

# ML and the Rise of the Edge

#### VR/AR/MR



IoT



**Robotics** 



Home, surveillance & analytics



**Drones** 



**Automotive** 



**Shipping & logistics** 



Mobile





#### Contributions of this work

- We discuss what Winograd convolution can offer in terms of performance
- Breakdown the instruction-level implications and memory layout tradeoffs for different flavors of a Winograd kernel in order to realize its full potential
- Demonstrate how general matrix multiply (GEMM) can further optimize Winograd
- Present performance results for Winograd vs conventional im2row + GEMM solution
  - More than a 2x performance boost on real hardware today!

Ultimately enable more efficient ML compute at the edge through Winograd in the Arm Compute Library (ArmCL).





# Convolution and Winograd

# What is Winograd and why should I care?

- Convolutional Neural Networks (CNNs)
  - Common type of deep learning model employed in a variety of domains
  - Convolve filter bank (weights) over a field (input activations) to produce a response (output)
  - Push response through an activation function (typically ReLu) and feed to the next layer
- Winograd Convolution
  - Based in the Chinese Remainder Theorem and modulo arithmetic
  - Produces mathematically equivalent results to naïve convolution\*
  - Similar to using Fourier: transform into 'Winograd domain', do simpler math, transform result back





# What is Winograd and why should I care?

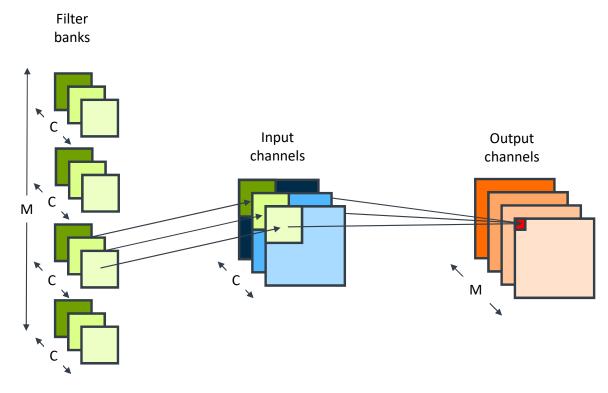
- Convolutional Neural Networks (CNNs)
  - Common type of deep learning model employed in a variety of domains
  - Convolve filter bank (weights) over a field (input activations) to produce a response (output)
  - Push response through an activation function (typically ReLu) and feed to the next layer
- Winograd Convolution
  - Based in the Chinese Remainder Theorem and modulo arithmetic
  - Produces mathematically equivalent results to naïve convolution\*
  - Similar to using Fourier: transform into 'Winograd domain', do simpler math, transform result back

