
TOWARDS THE HYDROGEN ECONOMY

THE ITALIAN VISION

Prof. Ezio Bussoletti Italian Ministry for Environment and Territory

Beijing - May 26-27, 2004

Solar Energy based

Solar production plant

Solar thermal HT Photolysis LT

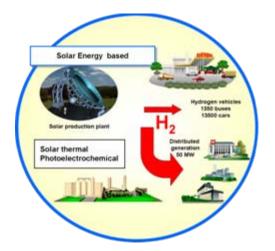
Hydrogen vehicles 1350 buses 13500 cars

Distributed generation 50 MW

Hydrogen from biomass and wastes Hydrogen vehicles 250 buses 2500 cars **Hydrogen production plant Gasification/Fermentation Distributed** generation **Biomass 10 MW Municipal wastes Industrial wastes**

Avoided CO₂ for each hydrogen hub

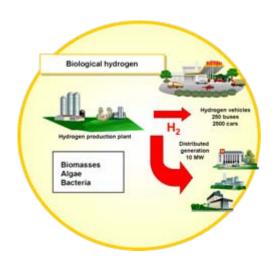
Fossil Fuel Hydrogen Hub


Installed electric power 800 MW

Vehicles ~ 2,500 buses

~ 25,000 cars

2.3 – 2.7 million ton CO₂/year


Installed electric power 50 MW

Vehicles ~ 1,300 buses

~ 13,000 cars

0.3 million ton CO₂/year

Avoided CO₂ for each hydrogen hub

Biomass Hydrogen Hub

Installed electric power 10 MW

Vehicles ~ 250 buses

~ 2,500 cars

50,000 ton CO₂/year

Summary

Fossil hub 2.3-2.7 Mton/year

Solar hub 0.3

Bio hub 0.05

Hydrogen Economy cannot be developed by itself

Evolution of energy vectors from 1850 up to date

Experience on hydrogen as an "alternative" energy source in 70s was negative

Why hydrogen comes out again?

Barriers to the market

Therefore transition towards hydrogen economy should be fostered

Hydrogen from Fossil Fuels Critical steps

CO₂ SEQUESTRATION

- Depleted gas wells
- ► Deep saline aquifers

Demonstration program

Actions

- Geological survey
- Demo plant testing
- Long term behavior modeling
- Monitoring technologies

04 05 06 ₀₈

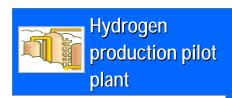
Prefeasibility

Feasibility

Commissioning

Startup

SAFETY, CODES AND STANDARDS


Hydrogen from Solar Energy Critical steps

Pilot plant development

Thermochemical cycles

Basic Research

 H_2

Best technologies

Demonstration

Photolysis processes

- Basic research for catalysts
- Development of photoreactors

SAFETY, CODES AND STANDARDS

Hydrogen from biomass and wastes Critical steps

Gasification of carbon-containing wastes and biomass

Technological development =

Hydrogen production pilot plant

Direct fermentation of organic materials to H₂

Basic Research

Lab-scale test

Hydrogen utilization Critical steps

Turbogas Trials on pilot and

commercial units

Stationary Fuel Cells Demo for distributed

generation

Logistics

Automotive Fuel Cells Demo for city buses

and dedicated cars

Basic for onboard

storage

Logistics

2004-2011

Economics The most critical issue

Goal: CO₂ mitigation

(Improvement of air quality)

Hydrogen can be the least expensive solution, but.....

.... the present market rules don't allow the exploitation of such a way

New market rules and public acceptance

are needed!

International partnership has a key role!

ITALY IS A STEP HAED

- ITALY HAS A LONG EXPERIENCE IN NATURAL GAS (LOGISTICS, GASTURBINE, AUTOMOTIVE, INDUSTRY, HEATING)
- ITALY HAS THREE UNITS ALREADY ONGOING BASED ON TAR GASIFICATION FOR SYNGAS AND POWER GEN THROUGH COMBINED CYCLE
- SALINE ACQUIFERS COULD PROVIDE A LONG TERM CO2 STORAGE