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Abstract
The Winograd or Cook-Toom class of algorithms help to
reduce the overall compute complexity of many modern
deep convolutional neural networks (CNNs). Although there
has been a lot of research done on model and algorithmic
optimization of CNN, little attention has been paid to the
efficient implementation of these algorithms on embedded
CPUs, which usually have very limited memory and low
power budget. This paper aims to fill this gap and focuses
on the efficient implementation of Winograd or Cook-Toom
based convolution on modern Arm Cortex-A CPUs, widely
used in mobile devices today. Specifically, we demonstrate a
reduction in inference latency by using a set of optimization
strategies that improve the utilization of computational re-
sources, and by effectively leveraging the ARMv8-A NEON
SIMD instruction set. We evaluated our proposed region-wise
multi-channel implementations on Arm Cortex-A73 platform
using several representative CNNs. The results show signifi-
cant performance improvements in full network, up to 60%,
over existing im2row/im2col based optimization techniques.
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1 Introduction
The agility of cloud computing is great - but it simply isn’t
sufficient. In the near future there will be more demand for
AI at the edge than in the cloud. As people need to interact
with their digitally-assisted technologies (e.g. personal as-
sistants, wearables, autonomous cars, healthcare, and other
smart IoT devices) in real-time, waiting on a datacenter many
miles away isn’t going to work. Not only the latency matters,
but often these edge devices are not within the range of the
cloud needing them to operate autonomously for the most
part. Even when these devices are connected to the cloud,
moving high-volume of data to the centralized datacenter is
not scalable, due to communication cost that impacts perfor-
mance and energy consumption [9]. Since the latency and
security risk of relying on the cloud are intolerable, we need
a significant portion of computation closer to the edge to
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permit secure, autonomous, and real-time decision making.
This poses an enormous challenge in terms of implementing
emerging AI workloads on resource constrained low power
embedded systems. When it comes to image and video the
performance of many modern embedded applications is en-
hanced by application of neural networks, and more specif-
ically by convolutional neural network (CNN). Although
there has been a lot of research done on algorithmic opti-
mization of CNN [9], such as the Winograd, the Cook-Toom,
and the Strassen, little attention has been paid to the efficient
implementation of these algorithms on widely available en-
ergy efficient embedded CPUs. This paper aims to fill this
gap and investigates if emerging, compute-heavy deep CNNs
can be implemented efficiently using such fast arithmetic
scheme on widely used resource constrained mobile class
CPUs. Specifically, we target Cortex-A class processors as
Arm-based SoCs are ubiquitous in today’s mobile comput-
ing [5].
We introduce a novel region-wise multi-channel scheme

using GEMM (General Matrix Multiplication) for energy ef-
ficient implementation of Winograd or Cook-Toom based
convolution on resource-constrained mobile CPUs. We show
that our scheme performs better than classical im2row/col
techniques. Unlike existing implementations which are lim-
ited to 2D convolutions only, we apply variations of the base
algorithms to both the 2D (N×N ) and 1D layers (1×N , N×1),
where N is the height/width of the filter. We demonstrate the
efficiency of our scheme by implementing a number ofwidely
used state-of-the-art deep CNNs on the energy-efficient Arm
Cortex-A73 processor [4].

Our results show that by effectively using Armv8-A NEON
SIMD instructions and appropriate choice of variations of
Winograd or Cook-Toom based convolution an average 2−3×
and a peak 4× per layer speedup on top of aggressively op-
timized solutions using the classical im2row/col technique
is achievable. As an example, our multithreaded implemen-
tation of SqueezeNet on Arm Cortex-A73 can achieve an
average inference rate of 47 frames/sec – sufficient for many
real-time embedded applications [1]. Our scheme can be
readily deployed to other widely used ARMv8-A cores.
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2 Strategies for Efficient Multichannel
Winograd or Cook-Toom Kernel
Implementation on Armv8-A Cores