#### Objective: To (quickly) explain for a CPU context:

$$f = Z^T \left[ \left( W w W^T \right) \odot \left( X^T x X \right) \right] Z$$

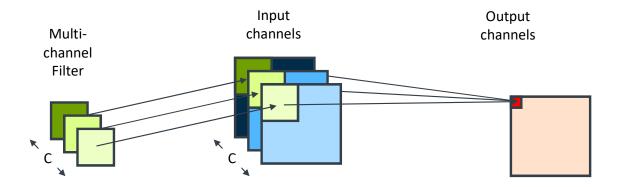
\*Assuming infinite precision



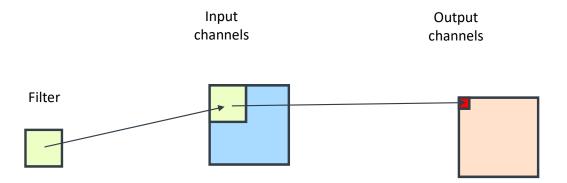


Standard CNN Configuration

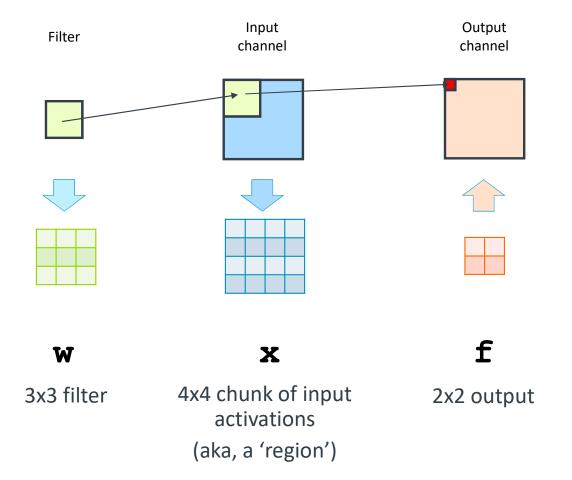






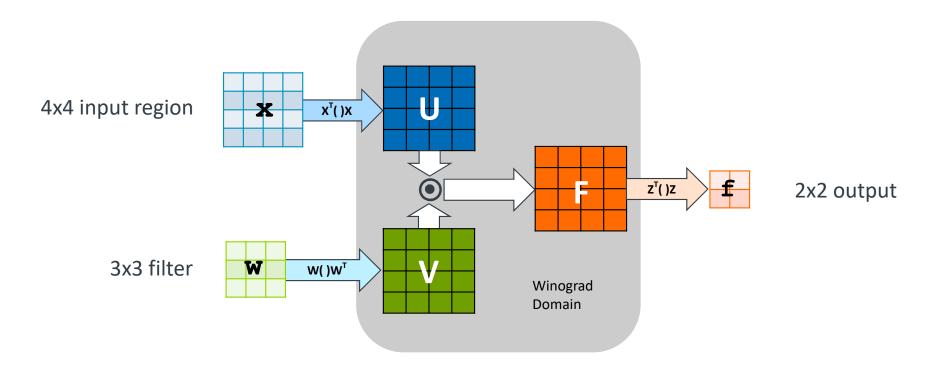








Assume:



$$f = \mathbf{Z}^T \left[ \left( \mathbf{W} \mathbf{w} \mathbf{W}^T \right) \odot \left( \mathbf{X}^T \mathbf{x} \mathbf{X} \right) \right] \mathbf{Z}$$



# **Input Region Transform**

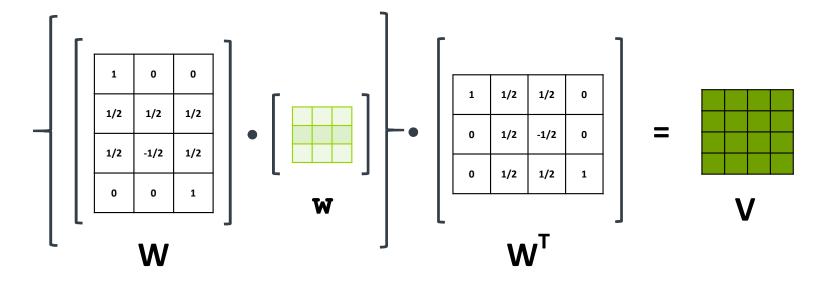
$$(2 \times 2) = (2 \times 4) [(4 \times 3)(3 \times 3)(3 \times 4) \odot (4 \times 4)(4 \times 4)(4 \times 4)](2 \times 4)$$

$$f = Z^T \left[ \left( W w W^T \right) \odot \left( X^T x X \right) \right] Z$$



#### Filter Transform

$$(2 \times 2) = (2 \times 4) \left[ (4 \times 3)(3 \times 3)(3 \times 4) \odot (4 \times 4)(4 \times 4)(4 \times 4) \right] (2 \times 4)$$



