Static Stretching does not impair sport specific measures of upper-limb force and power in rock climbing

Matt Kilgas, Kevin Phillips, Phil Watts
Exercise Science Laboratory
Northern Michigan University
Marquette, Michigan USA
mkilgas@nmu.edu
Static Stretching on Strength and Power

- Static Stretching (SS) has been shown to reduce:
 - maximal voluntary contraction
 - isometric force
 - isokinetic torque
 - one repetition maximum lifts
 - vertical jump height
 - Sprint speed
 - Balance
Methods

- 19 recreational Rock Climbers (13 male, 6 Female)

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>NS</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td>65.22 ± 9.58</td>
<td>68.96 ± 10.05</td>
<td>0.42</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>172.5 ± 6.78</td>
<td>173.75 ± 5.7</td>
<td>0.668</td>
</tr>
<tr>
<td>Arm Span (cm)</td>
<td>172.89 ± 5.9</td>
<td>175.6 ± 7.76</td>
<td>0.408</td>
</tr>
</tbody>
</table>
Methods
Stretching protocol
Results

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>NS</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
</tr>
<tr>
<td>DMFF</td>
<td>19.26 ± 5.06</td>
<td>18.12 ± 5.46</td>
<td>20.2 ± 4.09</td>
</tr>
<tr>
<td>DRFP (kg/s)</td>
<td>27.95 ± 9.73</td>
<td>25.05 ± 7.32</td>
<td>30.18 ± 7.32</td>
</tr>
<tr>
<td>NMFF (kg)</td>
<td>18.81 ± 5.8</td>
<td>20.53 ± 8.25</td>
<td>22.98 ± 7.14</td>
</tr>
<tr>
<td>NRFP (kg/s)</td>
<td>26.57 ± 8.34</td>
<td>28.25 ± 9.82</td>
<td>32.49 ± 11.9</td>
</tr>
<tr>
<td>Jump Height (cm)</td>
<td>52.24 ± 17.73</td>
<td>50.74 ± 19.25</td>
<td>55.39 ± 23.64</td>
</tr>
<tr>
<td>Jump Time (s)</td>
<td>0.88 ± 0.25</td>
<td>0.97 ± 0.44</td>
<td>0.81 ± 0.15</td>
</tr>
<tr>
<td>Power (w)</td>
<td>1036.43 ± 267.93</td>
<td>1018.92 ± 281.61</td>
<td>1127.87 ± 308.64</td>
</tr>
</tbody>
</table>

Mean ± standard deviation for the height, weight, Arm span, dominant hand maximal finger flection (DMFF), dominant hand rate of force production (DRFP), non-dominant hand maximal finger flection (NMFF), non-dominant hand rate of force production (nRFP), Jump height, jump time, and power.
Conclusions

• No significant SS induced impairment in any of the variables
 • Limited Stretch shortening cycles
 • Slow contraction speed

• Limitations
 • Large variability between subjects
 • Measurement drift
 • Subject familiarization
Practical Applications

• More research is needed.
 • Stretching and climbing specific power
 • ROM and climbing performance

• Stretching can be included into a warm-up for climbing to increase ROM, without affecting upper-body power
Static Stretching does not impair sport specific measures of upper-limb force and power in rock climbing

Matt Kilgas, Kevin Phillips, Phil Watts
Exercise Science Laboratory
Northern Michigan University
Marquette, Michigan USA

mkilgas@nmu.edu