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Abstract
When deploying two or more well-trained deep-learning
models on a system, we would hope to unify them into a
single deep model for the execution in the inference stage, so
that the computation time can be increased and the energy
consumption can be saved. This paper presents an effec-
tive method to build a single deep neural network that can
execute multiple tasks. Our approach can merge two well-
trained feed-forward neural networks of the same architec-
ture into a single one, where the required on-line storage
is reduced and the inference speed is enhanced. We evalu-
ate our approach by using MobileNets and show that our
approach can improve both compression ratio and speedup.
The experimental results demonstrate the satisfactory per-
formance and verify the feasibility of the method.
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1 Introduction
In recent years, compact convolutional neural network (CNN)
models have been introduced to improve the computational
efficiency and storage required for the inference stage, such
as MobileNet [7], Xception [4], and ShuffleNet [14]. With
these condensed architectures, deep learning can be per-
formed in a more light-weight and energy-efficient manner.

A deep-learning model is often trained for a specific pur-
pose; hence, it is suitable for one task only. However, in real
applications, we usually require to achieve not only a single
functionality — Given two well-trained deep-learning mod-
els skillful for different purposes, we would need to perform
the two tasks simultaneously in the inference stage.

In this paper, we study the problem: how to merge or unify
well-trained models so that the two tasks can be performed
more efficiently? Merging well-trained neural networks is
potentially useful for real-world applications. For example,
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different types of visual classification tasks, such as clothing
recognition and object classification, could be involved in
an intelligent robot. Two models, one for clothing recogni-
tion and the other for object classification, may be available
for the individual purposes. Merging them on the inference
stage is helpful to build a smart system that is faster and
more energy efficient than running them separately when
deploying these models.
The goal of this study is to develop a general approach

that can merge two feed-forward neural networks having
the same architecture. In particular, we focus on merging
two compact networks, MobileNets into a single one in this
paper, and the principle can be applied to other types of deep
learning models as well. The merged network can manage
the original tasks simultaneously when deploying these mod-
els. When merging two MobileNets, our approach aligns the
models layer by layer. The layers aligned are fused into a
single layer, and the merged model can be fine-tuned for the
performance recovering.

1.1 Motivation of Our Approach
To handle multiple tasks with a single model, a typical way
is to use a single network (such as MobelNet), and establish
multiple branches in the output layer of the network. The
multiple tasks share the same previous layers that extract
the feature (or embedding) representations, and the outputs
of different tasks are predicted according to the same feature
representations. When two well-trained models are provided
for different tasks, we could use the weights of one task as
the pre-trained initials, and fine-tune this output-branching
network to build a multitask model. An illustration of this
baseline approach is illustrated in Figure 1.
The above baseline approach is easy to be implemented

but has some weaknesses. First, it implicitly assumes that
the deepest feature representations are shared, which would
be suitable only when the tasks are highly co-related. Sec-
ond, the initial weights are from one of the models, which
could be bias for that task. In this work, we propose a “zip-
pering” approach that allows to use part of the previous
layers to form the common backbone network for the fea-
ture representations sharing. The approach is motivated by
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Figure 1. Baseline approach. (a) Two well-trained feed-
forward neural networks. (b) Using one network as the
feature-extraction backbone, and the extracted feature rep-
resentation is shared by the two forked output layers.

the following reasons. First, the feature representations suit-
able to be shared for the two tasks would not be from the
deepest layer, but some previous layer that extracts earlier-
stage representations. Second, as we do not know how many
previous layers are suitable to be shared beforehand, we con-
duct a progressive process (called the zippering process) that
merges the first k layers incrementally for k = 1, · · · ,L, with
L the number of total layers of the network. The zippering
process can thus find an appropriate number of early layers
for sharing automatically.

1.2 Overview of Our Approach
Because the architectures of the two deep-learning models
are assumed to be the same in this work, we set the same
layer of the two models as a pair. As the models are well-
trained for different goals, the layer weights are different.
For the pair of layers to be fused in the zippering process,
We first merge them into a single layer with a common set
of weights holding the smallest quantization error. Then,
we fine-tune the entire model through minimizing both the
classification loss and the output-preserving loss per each
layer. In the zippering process, the first layers are merged
and fine-tuned in the beginning, and then the other layers
are merged and fine-tuned in turn sequentially. An overview
of our approach is illustrated in Figure 2.

The rest of this paper is organized as follows. In Section 2,
we give a review of related works. In Section 3, we introduce
our zippering approach for merging two MobileNets. Experi-
mental results are presented in Section 4. Finally, conclusions
and discussions are given in Section 5.