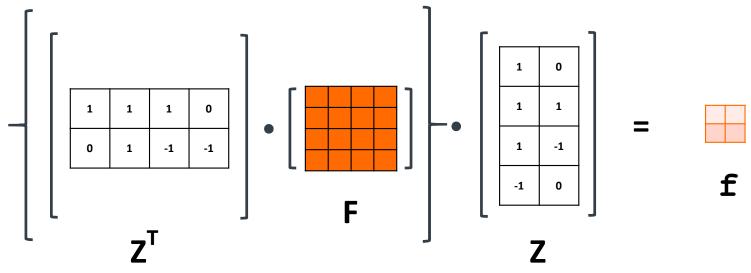
$$f = Z^T \left[ \left( W W W^T \right) \odot \left( X^T X X \right) \right] Z$$



#### **Output Channel Transform**

$$(2 \times 2) = (2 \times 4) \left[ (4 \times 3)(3 \times 3)(3 \times 4) \odot (4 \times 4)(4 \times 4)(4 \times 4) \right] (4 \times 2)$$

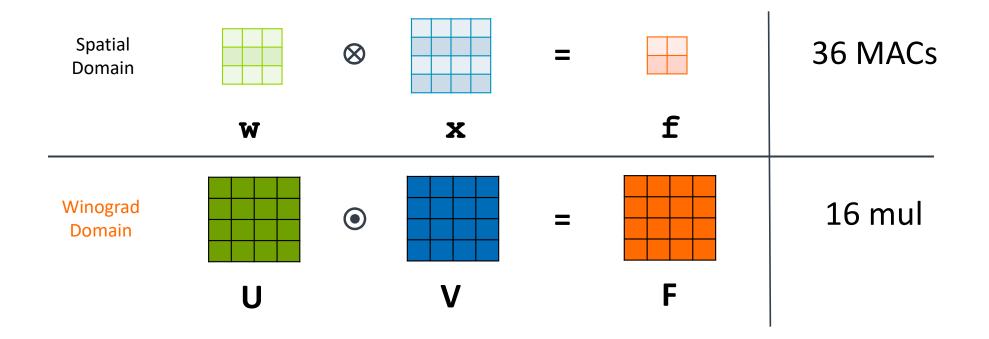
(this reduces down to a 4x4)



