The effect of arm position and grip during finger flexor strength measurement in sport climbers

Jiří Baláš, Michaela Panáčková, Jan Kodejška, Darryl J. Cochrane, Andrew J. Martin, Jonáš Mrskoč, Nick Draper
Finger strength in climbers

Psychological factors

Environmental conditions (temperature, humidity, use of chalk,..)

Neuromuscular factors
Forearm muscles morphology, firing, MU recruitment and synchronization, hormonal concentration, metabolic state, antagonist inhibition,..

Muscle contraction (isometric, concentric, eccentric, isokinetic,..), use of elastic energy,..

Type of dynamometry

Arm position

Finger flexors recruited

Hold size and depth, use of thumb, open/crimp grip, number of fingers used, ..

Absolute strength/strength related to body mass?
Muscle contraction (isometric, concentric, excentric, isokinetic,..), use of elastic energy, ..

Psychological factors

Environmental conditions (temperature, humidity, use of chalk,..)

Neuromuscular factors
Forearm muscles morphology, firing, MU recruitment and synchronization, hormonal concentration, metabolic state, antagonist inhibition,..

Finger flexors recruited
Hold size and depth, use of thumb, open/crimp grip, number of fingers used, ...

Type of dynamometry

Arm position

Finger strength in climbers

Absolute strength/strength related to body mass?
Evaluation of climbers finger strength

- What is the best arm and body position?
- What is the suitable grip? How many fingers should be used?
- How deep should be the testing hold?
- What type of contraction should be tested?
- And the other variables such as material of the hold, inclination of the hold,...
The role of arm position during finger flexor strength measurement in sport climbers

Jiří Baláš, Michaela Panáčková, Jan Kodejška, Darryl J. Cochrane, Andrew J. Martin
Arm position and finger strength during climbing
Arm position and finger strength - during testing

Handgrip
Arm position and finger strength - during testing

Journal of Sports Sciences, 1996, 14, 301-309

Anthropometric, strength, endurance and flexibility characteristics of elite and recreational climbers

S. Grant,¹ V. Hynes,¹ A. Whittaker² and T. Aitchison³

Journal of Sports Sciences, 2001, 19, 499–505

A comparison of the anthropometric, strength, endurance and flexibility characteristics of female elite and recreational climbers and non-climbers

S. Grant,¹ T. Hasler,¹ C. Davies,² T.C. Aitchison,² J. Wilson¹ and A. Whittaker³
Climbing-specific finger endurance: a comparative study of intermediate rock climbers, rowers and aerobically trained individuals

S. GRANT,1* C. SHIELDS,1 V. FITZPATRICK,1 W. MING LOH,1 A. WHITAKER,2 I. WATT1 and J.W. KAY3

1Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK, 2Mechanical Engineering, University of Glasgow, Glasgow, UK and 3Statistics Department, University of Glasgow, Glasgow, UK
Physiological determinants of climbing-specific finger endurance and sport rock climbing performance

D. MACLEOD¹, D. L. SUTHERLAND¹, L. BUNTIN¹, A. WHITAKER², T. AITCHISON³, I. WATT¹, J. BRADLEY⁴, & S. GRANT¹
Climbing-specific finger flexor performance and forearm muscle oxygenation in elite male and female sport climbers

Marc Philippe • Daniel Wegst • Tom Müller • Christian Raschner • Martin Burtscher
Fingertip force and electromyography of finger flexor muscles during a prolonged intermittent exercise in elite climbers and sedentary individuals

LAURENT VIGOUROUX & FRANCK QUAINÉ
Correlation of forearm strength and sport climbing performance

A. Schweizer* and M. Furrer
PREDICTION OF INDOOR CLIMBING PERFORMANCE IN WOMEN ROCK CLIMBERS

CHRISTOPHER B. WALL,¹ JOANNA E. STAREK,¹ STEVEN J. FLECK,² AND WILLIAM C. BYRNES¹
Differences in Climbing-Specific Strength Between Boulder and Lead Rock Climbers

Maurizio Fanchini, Frédéric Violette, Franco M. Impellizzeri, and Nicola A. Maffiuletti

27(2)/310–314
Journal of Strength and Conditioning Research
© 2013 National Strength and Conditioning Association
ANTHROPOMETRIC AND STRENGTH CHARACTERISTICS OF WORLD-CLASS BOULDERERS

