

Towards sustainable energy systems – Current developments in Germany

May 20th, 2014 | Oslo

Dr. Klaus Bonhoff | General Manager NOW GmbH National Organization Hydrogen and Fuel Cell Technology

Clean Power for Transport Directive General

Targets of the directive:

- Solve the "Chicken-and-Egg-Problem" = Energy/Fuel— Powertrain Infrastructure, Safety for investment into alternative power trains due to availability of infrastructure.
- Establishment of an EU market for alternative fuels and power trains.
- Enforcements of the the EU's innovation and competitiveness

CPT-directive covers specific infrastructure requirements for the following fuel options:

- Power for BEV's as well as charging opportunities for ships in habors.
- Hydrogen
- Methane (CNG and LNG: for street traffic and maritime applications)

Key elements of the CPT-directive:

- Member states(MS) have to develop national implementation plans (NIP); no specific guidelines for infrastructure by the directive: MS have to decide within their NIP about a "appropriate number" for "Charging/H2/LNG&CNG"-infrastructures
- Establishment of binding technical standards and specifications for the interconnection between "Fuel / Vehicle / Infrastructure". Motivation/Target: Interoperability und antidiscriminatory availability of infrastructure.

Clean Power for Transport Directive Impact for the Hydrogen Technology

- Integration of the directive into national laws: 24 month after empowerment (expected: mid of 2014)
- H2-Infrastructure: 31.12.2025 (just for MS which will use the H2 option)
- Relevant Standards:
 - ➤ The **hydrogen purity** dispensed by hydrogen refuelling points shall comply with the technical specifications included in the **ISO 14687-2** standard.
 - ➤ Hydrogen refuelling points shall employ **fuelling algorithms** and equipment complying with the **ISO/TS 20100** Gaseous Hydrogen Fuelling specification.
 - ➤ Connectors for motor vehicles for the refuelling of gaseous hydrogen shall comply with the ISO 17268 gaseous hydrogen motor vehicle refuelling connection devices standard.
- Transition period for all fuel options: 36 month after empowerment of the directive all new or renewed fuel infrastructure has to follwed the mentioned standards.

Political Climate and Energy Targets for Germany¹

- Reducing GHG across all sectors (1990 baseline): 40% by 2010 → 80% by 2050
- Share of renewable energies of the gross final energy consumption:
 - 18% by 2020 → 60% by 2050
- The share of renewable energies for the electric power supply:
 - 40-45% by 2025 → 55-60% by 2035
- Reducing primary energy consumption: 20% by 2020 → 50% by 2050.
- Increase of Energy productivity:
 2.1% per year compared to final energy consumption.
- Decrease of electricity consumption (baseline 2008): 10% by 2020 → 25% by 2050
- Compared to 2008, heat demand in buildings is to be reduced by 20% by 2020, while primary energy demand is to fall by 80% by 2050.

Political Framework for the Transport Sector

- Share of transport in final energy consumption nearly 30%
- Tripling of energy consumption in transport since 1960, even five-fold increase in road traffic
- Goals of the German Energy Concept (2010) for Transport:
 - about -10 % until 2020 of energy consumption
 - about -40 % until 2050 of energy consumption (vs. 2005)
- → The Mobility and Fuels Strategy of the German Government² outlines the way how to achieve these objectives.
- → Electrification of the drive train (BEV's and FCEV's) is an key issue to reach the targets!
- → Targets only achievable with renewable power to gasous fuels.
- → Further increase of RE mandatory to achieve the targets.
- **→** Large scale storage for Hydrogen is inevitable.

Utilise Surplus Wind Energy via Hydrogen in the Northern Part of Germany

Availability of salt caverns in Germany

- Geological opportunities for salt caverns only in the northern part of Germany.
- Highest share of wind energy in the northern part of Germany
- Lack of grid connection between north and south.
- → Storing the excess wind energy in the northern part is crucial.