$$f = Z^T \left[ \left( W w W^T \right) \odot \left( X^T x X \right) \right] Z$$



# **Elementwise Multiplication**



36 / 16 = 2.25x reduction in ops

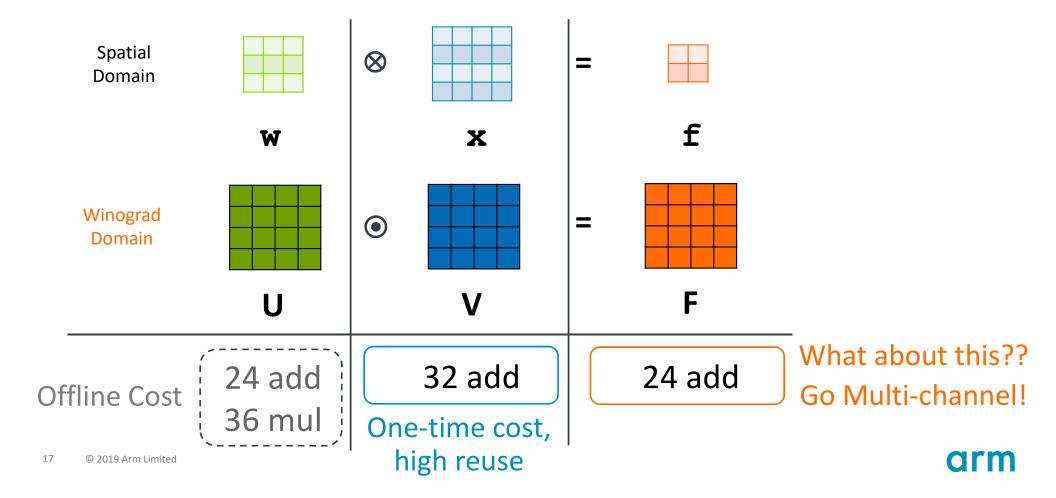


# **Transform Cost**

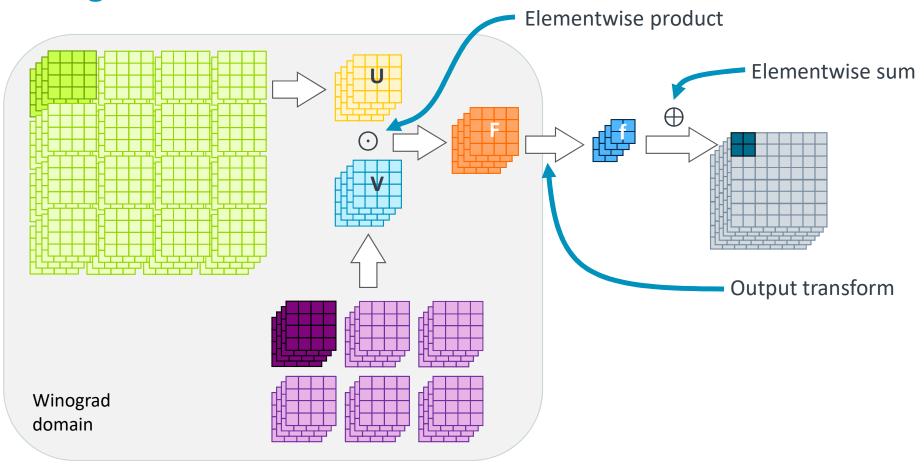
| Spatial<br>Domain  |                  | $\otimes$ |        | = |        |
|--------------------|------------------|-----------|--------|---|--------|
|                    | W                |           | x      |   | f      |
| Winograd<br>Domain |                  | •         |        | = |        |
|                    | U                |           | V      |   | F      |
|                    | 24 add<br>36 mul |           | 32 add |   | 24 add |
| @ 2010 Arm Limited |                  | •         |        |   |        |



#### **Transform Cost**

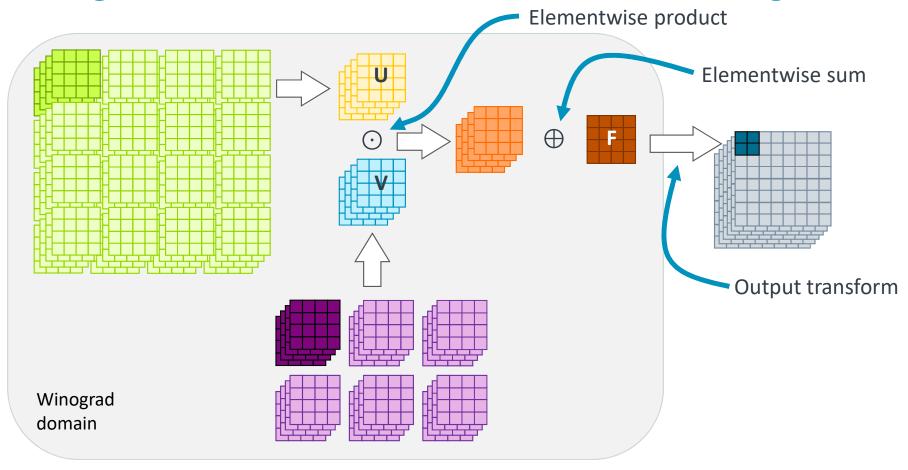


# Winograd for multichannel convolution





# Winograd for multichannel convolution – rearranged





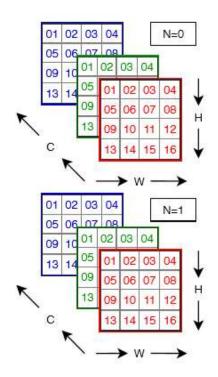
# arm

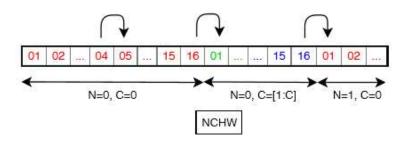
# Multi-Channel Filters, Memory Layout, Vectorization, and GEMM

