the classifier to the test data.

This result can be achieved in below 5 seconds on a
single image, a speed that seems to be applicable in a
real world application, if the classification result turns
out to be as good as here on other test images.

VIII. FutureWork

During the work on this dataset many approaches
were experimented with, while constantly ideas arose
that could not be followed, because of time or compe-
tency constraints. We would like to propose this ideas
for a future work as starting point for later projects.

A. Database

Very important would be the standardization of the
different available datasets, so that they become easily
interchangeable. A selection of a training and test set
for all datasets is crucial, due to the huge overlaps of
the existing data, it is not possible to overcome the lack
of a proper test set by use a cross validation.

The processing of the dataset could be made faster
and more accurate, if the acquisition device would be
calibrated in terms of generating a valid illumination
model or an improvement of the device itself, provid-
ing a diffuse illumination. It seems that some wood
shows some speckle effects, which make some holes
appear white instead of black. But this has to be verified
by an expert.

Apart from this adjustments of the dataset, it would
be a future task, to acquire a new dataset on bigger
wood samples and higher varieties. It is also question-
able, if the wood inspected in an industrial context
shows the same crafting features as the wood used for
the dataset creation, which seems to have a polished
wood.

B. Pre-Processing

To obtain better segmentation results a fuzzy-k-
means that uses fixed initialization points could be
implemented. Good segmentation results could be also
expected if LBP would be used as segmentation basis
which could be seen as a kind of neighbourhood based
segmentation, just being much faster.

C. Feature Extractors

For both, the angle histograms and the OBSP his-
tograms, more statistical values could be extracted to
enhance the description abilities of both methods. Also
it could be tested how much the diagonal projection
of OBSP contributes to a classification, it might be
considered to be left away to speed up the process by
about the half of the time.

The exploration of morphological spectra should take
a big part of future research, since they seem to be very
promising. A morphological spectra approach could
be also tried on the different histograms, by simply
shifting them and extracting the differences between
the shifts.

IX. Conclusion

Even if the conclusions that can be made on the
used dataset are limited, we are here summarizing our
results.

The work on this database showed that wood seems
not to have very strong shape features which are
targeted by curvelet, ranklet and wavelet approaches.
On the other hand the shape based morphological
approach showed potential. However, overall the sim-
ple and well known texture descriptor LBP showed a



very high performance. Considering its computational
speed, practical use is very possible.

Some of the features we implemented based on
the angle histogram and the summed projection of
segmented areas horizontally, vertically and diagonal
can be also computed very fast and increase the final
classification performance.

As for the curvelet transform, coefficients of the
General Gaussian Distribution individually performed
better than the statistical and co-occurrence features.
There is a potential in exploring which distance mea-
sure could improve their performance.

In future work we proposed the enhancement of the
dataset and feature descriptors as well as advice the
directed research on morphological spectra.
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