Hold design supports learning and transfer of climbing fluency

2nd International rock climbing conference, Pontresina, 16th Sep 2014

Dominic Orth, Keith Davids & Ludovic Seifert

Université de Rouen
Queensland University of Technology
ANR
GRR
INSA Rouen
CETAPS
Reises
NiSC
Climbing constraints
Skill in climbing: Complexity approach

Performer

Constraints

Environment

Task

Information

Performace timescale

Movement

Learning timescale

Kelso. (2006)
Davids. (2008)
Seifert. (2013)

Davids. (2014)
Skill in climbing: A rapid adaptation to the constraints on performance

Geomtric index of entropy = \(\log_2(2 \text{Distance/convex hull})/\log_2 \)

Cordier. (1994)

Cordier. (1993)
Cordier. (1994)
Cordier. (1996)
Experience influences the ability of individuals to detect and use affordances for fluent traversal.

Unexperienced climbers (<10hs) climbing an ice fall

Experienced indoor climbers (~3yrs) climbing an ice fall

No experience on ice-falls

Seifert. (2013)
Skill differences in climbing: Different movement patterns available built up through experience

Seifert. (2013)
Interventions related to affordances in climbing

Different techniques can improve fluency

Nature of the constraints determine whether they are used

<table>
<thead>
<tr>
<th>Differences Between Groups* in Climbing Duration (sec.) and Geometric Entropy of the Route’s Middle Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climb 1</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>Climbing Duration</td>
</tr>
<tr>
<td>Arm Crossing</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Dual Grasping</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Geometric Entropy</td>
</tr>
<tr>
<td>Arm Crossing</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Dual Grasping</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*Arm Crossing, Dual Grasping, Control. a,b: Significant performance differences between groups for each measure and climb are indicated by different superscripts (p < .05).
Variability during practice promotes retention and transfer through a more extensive exploration of affordances

Mechanisms

- New and better solutions
- Requires adaptation
- Context specific

Schollhorn. (2009)
Chow. (2013)
Shea. (1979)
Induce exploration of affordances

Hristovksi. (2011)
Pinder. (2011)
Chow. (2011)
Kelso. (2012)
Research question: *Role of technique variation in learning design for practicing climbing skills*

- Does possibility of practice of different climbing actions improve learning and transfer of skill?

2 Global patterns of climbing can be discriminated
- Face-wall
- Side-wall

Seifert. (2013)
Design

A.

Transfer route
Design

Horizontal Vertical Both

- Set to 5c
- 10.3m height
- 20 handholds
Apparatus

Raw

Distortion

Paralax

SA-tracking
Learning will only be induced in the double edged route

Climbing fluency will transfer to new condition of the same difficulty and hold usability, but with different hold locations

Analysis: Geometric index of entropy

Geometric index of entropy = $\log_2(2\text{Distance/convex hull})$

- Geometric Entropy (H):
 - $H_1(\text{blue}) = \ln(2\times PL_1/c)$
 - $H_2(\text{orange}) = \ln(2\times PL_2/c)$

- Since $PL_1 > PL_2$
- $H_1 > H_2$
- For the same height $HTot$

Sibella. (2007)
Schollhorn. (2009)
Chow. (2013)
Results: RM-ANOVA

Main effects:
- Condition
- Condition x trial

Planned contrasts confirmed a trial by condition effect driven by the double edged route
Results

Double edged route was only route that showed a learning effect.

Climbing fluency remained good under transfer.
Discussion: learning effect

• The effect of choice at each hold drove learning effect and not the practice of different movement patterns, the route difficulty or route novelty.
• The uncertainty represented in the route facilitated the transfer of climbing fluency to a novel route
 – Transfer effects appear to be driven by learning to adapt movement patterns, as opposed the practice of those movement patterns in isolation
Discussion: Practical applications

• Once movement patterns have been stabilised, representing uncertainty is an important design factor for inducing learning and facilitating transfer