2 Related Work
In this section, we briefly review two related topics of this
study, multi-task learning and neural model merging.

2.1 Multi-task Deep Learning
A typical way to achieve various tasks via a single neural-net
model is to train a new neural network with increased out-
put nodes for multi-tasks. A joint facial age estimation and
expression classification model is proposed in [10]. Learn-
them-all approaches can solve multi-tasks across various
domains with a universal model. In [8], MultiModel archi-
tecture is introduced to allow input data to be images, sound
waves, and text of different dimensions, and then converts
them into a unified representation. The convolution, atten-
tion, and sparsely-gated mixture-of-experts layers are in-
corporated to handle various problems. In [2], a deep CNN
leverages massive synchronized data to learn an aligned rep-
resentation. The aligned representation can be shared across
modalities for multi-modal tasks. Applying the learn-them-
all approaches, however, has to face heavy training effort
and inference complexity.

2.2 Neural Network Merging
There are still few studies focusing on merging well-trained
deep learning models into a single and more condensed
model [3][5]. As also claimed in Bazrafkan and Corcoran [3],
“there has been little research concerned with techniques for
merging and optimizing a combination of existing deep neu-
ral network approaches into a more holistic solution.” In the
study of [3], a network merging example of sharing common
nodes of multiple networks for a single task is discussed.
They claim that this ensemble of different architecture can
improve the performance while sharing layers with the same
kernel configuration to reduce the complexity. Nevertheless,
the work in [3] is designed only on a single task model, not
for multi-task models.
In Chou et al. [5], a systematic approach is proposed for

merging and co-compressing multiple multile CNN models,
where the architectures of the CNN models are allowed to be
different. This approach decomposes the convolution kernels
of different spatial sizes into common 1× 1 convolutions of a
shorter depth, and a shared codebook is conducted to build
the 1×1 kernels used for different tasks. It can achieve a con-
siderable speedup and a high ratio of model size compression
on the CPU implementation in the inference stage, while
the testing accuracy remains approximately the same. How-
ever, the on-line memory usage is increased because an extra
codebook is used in this approach. Besides, the approach de-
composes a convolution kernel into multiple spatially 1 × 1
kernels, and a shifting and summation formulation is applied
to recover the original convolution result. However, such
a shifting-adding mechanism is not supported in current
deep-learning frameworks (such as TensorFlow, PyTorch,
Caffe), and thus a low-level implementation should be done
to support the merging process.
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Figure 2. System overview of the zippering process of merging two networks. (a) Two original networks with the weights
trained in advance. (b) Fuse the first layers of the two models at first, and fine-tune the weights of the entire model through
calibration training (i.e. with both classification loss and per-layer output-preserving loss used). Then the two models are
sequentially fused with more layers and fine-tuned in the same manner, until all the layers are fused. A sequence of merged
models can thus be generated via the zippering process, and one of them can be chosen for the deployment according to the
tradeoff between memory usage and accuracy drop.

In this paper, we propose a new approach for merging
two feed-forward deep-learning models. Although the intro-
duced approach requires that the models to be merged are
of the same architecture, the merged model can be realized
via existing deep-learning frameworks (where TensorFlow
is used in this work) and achieves both speedup and the
reduction of run-time memory usage.

3 Zippering MobileNets
We introduce an iterative method to merge MobileNets for
efficient inference. In round l of the iteration, we merge the
previous l layers. The merged layers serve as a common
backbone network for feature extraction of the subsequent
two branches of tasks, as illustrated in Figure 2(b). During
each round, there are two stages of operations. Shared-
weight initialization: First, the unified weights are initial-
ized so that the weights of different neural networks can be
used jointly.Model Calibration: Second, the weights of the
merged models are calibrated with the training data to re-
store the performance. Following the concept of distilling[6],
our method employs the original models to guide the cali-
bration in this stage.

3.1 Shared Weight Initialization
To effectively initialize theweights of the fused convolutional
layers, the basic idea is to leverage the well-trained models
given. Consider a convolutional layer in model A and model
B. Assume that they have khA × kwA × NA ×CA and khB ×

kwB × NB ×CB convolutional filters, respectively. Here, kh
and kw are the kernel size, N is the number of samples, andC

is the number of output channels. Here, we simply initialize
the weights by taking the average of the original weights as
follows, which results in the smallest quantization error of
the weights:

µi =
WAi +WBi

2
, i ∈ {1 : C} , (1)

whereWAi andWBi are vectors of one of convolutional filter
with respect to the i-th output channel of model A and model
B, respectively, and µi is the mean of vector served as the
fused weights.
Each layer of the MobileNet consists of two kinds of

convolutional layers, depthwise-separable and point-wise
convolutions. Note that the computational overhead of the
depthwise-separable convolutions is considerably lower than
that of the point-wise convolutions in MobileNet. Besides,
the depthwise-separable convolutions serve as the main fil-
ters to extract the spatial information of the input tensor in
each layer. Hence, we fuse only the point-wise convolutions,
and keep the depthwise-separable convolutions as indepen-
dent branches in the fused layer of the merged model.