The Winograd or Cook-Toom class of algorithms [7, 8] help
to reduce the overall compute complexity of convolution
by reducing the number of required multiplication. Imple-
mentations of these algorithms are well suited to CNNs con-
sisting of small filters and low power embedded systems as
the resources and power budget are very limited. Using the
Winograd or Cook-Toom based convolution, a typical layer
of a convolutional neural network (CNN) can be expressed
in the following matrix equation

f = ZT (
C∑
c=0

[(WwW T )c ⊙ (XTxX )c ])Z (1)

whereW and X are the transform matrices for the weight
and the input sequence w , x , respectively. Z is the inverse
transformation matrix, and ⊙ is the elementwise (Hadamard)
product.
First, we note that the equation shown above applied a

(w×w) filter to only a small input region of size (x×x) to pro-
duce an output region of size (z×z) (a.k.a. F (z×z,w×w,x×x)).
To perform larger convolutions we must, therefore, break
the input tensor into multiple regions of size (x×x). The out-
put tensor must also be divided into an equivalent number
of regions, each of which is computed as the elementwise
multiplication and accumulation of the corresponding input
regions (representingC input channels) with their respective
weight tiles. This algorithm is illustrated in Listing 1.

// For each output channel
for (unsigned int m = 0; m < M; m++)
// For each output region
for (unsigned int r = 0; r < R; r++)
// Summation across the input channels
for (unsigned int c = 0; c < C; c++)
output_region[m, r] += HadamardProduct(
input_region[c, r], weight_region[m,c]);

Listing 1. Sample Winograd convolution algorithm
We break our region wise multi-channel algorithm into

three steps:
1. Input Transform Progresses over regions of the in-

put tensor, transforms them into theWinograd domain
and scatters the results into the ‘A’ matrices for the
GEMMs.

2. GEMM Multiplies the ‘A’ matrices generated in the
input transform with ‘B’ (matrices generated when the
weights were transformed into the Winograd domain)
to form the ‘C’ matrices.

3. Output Transform Repeatedly gathers regions of val-
ues from the ‘C’ matrices, transforms them back into
the spatial domain and writes the results into the out-
put tensor.

2.1 Data Layout and SIMD Computation
There are a variety of ways in which 4D tensors can be
arranged in memory. Two common options are called NCHW
and NHWC – where N stands for the number of batches (or
concurrent inferences), C for the number of channels, and H
andW stand for height and width, respectively. In NCHW
each plane of the tensor is stored contiguously in memory
– i.e., pixel (n, c, i, j) is followed by (n, c, i, j + 1) – whereas
in NHWC all of the channels of a given pixel are stored
contiguously (i.e., value (n, i, j, c) is followed by (n, i, j, c+1)).
When writing vectorized (SIMD) code, tensor ordering is
crucial to achieving performance.
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Figure 1. NCHW vs NHWC Layout

In the Armv8-A architecture, there are thirty-two 128-bit
SIMD registers. Each SIMD register can, therefore, store four
32-bit single-precision values. Hence, under NCHW a single
SIMD register will store, after a 128-bit load, a row of four
pixels, whereas under NHWC the same register would store
four channels of data for a single pixel. We can see the effect
of these orderings through the example of implementing the
input transform for F (2×2, 3×3, 4×4).

2.1.1 Input Transform For F (2×2, 3×3, 4×4)
The characteristic equation for this transform is:

X⊤xX =


1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

 x

1 0 0 0
0 1 −1 1

−1 1 1 0
0 0 0 −1

 (2)

Under NCHW ordering we would use four registers to
store x , a 4×4 region of the input tensor. The transform ma-
trices could be hard-coded as a series of row-transformations,
such that computing X⊤x could be expressed as:

XTx[0] = vsubq_f32(x[0], x[2]); // x_1i - x_3i
XTx[1] = vaddq_f32(x[1], x[2]); // x_2i + x_3i
XTx[2] = vsubq_f32(x[2], x[1]); // x_3i - x_2i
XTx[3] = vsubq_f32(x[1], x[3]); // x_2i - x_4i
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By transposing the result, this code sequence can be re-
peated such that we compute

(
X⊤ (

(X⊤x)⊤
) )⊤
= X⊤xX .