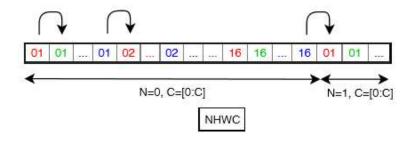
# NCHW vs NHWC, data layout

#### **Tensor Ordering**

- N = batch
- C = channel
- H = height
- W = width





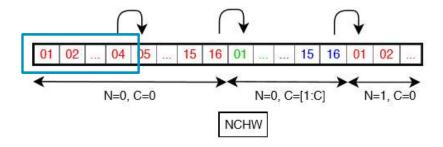




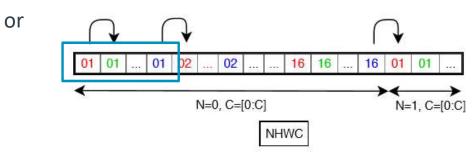
# NCHW vs NHWC, data layout

- Layout ultimately dictates how contiguous vector-load operations will populate registers
  - Under NCHW, registers will be filled entirely from a single channel
  - Under NHWC, registers will hold multiple channels for a single coordinate
- In the Arm-V8 architecture (with 128-bit SIMD registers), this means either:

#### An entire row of a filter per register



#### 4-channels per register



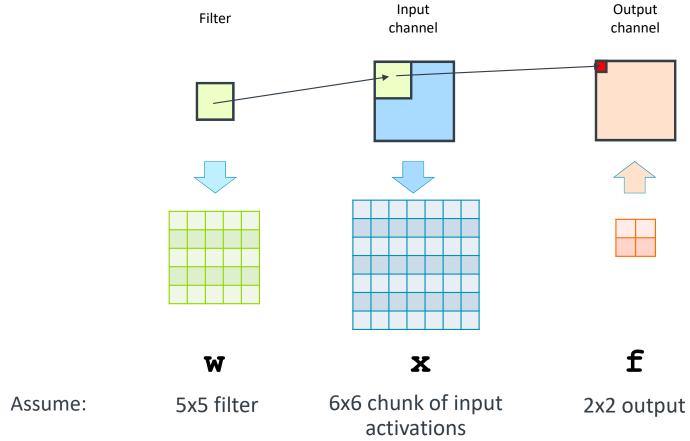


# Advantages to NHWC layout for CPUs

- Reasonably optimized transforms exist for both NCHW and NHWC at F(2x2, 3x3, 4x4)
- Convolution filters and Winograd are not restricted to F(2x2, 3x3, 4x4)
  - Larger regions yields can drive higher performance e.g., F(3x3, 3x3, 5x5)
  - 5x5 and 7x7 filters found in inception networks e.g., F(2x2, 5x5, 6x6)
  - Dimension-to-register capacity mismatch results in wasted register utilization and/or alignment complexity under NCHW
  - NHWC only experiences increased register pressure