3.2 Weight Calibration
Once the fused weights of are available, we set them as initial
values to merge the models for multiple tasks and further
fine-tune the entire model from all training data through end-
to-end back-propagation learning. In this weight-calibration
stage, we follow the concept of distilling dark knowledge
of neural networks in [6]. The cross-entropy losses of both
tasks, together with the L1 loss that reflects the output dif-
ference of every point-wise convolution layers, are summed
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to fine-tune the fused model. Accordingly, the optimization
problem is equivalent to:

w∗ = min
w

[LcA(w) + LcB(w) + LdA(w) + LdB(w)] (2)

wherew are the parameters of the convolutional filters, Lc is
individual cross-entropy loss, and Ld is the L1-norm differene
between the feature maps generated by the merged model
and the well-trained individual models of each layer.
The above procedures, shared-weight initialization and

weight calibration are alternatively performed when the top
l layers are fused, with l increased by one at each round in
our zippering process, as shown in Figure 2(b). Once the zip-
pering process is finished, a sequence of merged models are
obtained. They can then be flexibly chosen for the inference
stage via the tradeoff of resource/speed and accuracy.

4 Experiment
The first experiment is to merge two models derived from
the same MobileNet [7] architecture for image classification
on four datasets:
ImageNet [9] contains 1,000 classes of objects with 1,281,144
training samples and 50,000 testing samples.
DeepFashion [11] has 50 classes of clothing categories with
289,222 training samples and 40,000 testing samples.
CUBS Birds [13] contains 196 classes of bird categories
with 5,994 training samples and 5,794 testing samples.
Flowers [12] consisting of 102 classes of flower categories
with 2,040 training samples and 6,149 testing samples.

We implement the proposed method with MobileNet as
the backbone network using the TensorFlow [1] framework.
MobileNet has 13 blocks including depthwise and point-wise
layers. We merge each block from block 1 through block 10
incrementally to evaluate performance of the model, where
only point-wise layers are merged as depicted in Section 3.1.
Table 1 summarizes the experimental results of image classi-
fication on ImageNet and DeepFashion datasets.
In Table 1, we denote Merged Blocks as the interval of

blocks to be merged, Comp. as compression ratio, Speedup as
improvement of inference time, and Acc. as top-1 accuracy
of image classification. Top-1 accuracy of an well-trained
network for individual task on ImageNet and DeepFashion is
71.02% and 66.21%, respectively. In the case of merged block
from 1 through 4 incrementally, proposed model achieves
accuracy drop less than 2% compared to the individual net-
works per task. Moreover, there is the substantial increment
in speedup about from 1.08× to 1.24× and the reduction in
the usage of runtime memory about from 1.09× to 1.23×.
The results reveal that our approach can exploit redundancy
and demonstrate satisfactory compression ratio and speedup
with low accuracy drop. In Table 1, the details of accuracy
on different task are shown to guide the user for the tradeoff
between speed and accuracy.
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Figure 3. Top-1 classification accuracy in CUBS
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Zipper&Flower-init’s initial weights come from the
Flower model and uses traditional fine-tune, while
Zipper&Flower-init uses zippering process.
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Figure 3 shows the effect of different initial weights and
merging strategies when fusing different layers of MobileNet
of Flowers and CUBS task. If the merged network is initial-
ized with Flower task, the performance drop suddenly when
merging ten more layers. When using our "zippering" strat-
egy, it can be improved more than 8% when two networks
merged. It can even perform better when the initial weights
are chosen according to equation (1). The Fig. 4 shows the ef-
fect of mergingMobileNets from ImageNet and DeepFashion.
It reveals that weight trained from ImageNet is not the best
choice for all tasks. Our strategy can outperform ImageNet
initial weights with more than 13% in DeepFashion dataset.
The speedup ratios are also shown in the right hand side
of the Fig. 4. It is generally linear respect to the number of
merged layers.

To show the importance of initial weights, the loss in Deep-
Fashion training is shown in Fig. 5. Our approach converges
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Table 1. Merge performance on different tasks, and the compression and speedup ratio of different merged layers.