Once this is completed we have 16 values (four registers
containing four values each) which must be scattered, as
described before, to 16 separate matrices.

In contrast, under NHWC ordering, we would use sixteen
SIMD registers to represent four channels of a 4×4 region of
the input tensor. The transformation can be hardcoded, but in
this case we operate on four channels of data simultaneously,
as in Listing 2. Once the transformation is complete we are
left with sixteen registers, each containing four channels
worth of data. These registers can be scattered directly into
the the input matrices for the GEMMs.

// Compute X^T x and U = (X^T x) X
for (int j = 0; j < 4; j++) {
// For each column in X^T x

XTx[0][j] = vsubq_f32(x[0][j], x[2][j]);
XTx[1][j] = vaddq_f32(x[1][j], x[2][j]);
XTx[2][j] = vsubq_f32(x[2][j], x[1][j]);
XTx[3][j] = vsubq_f32(x[1][j], x[3][j]);
}

for (int i = 0; i < 4; i++) {
// For each row in U

U[i][0] = vsubq_f32(XTx[i][0], XTx[i][2]);
U[i][1] = vaddq_f32(XTx[i][1], XTx[i][2]);
U[i][2] = vsubq_f32(XTx[i][2], XTx[i][1]);
U[i][3] = vsubq_f32(XTx[i][1], XTx[i][3]);
}

Listing 2. Input Transforms.

2.1.2 Choice of NHWC over NCHW
For the specific instance of F (2×2, 3×3, 4×4) there are merits
to both approaches. However, when we consider using either
different data widths (such as half-precision floating point)
or different version of Winograd or Cook-Toom algorithms
we begin to see advantages to the NHWC ordering.

For example, although we can use four SIMD registers
to represent 16 values in single-precision floating point in
NCHW – four values to a register – this breaks down when
wemove to half-precision and each register can contain eight
values, whereas the NHWC code could be simply modified
to work on eight channels of data simultaneously.
Likewise, were we to implement the input transform for

F (4×4, 3×3, 6×6), which requires use of 6×6 input regions,
we could, in NHWC ordering use 36 values (and the stack) to
represent each input region. However, in NCHW, we would
need to use one-and-a-half registers to represent each row
of six values. For these reasons, we prefer the use of NHWC
ordered data.

2.1.3 Efficient Tensor Ordering for ARMv8-A Cores
The convolution of a tensor consisting of C input layers and
R regions with aM deep set of filters can be expressed as x2

GEMMs of the form [R×C]×[C×M] or [M×C]×[C×R], and
that, of these, we preferred the former as shown in Figure 2.
This selection follows directly from our choice of NHWC
tensor ordering. Specifically, we note that, under NHWC,
each SIMD register contains multiple channels of data and
that these values must be written into matrices of shape R×C
orC×R. Assuming row-major ordered matrices we note that,
in the latter case, we could use multi-element structured
stores (e.g., ST4 (single structure), [2]) to combine and store
values from different registers. Alternatively, an unstructured
store (STR [2]) could be used to write out a whole register
into successive columns of an R×C matrix. Since we found
unstructured stores to have a higher throughput than their
structured counterparts we choose to use the first form.

2.2 Using GEMM to Compute Hadamard Products
By inspecting the basic convolution algorithm illustrated in
Listing 1 we observe, firstly, that the fundamental operation
is an element-wise multiply-accumulate (element-wise ad-
dition of Hadamard products). Secondly, we note that there
are two axes in which data is reused - (1) Weight tile (m, c) is
used across all input regions in layer c , and, (2) Input region
(c, i, j) contributes to allM output regions at (i, j). These ob-
servations suggest that one way of implementing a complete
convolution is to leverage the GEMM (General Matrix Matrix
Multiplication) algorithm since there exist a wide range of
good GEMM implementations (e.g., [6]) capable of exploiting
the SIMD instructions of the Armv8-A architecture. Figure 2
shows an example for a 3×6×6 tensor being convolved with
four filters. An array of 16 GEMMs of size [R×C]×[C×M] is
constructed, with the input tensor being represented by the
first set of matrices and the weights by the latter.