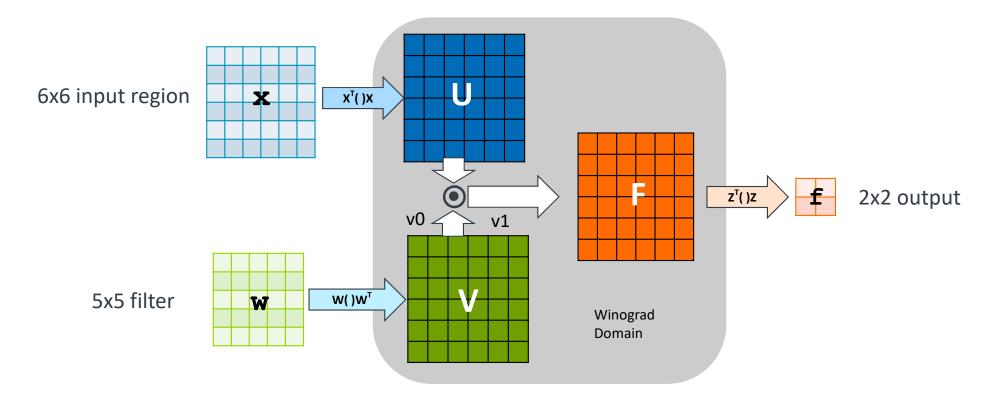


# F(2x2, 5x5, 6x6) Example



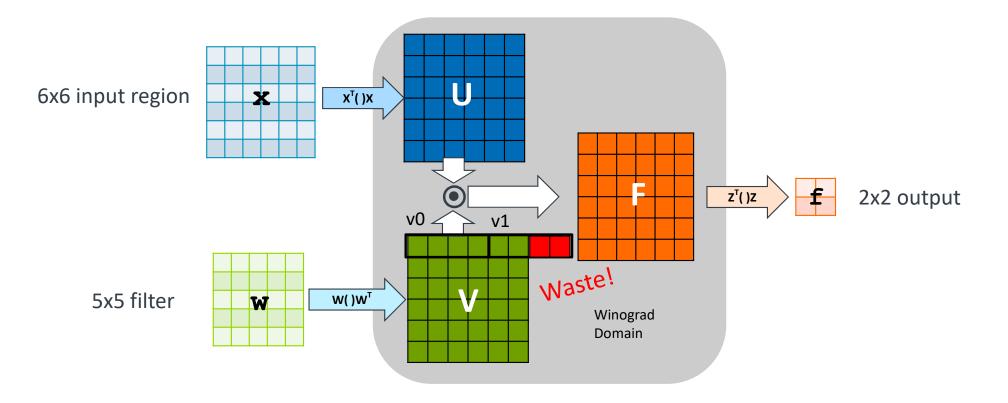


# F(2x2, 5x5, 6x6) Example





# F(2x2, 5x5, 6x6) Example





# Advantages to NHWC layout for CPUs

- Reasonably optimized transforms exist for both NCHW and NHWC at F(2x2, 3x3, 4x4)
- Convolution filters and Winograd are not restricted to F(2x2, 3x3, 4x4)
  - Larger regions yields can drive higher performance e.g., F(4x4, 3x3, 6x6)
  - 5x5 and 7x7 filters found in inception networks e.g., F(2x2, 5x5, 7x7)
  - Dimension-to-register capacity mismatch results in wasted register utilization and alignment complexity under NCHW
  - NHWC only experiences increased register pressure
- Wider registers or lower precision also adds challenges for NCHW
  - 256-bit or FP16 means 8 values per register, or 2 rows per register under NCHW
  - Loss of 1:1 register-row mapping complicates assembly sequence for efficient NCHW transpose
  - NHWC simply doubles the # of channels stored per register

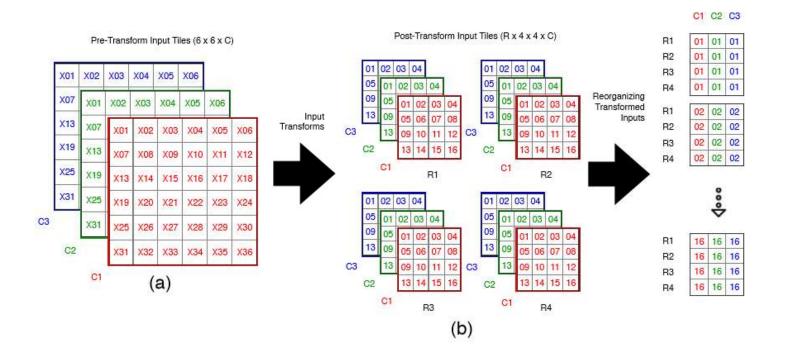
Vectorization over channels is more portable and performant!



