Body position and technique effects on displacement in the dyno maneuver in rock climbing

K.C. Phillips, R.L. Jensen
School of Health and Human Performance
Northern Michigan University, Marquette, Michigan, USA

kephilli@nmu.edu
Introduction

- Dyno = Dynamic Movement
- Popular Performance Recommendations:
 - Obtain the goal hold at the apex of upward movement, known to climbers as the “dead point”
 - Body position... [1,2,3]
 - Jump technique... [1,2,3,4]
- Starting position - highest vertical displacement of the hand (VDH) ?
- Jump technique - highest VDH at each starting position?
Methods

• Thirteen recreational rock climbers: Mean ± SD = 22 ± 5.2 y; 65.5 ± 8.2 kg; 172.5 ± 5.2 cm

• Mean climbing ability: 5.11 YDS/VII+ UIAA/6c French/22 Ewbank
Methods

• Thirteen recreational rock climbers: Mean ± SD =22 ± 5.2 y; 65.5 ± 8.2 kg; 172.5 ± 5.2 cm

• Mean climbing ability: 5.11 YDS/VII+ UIAA/6c French/22 Ewbank

• Foot hold: block of wood protruding 3.8 cm from the wall
Methods

- Thirteen recreational rock climbers: Mean ± SD = 22 ± 5.2 y; 65.5 ± 8.2 kg; 172.5 ± 5.2 cm
- Mean climbing ability: 5.11 YDS/VII+ UIAA/6c French/22 Ewbank
- Foot hold: block of wood protruding 3.8 cm from the wall
- Hand hold: 1 large feature (Jug)
Methods

• Distance between the hand and foot holds:
Methods

- Distance between the hand and foot holds:

 High – 104.14 cm
Methods

- Distance between the hand and foot holds:
 - High – 104.14 cm
 - Middle – 86.36 cm
Methods

- Distance between the hand and foot holds:
 - High – 104.14 cm
 - Middle – 86.36 cm
 - Low - 60.96 cm
Methods

• Distance between the hand and foot holds:
 High – 104.14 cm
 Middle – 86.36 cm
 Low - 60.96 cm
Methods

• Distance between the hand and foot holds:
 - High – 104.14 cm
 - Middle – 86.36 cm
 - Low - 60.96 cm
• Foot position – shoulder width
• Rock climbing shoes worn by all participants
Methods

- 15 minute warm up / 5 minutes rest
- Two dynos per technique at each starting position, randomized order
- Video analysis
Methods

- 15 minute warm up / 5 minutes rest
- Two dynos per technique at each starting position, randomized order
- Video analysis
- Marker on participant’s hand was digitized
Methods

- 15 minute warm up / 5 minutes rest
- Two dynos per technique at each starting position, randomized order
- Video analysis
- Marker on participant’s hand was digitized
- Highest VDH in each trial was used for statistical analysis
Methods

• 15 minute warm up / 5 minutes rest
• Two dynos per technique at each starting position, randomized order
• Video analysis
• Marker on participant’s hand was digitized
• Highest VDH in each trial was used for statistical analysis
• A Pythagorean theorem was used to calculate VDH
Methods

• 15 minute warm up / 5 minutes rest
• Two dynos per technique at each starting position, randomized order
• Video analysis
• Marker on participant’s hand was digitized
• Highest VDH in each trial was used for statistical analysis
• A Pythagorean theorem was used to calculate VDH
• 2X3 Repeated Measures ANOVA (jump technique X starting position)
Results

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Middle</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squat Jump</td>
<td>245.8 ± 12.8</td>
<td>250.9 ± 13.7</td>
<td>256.2 ± 15.2</td>
</tr>
<tr>
<td>Counter-movement</td>
<td>246.2 ± 15.2</td>
<td>250.2 ± 14.3</td>
<td>253.6 ± 14.6</td>
</tr>
</tbody>
</table>

\(a \) Significantly different from Middle and High conditions

\(b \) Significantly different from Low and High conditions
Discussion – Body Position

• Optimal starting position of close hands and feet?
 As the hands and feet became closer, VDH significantly decreased

• Range of motion (ROM)?
 Standing jump: full ROM is available for the arms and legs
 Dyno: ROM is determined by the distance between the hand and foot holds
 ROM is further affected by climbing surface near the knees

• Decrease in VDH from the high to medium to low starting position
 is likely caused by the subsequent decreases in ROM
Discussion – Jump Technique

• No significant differences between VDH achieved between jump techniques

• Biomechanical complexity?
 CM technique allows an increase in number of degrees of freedom theoretically allowing it to be executed in a variety of ways \[^5\]

• Non-elite rock climbers?
 Actual performance involves the reliance on optimal control and recruitment of motor units \[^6\]
 Elite rock climbers may be better able to utilize the benefits of a CM technique
Conclusion

• How to maximize VDH at three different starting positions on a vertical wall while considering jump technique
 Relatively large distance between hand and foot holds
 Jump technique should be based on personal preference or experience

• Suggested future studies:
 Inclination of the wall
 Size and shape of the hand and foot holds
 Surface roughness of the holds
 Body position and technique when performed by elite rock climbers
References