Merged Layer Comp. Speedup Runtime memory
usage Comp.

Acc.(%)
(ImageNet1)

Acc.(%)
(DeepFashion1)

Acc.(%)
(CUBS2)

Acc.(%)
(Flowers2)

0 1.000 1.00 1.00 71.02 66.21 68.01 91.70
1(First) 1.000 1.08 1.09 70.55 66.24 67.58 91.63
1∼2 1.002 1.13 1.14 70.22 66.17 67.50 91.33
1∼3 1.004 1.21 1.19 69.65 65.95 67.48 90.82
1∼4 1.009 1.24 1.23 69.46 65.59 67.40 91.02
1∼5 1.020 1.30 1.27 68.94 65.85 66.63 91.18
1∼6 1.042 1.33 1.28 68.53 65.31 66.82 90.75
1∼7 1.089 1.37 1.30 68.25 64.85 66.40 90.53
1∼8 1.140 1.42 1.32 67.75 64.81 65.77 90.16
1∼9 1.196 1.48 1.34 67.34 64.75 65.43 89.74
1∼10 1.258 1.53 1.37 66.66 63.95 64.55 88.40
1∼11 1.258 1.53 1.39 65.70 63.34 62.82 86.66
1∼12 1.258 1.53 1.40 64.35 61.89 60.02 84.00

1∼13(All) 1.258 1.53 1.41 61.63 56.12 55.53 80.99
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Figure 5. Convergence of different initial methods. The loss
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pared in DeepFashion dataset. "merged" is initialized using
our approach.

at about 2000 iterations, while random initialization struggle
at a higher loss with a slower convergent speed.

5 Conclusion
We present a zippering process to unify two well-trained
feed-forward networks with the same architecture into a
single one that can perform multiple tasks. Compared to
the two individual networks, this single network can reduce
the run-time memory required and boost the speed for the
inference. We take MobileNets as an example to evaluate our
approach and demonstrate the improvements in the model
size, run-timememory usage, and speedup. The experimental
results reveal that our method can provide a flexibility choice
for model merging and achieves satisfiable performance.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, et al. 2016. Tensorflow: Large-scale machine learning on het-
erogeneous distributed systems. arXiv (2016).

[2] Yusuf Aytar, Carl Vondrick, and Antonio Torralba. 2017. See, Hear,
and Read: Deep Aligned Representations. CoRR abs/1706.00932 (2017).
http://arxiv.org/abs/1706.00932

[3] S. Bazrafkan and P. M. Corcoran. 2018. Pushing the AI Envelope:
Merging Deep Networks to Accelerate Edge Artificial Intelligence in
Consumer Electronics Devices and Systems. IEEE Consumer Electronics
Magazine 7, 2 (March 2018), 55–61. https://doi.org/10.1109/MCE.2017.
2775245

[4] François Chollet. 2017. Xception: Deep Learning with Depthwise
Separable Convolutions. In Computer Vision and Pattern Recognition
(CVPR), 2017 IEEE Conference on. IEEE, 1800–1807.

[5] Yi-Min Chou, Yi-Ming Chan, Chih-Yi Chiu, and Chu-Song Chen. 2018.
Unifying and Merging Well-trained Deep Neural Networks for Infer-
ence Stage. In International Joint Conference on Artificial Intelligence.

[6] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2014. Distilling the
knowledge in a neural network. NIPS Workshops (2014).

[7] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
2017. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017).

[8] Lukasz Kaiser, Aidan N. Gomez, Noam Shazeer, Ashish Vaswani, Niki
Parmar, Llion Jones, and Jakob Uszkoreit. 2017. One Model To Learn
Them All. CoRR abs/1706.05137 (2017). http://arxiv.org/abs/1706.05137

[9] Alex Krizhevsky, Ilya Sutskever, andGeoffrey EHinton. 2012. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems. 1097–1105.

[10] Gil Levi and Tal Hassner. 2015. Age and gender classification using
convolutional neural networks. In CVPR Workshops.

[11] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. 2016.
DeepFashion: Powering Robust Clothes Recognition and Retrieval
with Rich Annotations. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[12] M-E. Nilsback and A. Zisserman. 2008. Automated Flower Classifi-
cation over a Large Number of Classes. In Proceedings of the Indian
Conference on Computer Vision, Graphics and Image Processing.

[13] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. 2011. The
Caltech-UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-
001. California Institute of Technology.

[14] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shuf-
fleNet: An Extremely Efficient Convolutional Neural Network for Mo-
bile Devices. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).