Results of the Scenario 2 in the North/East-Part

Fall	"weniger Kraftstoff"	"Standard Nordost"	Investition GuD 600 €/kW statt 800 €/kW	GT statt GuD, Investition 504 €/kW	Investition Elektrolyse 700 €/kW statt 900 €/kW	Investition Elektrolyse 500 €/kW statt 900 €/kW	preis- gesteuert
Stunden Elektrolyse	3.052	3.052	3.052	3.052	3.052	3.052	5.600
Menge / Jahr	32.044	32.044	32.044	32.044	32.044	32.044	59.100
Anteil Rückverstr.	38%	7%	7%	7%	7%	7%	39%
	notwendiger spezifischer Erlös €/kg H ₂ -Kraftstoff						
Spotmarkt (0 €/MWh)	3,71	2,92	2,74	2,56	2,50	2,08	1,55
40 €/MWh	6,80	5,00	4,82	4,49	4,58	4,16	
80 €/MWh	9,90	7,08	6,90	6,43	6,66	6,24	

Analysis PtG in Germany

Outcomes:

- Geological and technically large scale salt cavern storage is possible in Germany.
- There are business case for a profitable operation of the hydrogen storage plant if not only excess energy is used for the electrolyzer.
- Selling hydrogen as a fuel for transport is in the most cases the most profitable way to go.

Challenges:

- → Reducing cost of the electrolyzer
- → Creating a positive regulatory environment (e.g. exemption of grid fee for electolyzer power, RE-contribution, energy tax, H2 injection into the NG grid)
- → First small demonstration projects have to be started soon.
- → Defining a clear PtG-roadmap for Germany
- →Increase the share of RE in order to achieve the climate targets for transport.

Forschungsinitiative der Bundesregierung

Wind-Hydrogen in the Energy Park Mainz

- Public service Mainz,
 Siemens, Linde,
 University Rhine-Main
- 2 MW PEM-Electrolyzer
- Ionic compressor
- Multiple pathways to use hydrogen
- > Start of operation in 2015

42,90 Mio.€ for Wind-Hydrogen Projects

50 HRS for Germany

- joint Letter of Intent to expand the network of hydrogen filling stations in Germany
 - signed by the German Ministry of Transport, Building and Urban Development (BMVBS) and several industrial companies
 - part of the National Innovation Programme for Hydrogen and Fuel Cell Technology (NIP)
 - overall investment more than €40 million (US\$51 million)
- coordination by NOW GmbH in the frame of the Clean Energy Partnership (CEP)

Current Status:

- Location planning of the 50 HRS has been finalized.
- Currently there are application for funding for 23 HRS, the remaining 12 HRS are in the planning phase.
- The majority of the HRS will be operated by H2-Mobility after the funded project time frame has ended.
- About ~110 FCEV's are currently on the road.

Federal States in Germany – Policy and Market Preparation

Motivation: Climate protection and economic development **Implementation**: Own state strategies und funding

Baden-Württemberg:

- Program for H2 infrastructure set-up (€4 m)
- Market program micro CHP with FC (€1 m)
- Organisation: e-mobil BW

• Hamburg:

- FC buses at "HOCHBAHN", monitoring FC cars
- Extention of HRS "HafenCity" to marine applications
- Funding of €13 m until 2016
- Organisation: hySOLUTIONS

Hessen:

- Energy program with funding for H2 and FC
- Power to gas, FC special applications, H2 infrastructure
- Market program micro CHP with FC
- Organisation: H2BZ-Initiative Hessen

Federal States in Germany – Policy and Market Preparation

Motivation: Climate protection and economic development

Implementation: Own state strategies und funding

Lower Saxony:

- Study on wind-hydrogen in the Northern region (with Hamburg and Schleswig-Holstein)
- Electrolysis and H2 storage in salt caverns
- Organisation: State Initiative on Energy Storage and Systems

North Rhine-Westphalia (NRW):

- RD&D program (NRW Hydrogen HyWay)
 on H2 production, infrastructure, FCEVs
- Market program micro CHP with FC
- Funding of €30m until 2016
- Organisation: Fuel Cell and Hydrogen Network NRW

Annual project funding of all federal states: > €30 m

Power to gas – H2 from renewable power

Example: Wind power electrolysis in H2 Application Center Herten (NRW)

Location: Herten (Ruhr area)

Budget: €3 m / funding €2.7 m

Duration: 2009 - 2025

Idea: Net autonomous power supply

of technology centre with wind energy via electrolyser, battery

and fuel cell

Partners: City of Herten, University of

Applied Science Gelsenkirchen,

Evonik, Hydrogenics, Linde,

Gustav Klein, Saft, Vako

Status: Operation started in 2013

Next: Gainig of experiences,

optimisation of system, adding of components

Quellen: h2-netzwerk-ruhr

Fuel Cells in the back-up power market

Market development for back-up power systems

Telecom Case: A multi billion global market asking for energy efficiency and site uptime

Thank you very much!

Dr. Klaus Bonhoff General Manager

NOW GmbH National Organization Hydrogen and Fuel Cell Technology

Fasanenstrasse 5, 10623 Berlin, Germany

download: www.now-gmbh.de