3 Evaluation and Results
We chose five widely used CNNs of different sizes and com-
plexities to validate our implementation, namely, VGG19,
VGG16, GoogleNet, Inception-v3, and SqueezeNet [9]. We
benchmarked our implementation on the Huawei HiKey 960
development platform using IEEE 754 fp32 standard.

3.1 Results – per-layer speedup
We implemented five different variants of the fast algorithm
and bench-marked them on individual layers of all the se-
lected models. In each case we measured the number of
cycles taken to perform all three stages of our algorithm (In-
put transform, GEMMs and Output transform) on the ’big’-
cluster which consists of four Cortex-A73 core. As a baseline
against which to compare we also benchmarked the GEMM
calls which would result from application of the classical
im2row technique to the same layers. Table 2 presents the
speedup achieved by our region-wise multi-channel Wino-
grad scheme over the GEMM.
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Table 1. Summary of mean absolute runtime of the whole-network in milliseconds (msec) for batch size of 1

VGG-16 GoogleNet Inception-v3 SqueezeNet
Full Network Fast Layers Full Network Fast Layers Full Network Fast Layers Full Network Fast Layers

Using Im2Row Scheme 1929.43 1829.10 173.13 91.42 750.37 510.92 29.72 13.47
Using Our Scheme 758.05 670.79 101.04 38.38 443.40 224.42 20.91 6.29
Speedup (msec) 1171.38 1158.31 72.09 53.04 306.98 286.51 8.81 7.18
Speedup (%) 60.71% 63.33% 41.64% 58.02% 40.91% 56.08% 29.64% 53.28%

Table 2. per-layer speedup comparison: im2row vs ours

Model Per-layer Speedup
Layer-type Average Speedup Peak Speedup

VGG-16 3 × 3 2.7× 3.5×
VGG-19 3 × 3 2.8× 3.5×
GoogleNet 3 × 3 2.6× 4.1×
GoogleNet 5 × 5 2.3× 3.2×
Inception-v3 1 × 7 2.0× 2.1×
Inception-v3 7 × 1 2.0× 2.1×
Inception-v3 3 × 3 3.1× 3.8×
Inception-v3 5 × 5 2.7× 2.8×
SqueezeNet 3 × 3 2.2× 2.6×

3.2 Results – whole-network speedup
To measure the effectiveness of Winograd or Cook-Toom
based acceleration for end-to-end CNN,we also benchmarked
the runtime of entire models. In these cases we used the Arm
Compute Library [3] to evaluate single-batch (batch size
of 1) inferences of these networks on multi-threaded (4×)
Cortex-A73. Two sets of benchmarks were run: in one, layers
suitable for theWinograd-based acceleration use our scheme,
and the rest use baseline im2row scheme; in the other all lay-
ers use im2row. Figure 3 and Table 1 shows the normalized
and the absolute runtime of the five CNNs (whole-network),
respectively.

4 Conclusions
Winograd or Cook-Toom based acceleration on Arm’s Cor-
tex A CPUs can dramatically reduce the compute time and
energy cost of individual convolution layers – by up to 4×.
However, these speedup numbers are lower than the theo-
retical values. Partially, this is due to the challenges involved
in implementing the algorithm in a real system but largely

it is because the theoretical speed-up of this class of algo-
rithm disregards the cost of transforming to and from the
alternative domain of computation. This gap between the the-
oretical and achieved speed-ups can be somewhat overcome
by amortizing the transform costs over those of the GEMMs.
As the number of output channels increases, the speed-up
will asymptotically approach the maximum achievable.
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