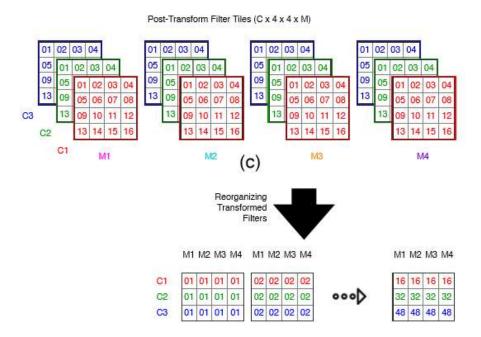
# Use of GEMM to further optimize

- General Matrix-Matrix Multiply is a common, highly optimized operation for most architectures, including Arm
- Inspection of the full Winograd convolution algorithm (Listing 1 in paper) shows:
  - The fundamental operation is a multiply-accumulate
  - There are 2 axis of data re-use:
    - weight tile reuse over all input regions and
    - input region reuse over all output channels
  - Opportunity to leverage GEMM to do the computation in a highly parallel manner

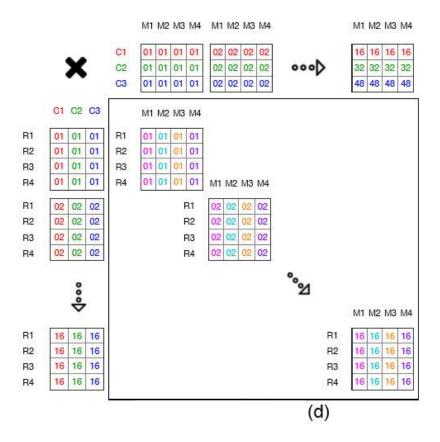




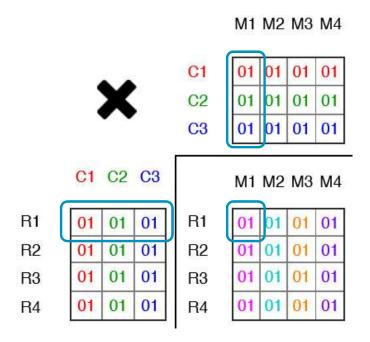




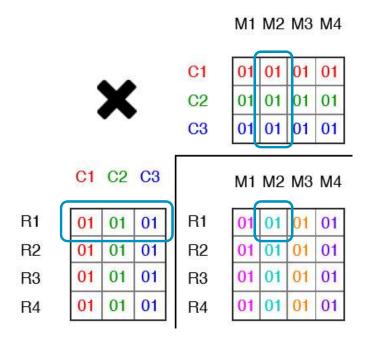




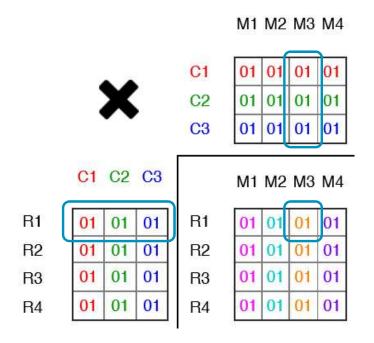




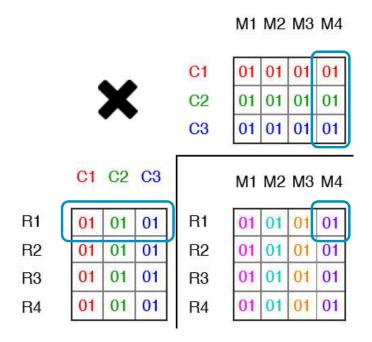




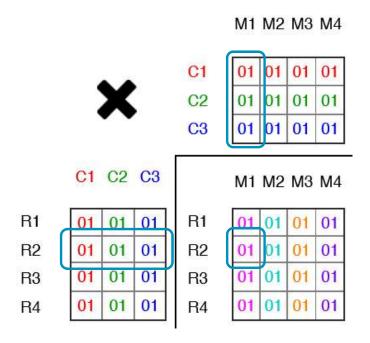




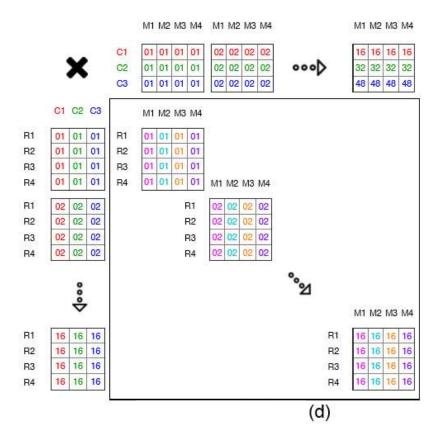




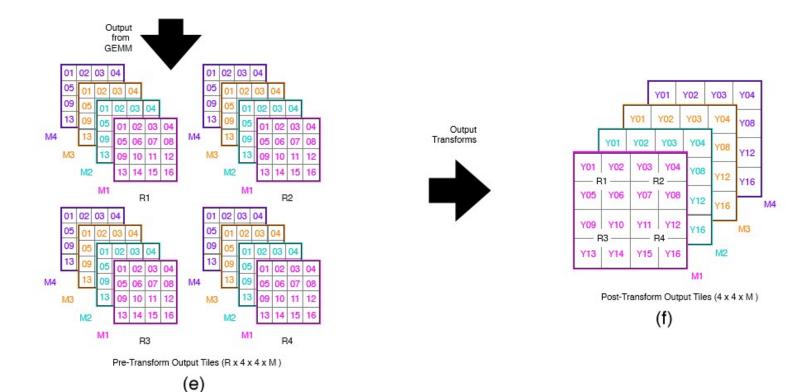
















# Results

#### **Experimental Setup**

Platform: Huawei HiKey960 Development Platform – 4xA73 cluster

