Interaction forces in climbing: Cost-efficient complementation of a 6dof instrumentation

Dr. sc. ETH Peter Wolf
Sensory-Motor Systems Lab
Department for Health Sciences and Technology
ETH Zurich, Switzerland
SMS-Lab: Daily business

Feedback

Athlete

Instrumentation

Patient

2

Instrumentation

2
SMS-Lab goes climbing

Feedback

Athlete

Analysis

Instrumentation
Instrumentation: State-of-the-Art

<table>
<thead>
<tr>
<th>Year</th>
<th>dof</th>
<th>Number of Holds</th>
<th>Measuring Principle</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lechner 2013</td>
<td>3</td>
<td>1</td>
<td>Load Cells</td>
<td>Performance</td>
</tr>
</tbody>
</table>

Fuss & Niegl, 2008
Simnacher et al., 2011
Aladdin & Kry, 2012
Lechner et al., 2013

dof - degrees of freedom
number of holds
measuring principle
goal
1. Generation: Four hand holds

(1)
(2)
(3)
(4)
18

25°
Swiss National squad measured

- 11 athletes
- Up to 40 trials / athlete
Example: All trials of one athlete

Hand hold 1
What’s going on?
Thus, instead of 4, ALL
Goal

Complementation of 6dof instrumentation

• Cost-efficient instrumentation
• Equivalent performance analysis
Approach: Consider existing data

1. Analyze measurements
 => Contact time, regrips, load changes

2. Reduce sensor complexity
 => Main loading direction

3. Develop 6dof complementation
Workflow

1. Principal component analysis
2. Simulated 1dof data
3. Performance metrics
4. Paired two one-sided test
5. Development
Principal component analysis

<table>
<thead>
<tr>
<th></th>
<th>hold 1</th>
<th>hold 2</th>
<th>hold 3</th>
<th>hold 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC_1 magnitude, direction</td>
<td>0.93, (0.79)</td>
<td>0.89, (0.83)</td>
<td>0.52, (0.14)</td>
<td>0.89, (0.97)</td>
</tr>
<tr>
<td>mean γ (SD) [$^\circ$]</td>
<td>28.6 (11.9)</td>
<td>20.8 (8.8)</td>
<td>-9.8 (16.0)</td>
<td>11.6 (10.4)</td>
</tr>
</tbody>
</table>
1dof mainly applicable
Sensor Unit
- Phidget – CZL635
- 2x4 weighing cells (4x50kg)

Amplification Unit
- Phidget Bridge – 1046_0
- Data Rate: 125Hz
- Resolution: 24bit
- USB connection
Features

Easy to exchange holds
Features

- Easy to exchange holds
- Adaptable to multiple wall designs
 - Small dimensions
 - Wall thicknesses from 10 to 35 mm
Features

- Easy to exchange holds
- Adaptable to multiple wall designs
 - Small dimensions
 - Wall thicknesses from 10 to 35 mm
- Not visible for climber
Sensor specifications

- **Crosstalk:**

<table>
<thead>
<tr>
<th>Force direction</th>
<th>F_{Nx}</th>
<th>F_{Ny}</th>
<th>F_{Nz}</th>
</tr>
</thead>
<tbody>
<tr>
<td>measured</td>
<td>F_x</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>crosstalk [% F_N]</td>
<td>F_y</td>
<td>5</td>
<td>-</td>
</tr>
</tbody>
</table>

$F_{Nx} = 500N$, $F_{Ny} = 300N$, $F_{Nz} = 500N$
Sensor specifications

- Crosstalk:
- Sensitivity: $< 0.2N$
- Creep: $0.86\% / \text{h at } F_N$
- Temp. drift: $0.28\% / ^\circ\text{C}$
- Displacement: $< 2\text{mm at } F_N$
2dof vs 6dof

<table>
<thead>
<tr>
<th>Feature</th>
<th>2dof</th>
<th>6dof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity</td>
<td>< 2.0% F_{Nx}</td>
<td>< 0.05% F_{Nx}</td>
</tr>
<tr>
<td></td>
<td>< 10.0% F_{Ny}</td>
<td>< 0.18% F_{Ny}</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>< 0.4% F_{Nx}</td>
<td>< 0.04% F_{Nx}</td>
</tr>
<tr>
<td></td>
<td>< 2.6% F_{Ny}</td>
<td>< 0.05% F_{Ny}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 0.12% F_{Nz}</td>
</tr>
</tbody>
</table>
Undercling?

- Additional sensors to measure z-component
- Bearing for added z-sensor row
Instrumentation done. Next?

Feedback

Athlete

Analysis

Instrumentation
Thank you.

Contributors: Swiss Climbing, Dr. Urs Stöcker (SAC)
Kistler AG, Winterthur, Switzerland,
PD Dr. Andreas Schweizer, University Hospital Balgrist

Financial: Eidgenössische Sportkommission ESK
ETH Zurich