Michail L. Michailov¹ (A,B,C,D,E,F), Lubomir V. Mladenov² (A,B,F), Volker R. Schöffl³ (D,E,F)

Medicina Sportiva
DOI: 10.2478/v10036-009-0036-z
Copyright © 2009 Medicina Sportiva

Notwendigkeit des einfingerigen Trainings der Fingerbeugemuskulatur zur Leistungssteigerung im Sportklettern. Vergleich der Kraftentwicklung bei ein- und vierfingeriger Maximalkontraktion

Necessity of one-finger-training for the increase of performance in climbing. Comparison of force development between one- and four-finger maximum voluntary contraction

DEUTSCHE ZEITSCHRIFT FÜR SPORTMEDIZIN JAHRGANG 46, Nr. 7/8 (1995)
Arm positions during testing x climbing

During testing

- 1. shoulder flexed at 90° (externally rotated or not) with an elbow flexed at 90°
- 2. shoulder abducted at 45° and elbow flexed at 90°
- 3. shoulder flexed at 180° and elbow fully extended

During climbing

→ primary position of the arm when applying force on the hold is with the shoulder above 90° abduction or flexion!
The aim of the study

The aim of the study was to evaluate the validity and reliability of 4 different arm positions for finger flexor strength measurement in sport climbers.
Methods

- 25 male and 21 female climbers with self-reported RP between III and X+ on the UIAA scale

- Climbers were divided according to their reported climbing grade from lower grade (≤ VI+ UIAA; 6a French scale; 5.10a YDS) to advanced climbers (> 6+ UIAA)
11 lower grade female climbers (24.2 ± 3.2 years; 61.5 ± 8.3 kg, 167.2 ± 5.2 cm)

10 female advanced climbers (25.0 ± 2.5 years; 57.2 ± 8.6 kg, 165.6 ± 7.3 cm)

13 lower grade male climbers (25.5 ± 3.5 years; 74.3 ± 6.7 kg, 178.7 ± 5.3 cm)

12 advanced male climbers (28.4 ± 6.7 years; 67.9 ± 8.0 kg, 175.7 ± 5.4 cm)
4 different arm positions with other variables held constant

- the same finger position on the gauge
- sitting position
- randomly assigned arm position
Statistical analysis

- The ICC was used to assess the intra-session reliability for all tests of the left and right hand.

- To assess the criterion related validity repeated analysis of covariance was used (4 x 2 x 2), with the arm position as a within subject factor, sex and climbing ability as between subject factors, and body mass as a covariate.
Average values from all the test results of the left and right hands were analyzed.

To control the effect of body mass on the strength results, the inclusion of body mass as a covariate was preferred, rather than standardizing the scores with regard to body mass.
Results

A high ICC was found for all positions:

- right hand (handgrip) 0.97; (90/90) 0.96; (130/50) 0.97; (180/0) 0.96;

- left hand (handgrip) 0.97; (90/90) 0.96; (130/50) 0.98; (180/0) 0.95.

- SEM ranging from 22-26 N
Handgrip

Finger flexors strength (N)

- Female lower grade
- Female advanced
- Male lower grade
- Male advanced

$P = 0.145$
$n_p^2 = 0.051$

$P = 0.008$
$n_p^2 = 0.158$

$P = 0.001$
$n_p^2 = 0.250$

$P = 0.001$
$n_p^2 = 0.249$
Handgrip strength related to body

Handgrip strength (kg/kg)

\[P = 0.002 \text{ !!!} \]
\[\eta_p^2 = 0.206 \text{ !!!} \]

<table>
<thead>
<tr>
<th>Grade</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>0.55</td>
<td>0.7</td>
</tr>
<tr>
<td>Advanced</td>
<td>0.6</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Handgrip

\[P = 0.145 \]
\[\eta_p^2 = 0.051 \]
Discussion

- Reasons of higher strength in different arm positions? (Watts et al., 2008)
- How to assess the effect of body mass on strength (ratio, linear regression, allometric scales?)
- Grouping design x correlation.
- Is the measurement valid also for top elite climbers?
Conclusion

- The positions 180/0 and 130/50 were most suitable to assess finger flexor strength.

- The 90/90 position provided substantially less validity.

- The handgrip dynamometry had the lowest criterion validity from the proposed tests.

- The use of strength to body mass ratio might be problematic, as it increases the strength differences between ability groups with unequal body mass.
Finger strength in climbers

Psychological factors

Environmental conditions
(temperature, humidity, use of chalk,...)

Neuromuscular factors
Forearm muscles morphology, firing, MU recruitment and synchronization, hormonal concentration, metabolic state, antagonist inhibition, ...

Muscle contraction
(isometric, concentric, eccentric, isokinetic, ...), use of elastic energy, ...

Type of dynamometry

Arm position

Finger flexors recruited

Hold size and depth, use of thumb, open/crimp grip, number of fingers used, ...

Absolute strength/strength related to body mass?
Finger flexors strength measurement using electronic scales in sport climbers

Jiří Baláš, Jonáš Mrskoč, Michaela Panáčková, Nick Draper
The aim of the study

The aim of our study was to assess the validity and the reliability of four climbing grip positions during finger flexors strength measurement using electronic scales in sport climbers.
Participants

- 55 climbers

- self-reported climbing abilities RP between 5 and 12- on the UIAA scale (4c - 9b+ French scale; 5.6 - 5.15c Yosemite decimal scale; 14 - 38 Ewbank scale)
<table>
<thead>
<tr>
<th>Climbing ability group</th>
<th>Sex</th>
<th>Climbing ability RP (UIAA)</th>
<th>Age (years)</th>
<th>Body mass (kg)</th>
<th>Heigh (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower grade</td>
<td>Male (N = 7)</td>
<td>IV to VI</td>
<td>25.9 ± 8.2</td>
<td>75.7 ± 8.5</td>
<td>176.6 ± 6.7</td>
</tr>
<tr>
<td></td>
<td>Female (N = 8)</td>
<td>IV to VI</td>
<td>22.8 ± 2.9</td>
<td>58.9 ± 6.8</td>
<td>162.5 ± 4.4</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Male (N = 10)</td>
<td>VI+ to VIII</td>
<td>25.8 ± 9.0</td>
<td>74.8 ± 4.8</td>
<td>178.1 ± 3.9</td>
</tr>
<tr>
<td></td>
<td>Female (N = 7)</td>
<td>VI+ to VII+</td>
<td>29.5 ± 6.7</td>
<td>64.7 ± 10.7</td>
<td>168.7 ± 6.5</td>
</tr>
<tr>
<td>Advanced</td>
<td>Male (N = 10)</td>
<td>VIII+ to IX+/X-</td>
<td>24.1 ± 7.6</td>
<td>66.2 ± 8.3</td>
<td>173.9 ± 8.4</td>
</tr>
<tr>
<td></td>
<td>Female (N = 5)</td>
<td>VIII- to IX</td>
<td>25.5 ± 4.1</td>
<td>55.2 ± 4.8</td>
<td>166.4 ± 5.7</td>
</tr>
<tr>
<td>Elite + high elite</td>
<td>Male (N = 5)</td>
<td>X- to XII-</td>
<td>24.0 ± 7.6</td>
<td>65.6 ± 4.9</td>
<td>178.0 ± 5.2</td>
</tr>
<tr>
<td></td>
<td>Female (N = 2)</td>
<td>IX+ to X</td>
<td>16.9 ± 1.8</td>
<td>49.5 ± 2.1</td>
<td>165.0 ± 6.3</td>
</tr>
</tbody>
</table>
Methods
Kinetics of Crimp and Slope Grip in Rock Climbing

Andreas Schweizer and Robert Hudek

Journal of Applied Biomechanics, 2011, 27, 116-121
© 2011 Human Kinetics, Inc.
Effect of hold depth and grip technique on maximal finger forces in rock climbing

ARIF MITHAT AMCA¹, LAURENT VIGOUROUX², SERDAR ARITAN¹, & ERIC BERTON²
Reliability analysis

- The intra-session reliability or the consistency was analysed in all participants from 3 trials for the left and for the right hand.

- To assess the inter-session reliability, twelve climbers repeated the same measurement after 6-7 days. The mean scores from the first and from the second measurement were computed for the inter-session reliability.
Results - reliability

<table>
<thead>
<tr>
<th></th>
<th>Left hand</th>
<th>Right hand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intra-session</td>
<td>Inter-session</td>
</tr>
<tr>
<td>OG</td>
<td>3 trials 0.94</td>
<td>2 trials 0.93</td>
</tr>
<tr>
<td>CG</td>
<td>0.93</td>
<td>0.94</td>
</tr>
<tr>
<td>IM</td>
<td>0.95</td>
<td>0.93</td>
</tr>
<tr>
<td>MR</td>
<td>0.97</td>
<td>0.97</td>
</tr>
</tbody>
</table>

ANOVA results did not reveal a significant difference between 1-2, 2-3, 1-3 trials. **Two trials are sufficient**, when testing maximal finger flexor strength.
Strength in females

Effect of body mass corrected by ANCOVA

- Open Grip
- Crimp grip
- I+M
- M+R

Lower grade
Intermediate
Advanced
Elite

Finger flexors strength (N)
Strength related to body mass in females

Strength related to body mass (%)

- Open Grip
- Crimp grip
- I+M
- M+R

Lower grade Intermediate Advanced Elite
Strength in males

Effect of body mass corrected by ANCOVA

Finger grip strength (N)

<table>
<thead>
<tr>
<th></th>
<th>Lower grade</th>
<th>Intermediate</th>
<th>Advanced</th>
<th>Elite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Grip</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crimp grip</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I+M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M+R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Strength related to body mass in males

- Open Grip
- Crimp grip
- I+M
- M+R

Categories:
- Lower grade
- Intermediate
- Advanced
- Elite
Bivariate (*in italic*) and partial correlations (*bold*) among climbing abilities (RP, OS) and finger strength

<table>
<thead>
<tr>
<th></th>
<th>RP</th>
<th>OS</th>
<th>OG</th>
<th>CG</th>
<th>IM</th>
<th>MR</th>
<th>Body mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP</td>
<td>1.000</td>
<td>.968</td>
<td>.628</td>
<td>.625</td>
<td>.521</td>
<td>.636</td>
<td>-.131</td>
</tr>
<tr>
<td>OS</td>
<td>.968</td>
<td>1.000</td>
<td>.638</td>
<td>.648</td>
<td>.541</td>
<td>.647</td>
<td>-.121</td>
</tr>
<tr>
<td>OG</td>
<td>.806</td>
<td>.811</td>
<td>1.000</td>
<td>.908</td>
<td>.871</td>
<td>.847</td>
<td>.498</td>
</tr>
<tr>
<td>CG</td>
<td>.788</td>
<td>.808</td>
<td>.880</td>
<td>1.000</td>
<td>.823</td>
<td>.856</td>
<td>.476</td>
</tr>
<tr>
<td>IM</td>
<td>.677</td>
<td>.694</td>
<td>.830</td>
<td>.770</td>
<td>1.000</td>
<td>.860</td>
<td>.490</td>
</tr>
<tr>
<td>MR</td>
<td>.746</td>
<td>.753</td>
<td>.821</td>
<td>.831</td>
<td>.836</td>
<td>1.000</td>
<td>.375</td>
</tr>
</tbody>
</table>
Discussion

- The highest criterion validity was found for the 4-finger positions ($R = 0.788 - 0.811$) to the RP or OS performance.

- Handgrip strength to OS performance
 - $R = 0.36$ in 16 elite climbers (España-Romero et al., 2009);
 - $R = 0.57$ handgrip strength + % fat in 39 World-Cup climbers (Watts et al., 1993)
 - $R = 0.55$ in 136 males;
 - $R = 0.75$ in 69 females (Baláš et al., 2012)
Crimp x open grip; half crimp grip?

The strongest position in intermediate and elite male climbers was OG followed by CG. This finding is in discrepancy with the Schweizer and Hudek (2011) who found that a crimp grip generated more flexion moment than an open grip independently on the size of the hold.
Disadvantage of strength measurement on scales in standing position

- You cannot properly analyze rate of force development.

- You have to put additional weight on strong climbers.

- You have to carefully control the slow execution of strength measurement.
Conclusion

- The use of a climbing fingers board and digital scales appears to represent a relatively inexpensive, straightforward, reliable and valid method to assess climbing-specific finger strength using different grip positions.

- The open grip and crimp grip were found most specific to the self-reported climbing performance.