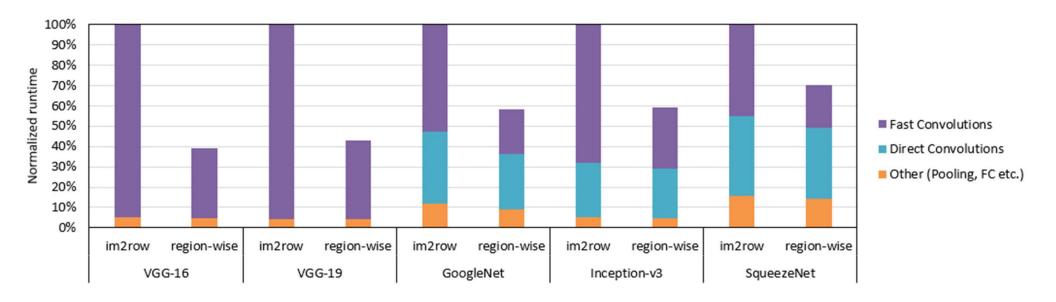
Networks: VGG19, VGG16, GoogleNet, Inception-v3, SqueezeNet

Other: FP32, batchsize 1, 4x multi-threaded through Arm Compute Library (ArmCL)

Measured individual per-layer performance as well as end-to-end run-time, compared with highly optimized conventional 'im2row GEMM' convolution strategy



#### **Benchmark Results**





#### Conclusion

- ML is coming to the edge, hard and fast
- ARM CPUs are already widely deployed at the edge, so optimizing for performance here has immediate impact
- Winograd domain is an alternative to conventional im2row/GEMM convolution that reduces math, but requires care to fully realize benefit
- When done properly, can provide as much as a 2.5x speedup on real hardware for endto-end model inference

Benefits now available in ArmCL!



# arm

Thank You

Danke

Merci

谢谢

ありがとう

Gracias

, Kiitos

감사합니다

धन्यवाद

תודה



<sup>†</sup>The Arm trådemarks feåtured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks