
May 25, 2018

**Sound Level Assessment
for the Proposed
Topgolf at Oxmoor Center**

Louisville, Kentucky

**DELIVERING QUALITY
SOLUTIONS**

Prepared for: Sabak, Wilson & Lingo, Inc. and Arco Murray on behalf of Topgolf

TABLE OF CONTENTS

CHAPTER 1 – PROJECT INTRODUCTION	1-1
1.1 Project Description	1-1
1.2 Existing Noise environment.....	1-1
CHAPTER 2 – METHODOLOGY	2-1
2.1 Noise Assessment Methodology	2-1
2.2 Quantitative Noise Level Assessment Methodology.....	2-1
2.3 Qualitative Noise Assessment	2-1
CHAPTER 3 – RESULTS.....	3-1
3.1 Quantitative Assessment of the Potential Noise from the Proposed Topgolf Complex	3-1
3.2 Quantitative Noise Assessment Summary.....	3-5
3.3 Qualitative Noise Assessment for Generated Noise.....	3-6
3.4 Sound Level Ranges Propagated from the Topgolf Structure	3-9
CHAPTER 4 – SUMMARY.....	4-1
4.1 Conclusions	4-1

LIST OF FIGURES

Figure 1.2-1. Proposed Topgolf Layout with Sound Level Measurement Locations.....	1-2
Figure 3.1-1. Ambient (Existing) Sound Levels and Projected Sound Levels for Area Residential Properties with Topgolf	3-4
Figure 3.3-1. Acoustic Demo Sound Levels for 85-90 dB Music and Crowd Noise.....	3-8
Figure 3.4-1. Sound Level Ranges Associated with the Proposed Oxmoor Topgolf Facility	3-10

LIST OF TABLES

Table 3.1-1. Long-term and Short-term Noise Measurements for Site A at the Topgolf in Gilbert, AZ	3-1
Table 3.1-2. Gilbert, AZ Topgolf Sound Level for Site A and Associated Sound Pressure Levels Attributable to Topgolf Oxmoor Propagated to Oxmoor Sites.....	3-2
Table 3.1-3. Predicted Sound Levels at Each Measurement Site Based on Acoustic Surveys of the Topgolf Facility in Gilbert, AZ.....	3-3
Table 3.3-1. Ambient vs. Music and Crowd Noise Demonstration Measured Sound Levels.....	3-6

CHAPTER 1 – PROJECT INTRODUCTION

1.1 PROJECT DESCRIPTION

Topgolf International Inc. is proposing to redevelop the portion of the Oxmoor Center site containing the former Sears building and parking lot. The redevelopment would demolish and remove the existing Sears building and construct a new Topgolf multi-level golf and entertainment complex. A project site map of the proposed facility is shown in Figure 1.2-1.

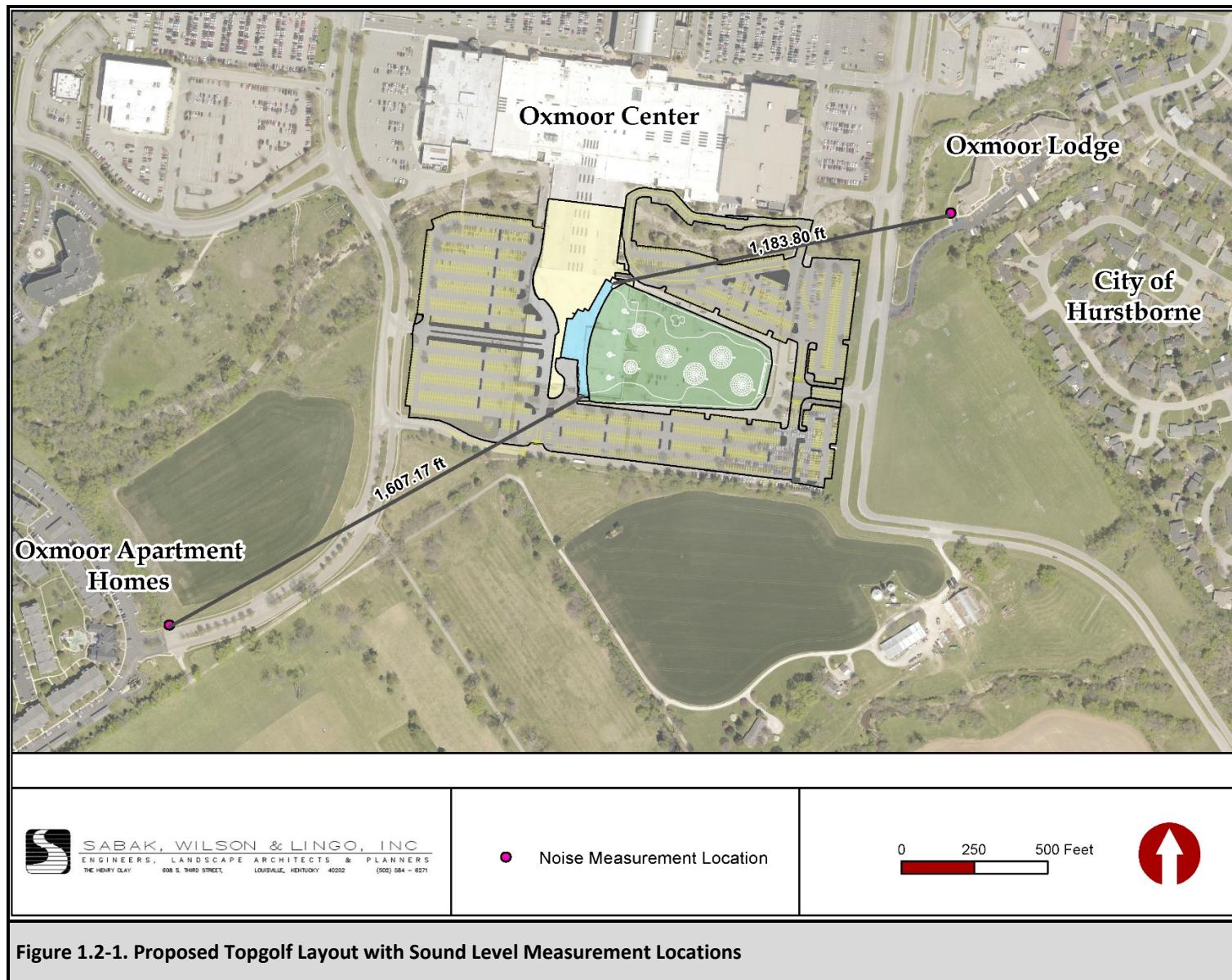
At the request of Sabak, Wilson & Lingo, Inc., Arco Murray, and Topgolf International, Inc., HMB Professional Engineers, Inc. conducted a noise evaluation to determine the sound levels at nearby residential properties, including the Oxmoor Lodge assisted living facility, the Oxmoor Apartment Homes, and the individual residences to the east of the Oxmoor Center. This report summarizes the survey methodology and results and utilizes the following sources for data to calculate the anticipated potential sound levels for the areas around the project and for nearby residences:

Field measurements of the ambient, or existing sound levels;

The Topgolf Noise Survey conducted on an Existing Topgolf facility in Gilbert, AZ; and

A qualitative assessment of noise generated at the proposed location with sound level measurements in both the ambient and noise generating conditions.

1.2 EXISTING NOISE ENVIRONMENT


The noise environment in the vicinity of the proposed Topgolf facility and the closest residences is generally comprised of highway traffic noise (from I-264 and Shelbyville Road), and localized noise sources, including local traffic and residential noise generators (e.g. A/C compressors, conversations and lawn mowers). The existing noise environment reflects a closed Sears and lack of associated commercial activities in this area that, if were replaced with the same or similar use, would generate additional noise.

The purpose of this evaluation was to determine whether the sound resulting from the proposed Topgolf entertainment complex would adversely impact the residences located in the developments around Oxmoor Center.

The Oxmoor Lodge and residences along Paddington Drive are over 1,180 feet, measuring from the closest point of the residences to the closest point of the proposed Topgolf building (the location of the golf driving bays and outdoor entertainment noise generating sources).

The closest point of the Oxmoor Apartment Homes is over 1,600 feet measuring from the closest point of the proposed Topgolf complex.

These locations and distances are shown in Figure 1.2-1.

CHAPTER 2 – METHODOLOGY

2.1 NOISE ASSESSMENT METHODOLOGY

To quantify the noise contribution of the Topgolf facility to the noise environment of the residences to the east and west of the Oxmoor Center, ambient (existing) sound pressure level measurements were conducted at the locations representing the closest point of the residences to the Topgolf building. These measurements were used, along with noise levels generated at an existing Topgolf facility in Gilbert, AZ, to develop the calculated levels for the surrounding areas assuming a similar Topgolf facility were operating at the project site at Oxmoor Center.

All noise measurements were conducted with a Rion NL-20 precision integrating sound level meter that was factory calibrated and certified to within specifications (see Appendix C) and field calibrated prior to each measurement with a Rion acoustical calibrator to ensure the accuracy of the measurements. All sound level values were measured in and are expressed in terms of A-weighted decibels (dBA). Definitions of terms used in this evaluation are included in Appendix A.

2.2 QUANTITATIVE NOISE LEVEL ASSESSMENT METHODOLOGY

One-hour ambient noise measurements were conducted for each hour between 9:00 PM EDT and 1:00 AM EDT on Friday the 18th of May and Saturday the 19th of May. These hours were selected to represent potential Topgolf weekend evening operating hours and to (a) minimize the contribution of highway traffic noise to the existing noise environment and (b) clarify any impacts the proposed Topgolf facility might have on the ambient noise environment. The environment at the Oxmoor Lodge was measured on the 18th, and the environment at the Oxmoor Apartment Homes was measured on the 19th.

2.3 QUALITATIVE NOISE ASSESSMENT

A noise source was created in the approximate location of the proposed Topgolf entertainment building and consisted of a stand mounted Electro-Voice ZLX12p 1,000-watt loudspeaker that was used to playback a looped pre-recorded audio track at 85-90dBA measured at 15 feet and a pre-recorded track of crowd noise at 85-90dBA at 15 feet. Five-minute ambient sound levels (without the generated noise source) and five-minute audio demonstration noise sound levels were measured at the edge of the parking lot (representing a point past the end of the proposed Topgolf driving range net, while still on Oxmoor property), the Oxmoor Lodge, and the Oxmoor Apartment Homes. The quantitative noise levels were recorded, and the human perception of the field technician was noted in the project field notes. The playback location and measurement locations are shown in Figure 3.3-1.

CHAPTER 3 – RESULTS

3.1 QUANTITATIVE ASSESSMENT OF THE POTENTIAL NOISE FROM THE PROPOSED TOPGOLF COMPLEX

Bollard Acoustical Consultants, Inc. prepared a comprehensive noise survey of the Gilbert, AZ Topgolf entertainment complex to assess the noise exposure resulting from a typical Topgolf operation. Long-term measurements were taken at two locations, identified as Sites A and B in their report. Thirty-minute interval measurements were recorded from 5PM on a Friday to Noon on Sunday and divided into two periods consisting of daytime (from 9AM to 10PM) and nighttime (from 10PM to 1AM) sound levels.

Measurement Site B was located at the end of the driving range field and was affected by highway traffic noise from a close-by six lane freeway and therefore is not useful in forecasting noise at other facilities. Site A was located 300 feet from the Topgolf structure and was located approximately half-way between the drive bays and the end of the driving field of play and is further removed from the six lane freeway. Therefore, calculations in the present study used Site A as the primary source of sound level data.

In addition to the long-term measurements, 5-minute short-term measurements were taken on a Saturday night between 9PM and 11PM. These measurements were taken at 17 locations, including Site A, surrounding the Topgolf complex and were selected to quantify typical Topgolf noise generation at a variety of positions around the site. The sound levels measured at Site A were used to forecast the sound level for the Oxmoor Topgolf facility. Sound level measurement results for Site A are provided in Table 3.1–1.

Table 3.1–1. Long-term and Short-term Noise Measurements for Site A at the Topgolf in Gilbert, AZ

LOCATION	LONG-TERM DAYTIME (DBA LEQ)	LONG-TERM NIGHTTIME (DBA LEQ)	SHORT-TERM AT 9:11 P.M. (DBA LEQ)
Site A – 300 feet from the Topgolf structure	59	61	61

The long-term and short-term data demonstrate that at 300 feet from the Topgolf structure—again, half-way between the drive bays and the end of the driving field—the measured sound values range from 59dBA to 61dBA. A value of 61dBA was used to forecast values for the residences in the vicinity of the proposed Oxmoor Topgolf facility. This value is both the highest measured level recorded at Site A and corresponds to nighttime activities.

Site A is located 300 feet from the Topgolf structure and has a recorded value of 61dBA Leq. This value was used, along with sound pressure level calculations, to project the sound pressure level at both the Oxmoor Lodge and Oxmoor Apartment Homes measurement locations.

The sound pressure Level (L) falls inversely proportional to the distance (1/r) from the noise source. Sound pressure levels decrease by (-)6dBA for each doubling of the distance from the source. Formula 1, following page, expresses the sound level (L2) at a projected, evaluative distance based on a known sound level (L1) at a reference distance.

$L_2 = L_1 + [20 \times \log (r_1/r_2)]$
$r_1 = \text{reference distance, } r_2 = \text{at measured distance}$
Formula 1

This expression was used to determine a calculated sound pressure level that would be attributable to the Topgolf structure, where the music and crowd noise are generated at the Oxmoor measurement sites. This projected value, based on using the 61dBA Leq level at 300 feet (the reference level and distance) from the Gilbert Topgolf facility, was then added to the ambient value to predict the total sound level at each Oxmoor measurement site. Since sound level units are logarithmic, the equation for adding two sound level values is given by:

$L_{\text{Total}} = 10\log_{10} (10^{(L_1/10)} + 10^{(L_2/10)})$
$L_1 \text{ and } L_2 = \text{ambient and Topgolf projected levels}$
Formula 2

The Gilbert data for Site A and the calculated sound pressure level attributable to the Topgolf main structure at each Oxmoor measurement site are given in Table 3.1–2.

Table 3.1–2. Gilbert, AZ Topgolf Sound Level for Site A and Associated Sound Pressure Levels Attributable to Topgolf Oxmoor Propagated to Oxmoor Sites

LOCATION	DISTANCE (FT)	NOISE LEVEL (DBA)
Gilbert, AZ – Site A	300	61
Oxmoor Lodge	1,183.8	49.1
Oxmoor Apartment Homes	1,607.2	46.4

The calculated sound pressure levels for the proposed Oxmoor Topgolf facility shown above were then added to the ambient sound level measured each hour between 9:00PM EDT and 1:00AM EDT (using Formula 2) to express the sound level for each hour at each residential site. Those values are given in Table 3.1–3 and both the measurement locations and predicted values are shown in Figure 3.1–1.

Table 3.1–3. Predicted Sound Levels at Each Measurement Site Based on Acoustic Surveys of the Topgolf Facility in Gilbert, AZ

TIME	OXMOOR LODGE			OXMOOR APARTMENT HOMES		
	MEASURED AMBIENT SOUND LEVEL (DBA LEQ)	PROJECTED SOUND LEVEL WITH TOPGOLF FACILITY (DBA LEQ)	INCREASE	MEASURED AMBIENT SOUND LEVEL (DBA LEQ)	PROJECTED SOUND LEVEL WITH TOPGOLF FACILITY (DBA LEQ)	INCREASE
9:00 p.m. to 10:00 p.m.	51.9	53.7	1.8	55.0	55.6	0.6
10:00 p.m. to 11:00 p.m.	50.1	52.6	2.5	55.0	55.6	0.6
11:00 p.m. to 12:00 a.m.	48.8	52.0	3.2	54.4	55.0	0.6
12:00 a.m. to 1:00 a.m.	47.8	51.5	3.7	54.2	54.9	0.7

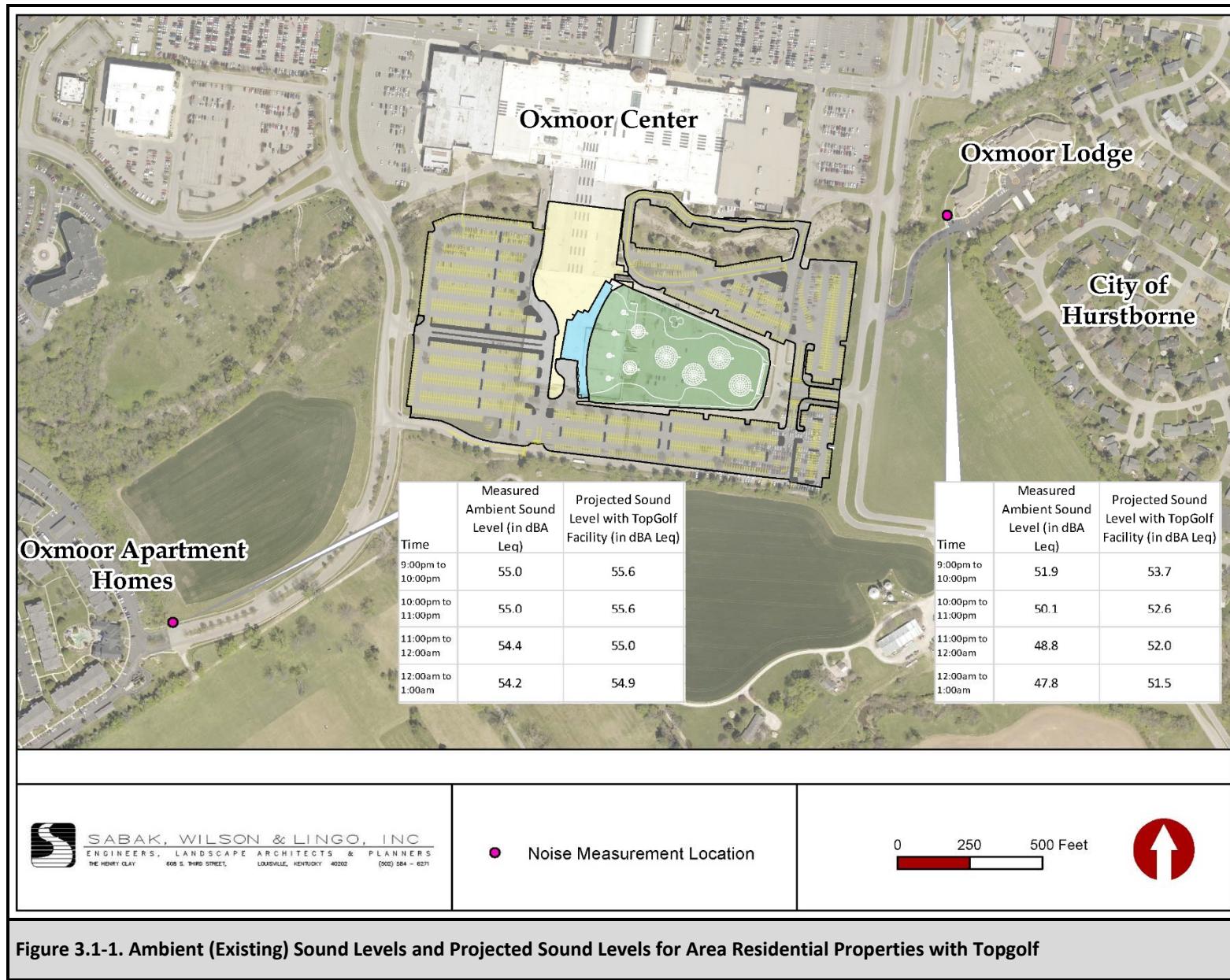
To provide a reference for the measured and calculated sound levels, a range of common sounds and their associated levels is included here.

40dB equates to an average home living room, library;

44dB equates to bird calls;

42-56dB equates to a suburban residential area;

50dB equates to an average office, soft music, or quiet suburban area;


60db equates to normal conversational speech;

70-80dB equates to a highway at 50 feet;

85dB equates to heavy traffic (including large trucks), a noisy restaurant;

90dB equates to a passing motorcycle at close range;

110-120dB equates to a rock concert.

3.2 QUANTITATIVE NOISE ASSESSMENT SUMMARY

The comprehensive noise survey of the Topgolf facility in Gilbert, AZ provided sound level measurements during nighttime hours with both long-term and short-term measurements. Both data sets indicated that the Gilbert Topgolf, a typical Topgolf facility, would generate 61dBA Leq at 300 feet from the Topgolf structure. That data was used to identify the sound pressure level attributable to the Topgolf facility and to determine a calculated noise level at residences nearest to the Oxmoor Center.

While sound pressure level measurements are a quantifiable number utilizing sound pressure level meters and acoustic equations, noise loudness is a perceived or “feeling” measure. Scientific research indicates that a doubling of the loudness feeling is obtained with an increase of about 6-10dBA.¹ Research has also shown that a sound level increase of 3dBA is “barely perceptible” to the human ear.²

Based on the data presented in Table 3.1–3, the change in the sound levels due to the Topgolf facility at the Oxmoor Apartments between 9PM and 1AM would increase less than 1.0dBA, which would not be a perceptible change in the sound level for the residents’ environment.

Based on the data presented in Table 3.1–3, the change in the sound levels due to the Topgolf facility at the Oxmoor Apartments between 9PM and 11PM would increase between 1.8dBA and 2.5dBA and would not generate a perceptible change in the sound levels for the residents. Between 11PM and 1AM the increase over existing conditions are 3.2dBA and 3.7dBA and would fall into the “barely perceptible” category for changes in the sound level for the closest residents’ noise environment.

From the list of common noises and their associated levels, the calculations demonstrate that, based on the noise survey of an operating Topgolf facility, the levels generated by the proposed Oxmoor Topgolf facility would equate to relatively quiet noise environments and would fall below the levels of conversational speech.

Importantly, these are exterior measurements at the single closest point to the Topgolf facility. All other residences are further from this point and would experience lower levels than those presented here. It should also be noted that interior noise levels would be approximately 15-20dBA lower than these exterior levels based on the construction of the residential structures. Meaning, the perception of sound significantly decreases inside the residences.

Quantitative analysis of the proposed Topgolf facility has demonstrated that, from an acoustic perspective, the implementation of the project would not have a meaningful impact on the sound levels for any resident near the Oxmoor Center. For most of the time analyzed, during typical weekend operating hours, the existing levels combined with the noise generated by Topgolf do not result in even a perceptible change in noise. At the distances that these residents are from the proposed facility, ambient noise near the residential properties is as great or greater than that generated by a typical Topgolf entertainment complex.

¹ Richard M. Warren, "Elimination of Biases in Loudness Judgments for Tones", 1970, Journal of the Acoust. Soc. Am. Volume 48, Issue 6B, pp. 1397 - 1403 and Richard M. Warren, "Quantification of Loudness", 1973, American Journal of Psychology, Vol 86 (4), pp. 807 - 825

John G. Neuhoff, "An adaptive bias in the perception of looming auditory motion", 2001, Ecological Psychology 13 (2) pp. 87 - 110 and John G. Neuhoff, "Perceptual Bias for Rising Tones", 1998, Nature, Volume 395, 10 September

² https://www.fhwa.dot.gov/environment/noise/regulations_and_guidance/polguide/polguide02.cfm

3.3 QUALITATIVE NOISE ASSESSMENT FOR GENERATED NOISE

The comprehensive acoustic survey of the Topgolf entertainment complex in Gilbert, AZ assessed both long-term and short-term measurements during operating hours, producing a survey of noises associated with operating a typical Topgolf facility. The report concluded that on the night of the testing the house music and patron activity were the main sources of noise. Noise generated by parking lot activities was negligible and no HVAC system noise was audible at the various monitoring sites.

Some of the conclusions/considerations identified following the short-term monitoring that took place between 9PM and 11PM on a Saturday night are:

- The measurements from the Gilbert Topgolf were taken when the facility was operating at, or very near, maximum capacity.
- For noise modeling purposes, it can be assumed that sound levels on the drive bays are 85dB Leq. These levels are based on sound level measurements conducted directly within the drive bays.
- The frequency content of the sound measured in the drive bays was relatively broadband, but low frequency components were noted in the 80-100 Hertz (Hz) bands.
- Data at Gilbert Topgolf Site A is considered a good benchmark for comparison of noise generation of various Topgolf facilities. It was close enough to the drive bays to ensure that the noise measurement results are representative of Topgolf operations without undue influence from extraneous noise sources.

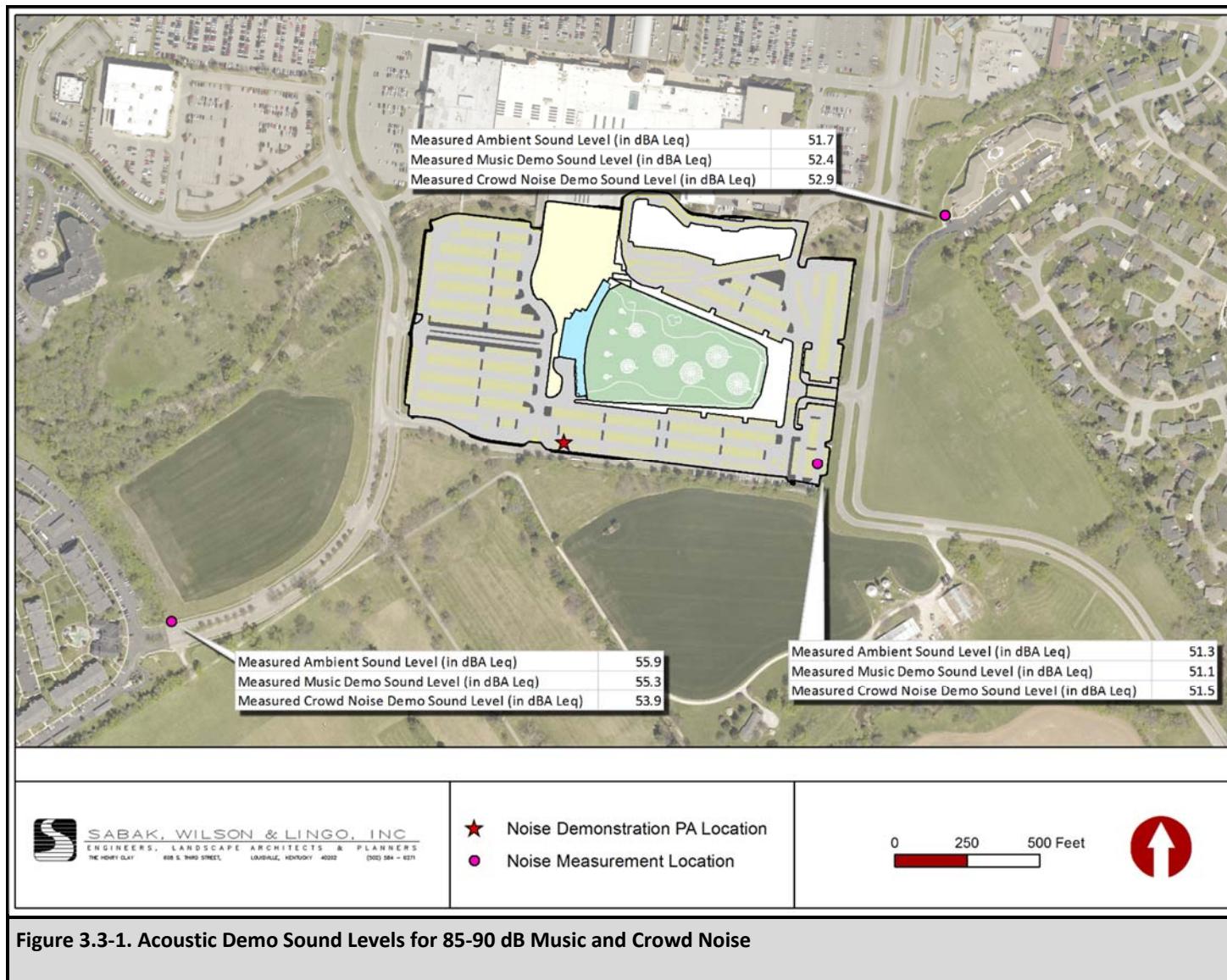

Based on the conclusions from the Gilbert study and to further demonstrate that the facility is not likely to alter the noise environment of the neighboring residents, an acoustic demonstration was conducted to measure sound levels at the Oxmoor Lodge and Oxmoor Apartment Homes with and without generated noise in the approximate location of the Topgolf structure. As noted in the methodology, and consistent with the types of noise generated at the Gilbert Topgolf, a music track (with heavy bass frequency components) and a crowd noise track were played individually and set to produce between 85dBA and 90dBA at 15 feet. Five-minute measurements were conducted at the edge of the parking lot, and at the two residential sites. Three measurements of sound pressure levels were taken at all three locations: ambient (without the music or crowd noise), crowd noise, and bass heavy music. The locations and levels are shown in Figure 3.3-1 and the levels are given in Table 3.3-1.

Table 3.3-1. Ambient vs. Music and Crowd Noise Demonstration Measured Sound Levels

SITE	5-MINUTE AMBIENT READINGS (DBA LEQ)	5-MINUTE MUSIC DEMO READINGS (DBA LEQ)	5-MINUTE CROWD NOISE DEMO READINGS (DBA LEQ)
Parking Lot	51.3	51.1	51.5
Oxmoor Lodge	51.7	52.4	52.9
Oxmoor Apartment Homes	55.9	55.3	53.9

This demonstration showed that a single source of noise of sufficient power to produce 85-90dBA Leq at 15 feet would not alter the noise environment from a sound level for the area residences, and, at these distances from the noise source, localized ambient noise dominates the environment.

While sound levels are measurable, sound “loudness” and “volume” are perceived measures that are subjective and are variable between people. The data shows that the sound levels from the demonstration do not meaningfully alter the sound level at the nearby residences (or even the parking lot at approximately 875 feet from the noise source). Nevertheless, field technicians were asked to note any perception of noise and determine if the sound generated was audible. Field observations indicated that the crowd noise tract was inaudible at both residential sites and that only occasionally a barely audible note of the music track was observed. The data, together with the field observations, further demonstrate that the residences, at 1,183 feet and 1,607 feet away, are too distantly removed from the sound source to be affected by the proposed Topgolf facility.

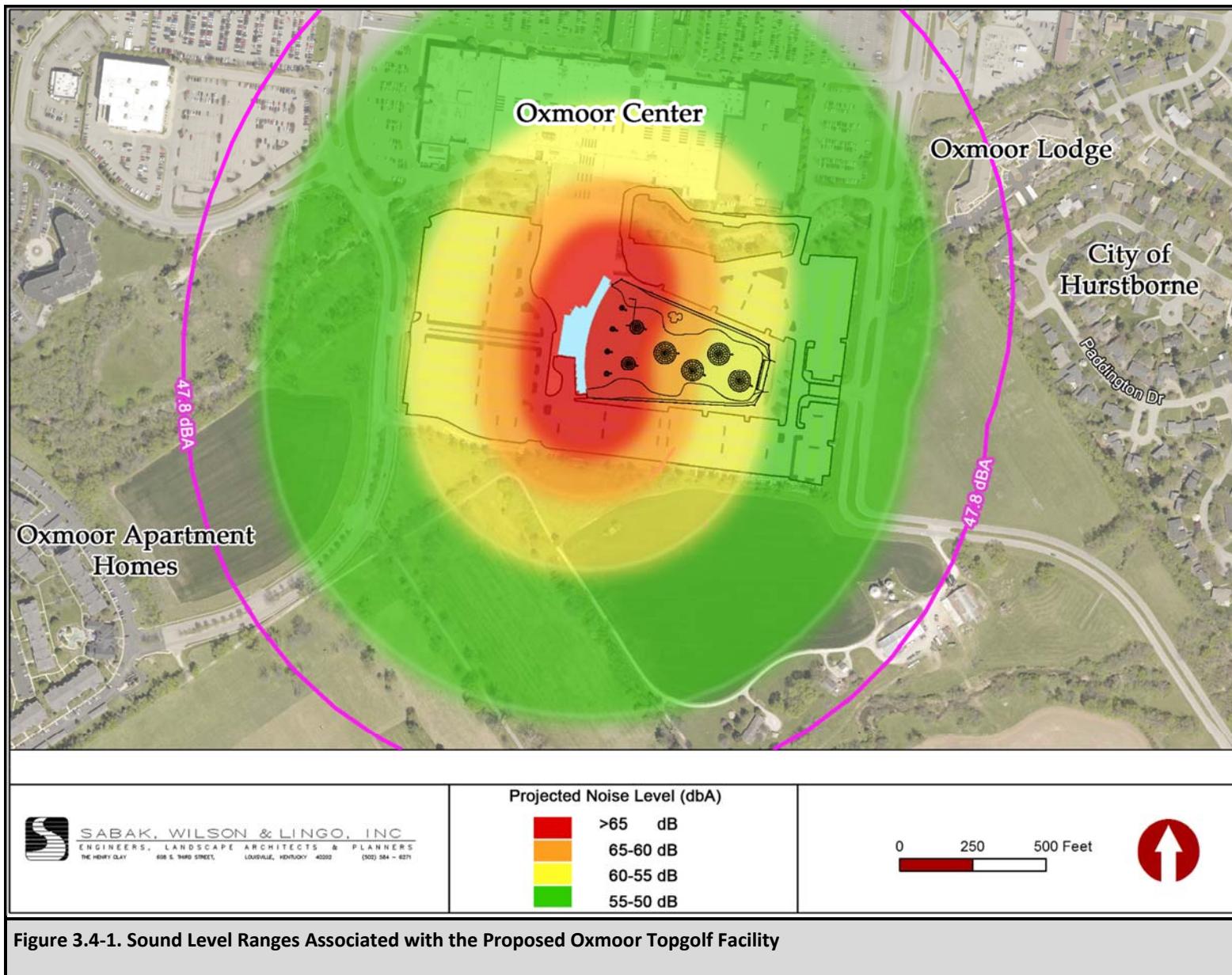
3.4 SOUND LEVEL RANGES PROPAGATED FROM THE TOPGOLF STRUCTURE

While Sections 3.1 and 3.2 provide a comparison of the projected sound levels from the Topgolf facility in relation to two ambient measured points (the nearby residential areas), a range of noise levels projected over the entire project area was also generated to (a) demonstrate the various noise levels associated with the proposed facility and (b) measure how far out those levels propagate.

The measurements taken at the Gilbert Topgolf Site A, as discussed in Section 3.1, were used to calculate a range of sound levels for the proposed Oxmoor Topgolf facility. Distances were calculated using the previously described formula 1 to identify distances that would equate to discreet sound levels based on the sound levels measured at Site A. The ranges chosen represent common noise environments (as previously described) and their context in relation to the noise environment. The ranges include:

- >65dBA: Representing noise levels that could make conversational speech more difficult;
- 60dBA to 65dBA: Representing noise levels that are above the levels of conversational speech and could be considered intrusive on a residential environment;
- 55dBA to 60dBA: Representing the range of conversational speech; *and*
- 50dBA to 55dBA: Representing the typical ambient noise levels at residential areas in the project area.

Another specific distance was also calculated - the distance required for the sound generated by the Topgolf operation to be reduced to 47.8 dBA Leq—the level of the lowest measured level at any point at any time during the study process (Oxmoor Lodge on May 18th, between 12AM and 1AM).


Figure 3.4-1 shows that, based on the real-world measured 61dBA at Gilbert Topgolf Site A, the sound levels generated by the proposed facility would be equal to, or less than, the ambient levels before reaching the residential areas associated with the Oxmoor Apartment Homes and just after reaching the residents along Paddington Drive (in comparison to the quietest hours measured).

This analysis demonstrates that the loudest, intrusive, calculated sound levels (>65dBA) would be contained within the TopGolf/Oxmoor Center property.

This analysis shows that the distance it would take for the sound levels from the Oxmoor Topgolf to reach 47.8dB would equate to just beyond the measurement site at the Oxmoor Lodge and would include approximately one-third of the Oxmoor Lodge building and reach three of the nearby single-family homes. Indicating that the levels from the Oxmoor Topgolf would be equal to, or less than, the ambient sound levels during the quietest hours measured.

The calculated sound levels, from the proposed Topgolf facility, at such distances to the residential developments, would not be meaningfully different than those that were measured at those residences. Furthermore, as discussed in Section 3.2, adding the sound of the Topgolf facility to the existing sound levels resulted in a barely perceptible change in the sound levels for the periods after 11PM to the Gilbert Topgolf's closing time and, even then, it was only barely perceptible at the point representing the shortest distance between the facility and the neighborhood.

This analysis represents a worst-case free-field calculation based on the Gilbert Topgolf Site A data. Though it is not shown in the analysis or in Figure 3.4-1, sound levels measured at sites on the sides or back of the facility (i.e. west of the project site, like the Oxmoor Apartment Homes) would likely be reduced over shorter distances because the building itself would block a portion of the sound, as demonstrated in the Gilbert Topgolf study.

CHAPTER 4 – SUMMARY

4.1 CONCLUSIONS

Based on the field measured ambient sound level data and calculated sound levels using real-world measurements from an existing Topgolf facility, calculations showed there would be no appreciable change in the sound level of the existing noise environments from the implementation of the proposed project. The field noise demonstration further supports these conclusions.

The following conclusions were reached based on this noise assessment of the proposed Oxmoor Topgolf facility:

- At the two ambient measurement sites, the Oxmoor Lodge and the Oxmoor Apartment Homes, the sound level from the proposed Oxmoor Topgolf facility was calculated using data recommended from the comprehensive noise survey of an operating Topgolf facility in Gilbert, AZ. The results indicate that the Topgolf generated sound level would be reduced to 49.1dBA over the 1,183 feet it takes to reach the Oxmoor Lodge and the generated sound level would be reduced to 46.4dBA over the 1,607.2 feet it takes to reach the Oxmoor Apartment Homes. These levels equate to a typical suburban area background level.
- Combining the calculated sound levels generated from Topgolf with the existing sound levels results in changes in sound levels that range from 0.6dBA to 0.7dBA for the Oxmoor Apartment Home measurement location. This change in the sound level for these residences would not be perceptible and all calculated levels at this residential area equate to levels that are below the sound levels of typical conversational speech.
- Combining the calculated sound levels from Topgolf with the existing sound levels results in changes in sound levels that range from 1.8dBA to 3.7dBA for the Oxmoor Lodge measurement location. This change in the sound level for these residences would be considered “barely perceptible” (a 3dBA change is the first change considered to be barely perceptible) between 11PM and 1AM and not perceptible at other hours. These calculations represent sound levels for the closest part of the exterior of the residences to the closest point to the Topgolf facility.
- The calculations of the sound levels, based on real-world Topgolf data and field measurements, indicate that while the sound generated from the proposed facility may be able to be heard (the human ear can hear sound all the way down to zero decibels), the Topgolf facility could generate only barely perceptible changes in the actual sound levels and do so only at the very closest area of residential usage (the side lawn of the Oxmoor Lodge).
- Calculations indicate that by the time the sound generated by Topgolf reaches the three closest single-family residences in the northwest corner of the City of Hurstbourne along Paddington Drive (1,375 feet from Topgolf) the level will have dropped to 47.8dBA, or equal to the lowest ambient reading recorded at any receiver, at the quietest hour. By the time it reaches the backyard of the closest single-family residence on the other side of Paddington Drive (1,643 feet from Topgolf) the level will have dropped to 46.2dBA, which is lower than the quietest existing ambient reading taken at any time during the study (at the Oxmoor Lodge, at 1AM).
- Sound level ranges were calculated by distance based on the Gilbert Topgolf data taken when the facility was operating at, or near maximum, capacity. The calculations based on this data

indicate that at, or before, the sound reaches the residential areas it is at a level that is equal to or less than the existing sound levels at those areas. At distances equating to the closest residential property, the sound level will have diminished to a level that it is the same as the ambient level. This analysis is comparable to the entire set measurements taken at the Gilbert facility and shown in the Gilbert noise heat map (included in Appendix B). The heat map shows the results of real-world sound levels and the projected sound as you move away from Topgolf. From this analysis, it is evident that intrusive noise levels (greater than 65dBA) are contained to the Topgolf grounds and that beyond approximately 500 feet, demonstrated in all analyses, the sound levels generated are at or below levels that are associated with typical conversational speech. The Gilbert heat map also demonstrates that the building itself reduces the sound levels to the sides and rear of the structure.

- The existing noise environment in this area of the Oxmoor Center reflects the closed Sears commercial operation and lack of activities associated with retail operations in this area (e.g. additional traffic circulation around the Sears area and parking lot and human activity). Any redevelopment of this commercial/retail area would introduce some additional sound to the environment.

The Gilbert Topgolf study evaluated both long-term measurements and short-term measurements, at multiple points around an existing Topgolf facility operating at, or near, maximum capacity during weekend evening hours. Data and recommendations from that study were used to calculate potential sound levels for the proposed Oxmoor Topgolf facility. This study calculated sound levels, demonstrated sound level values, calculated sound ranges and their propagated distances, and generated a heat map from a network of measurement locations at an operating Topgolf. The studies demonstrate that, at the distances the area residents are from the proposed Topgolf, the generated sound may be audible, but it will not meaningfully affect the sound levels of the surrounding residential properties.

Appendix A:

Glossary of Terminology

Glossary of Acoustical Terminology

Ambient Sound Level (or Ambient Noise): The existing acoustical character of a given area that is comprised of all noise sources that contribute to the sound environment. The ambient sound levels are used to demonstrate the existing condition as a baseline of comparison for any potential increases in noise levels.

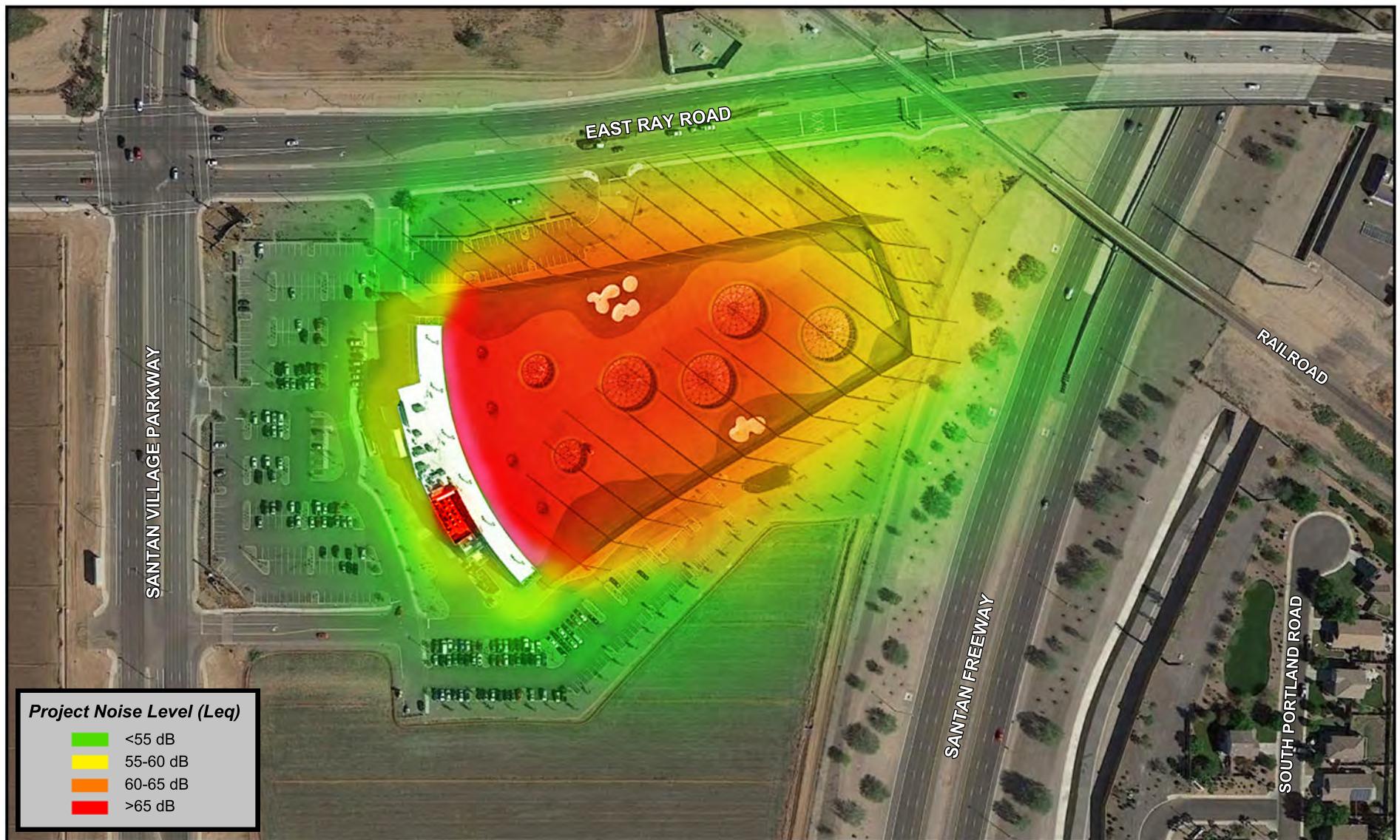
A-Weighting: A frequency-response adjustment of a sound level meter that approximates the human perception of sound and accounts for the frequencies that the human ear is more sensitive to. It is the most common weighting that is used in noise measurement.

Decibel (dB): The unit of sound, a Bell is defined as the logarithm of the ratio of the sound pressure squared over the reference pressure squared. A Decibel is 1/10 of a Bell.

Field Calibration: A sound level meter calibration check that is carried out in the field using a hand-held calibrator just before making important measurements. It is done to check that the sound level meter is functioning correctly and to make fine adjustments to the instrument.

Instrument Calibration: Sound level meter calibration carried out by a laboratory. A certificate is issued by the laboratory to show conformance with the standards.

Leq: Equivalent sound level. Used when measuring noise that varies over time to average the sound level.


Loudness: A subjective term that is difficult to quantify and may vary from person to person.

Noise: Sound that is undesirable.

Appendix B:

Noise Level Heat Map Generated from
the Noise Survey of the Gilbert, AZ
Topgolf Facility

Figure 3
Project Noise Generation Heat Map
Topgolf Gilbert - Gilbert, Arizona

Appendix C:

Rion NL-20 and Field Calibrator
Laboratory Calibration Certificates

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1
ACCREDITED by NVLAP (an ILAC MRA signatory)

Calibration Certificate No.37641

Instrument: Sound Level Meter
Model: NL20
Manufacturer: Rion
Serial number: 00110039
Tested with: Microphone UC52 s/n 77412
Preamplifier NH21 s/n 00177
Type (class): 2
Customer: HMB Professional Engineers, Inc.
Tel/Fax: 502-695-9800 / 502-695-9810

Date Calibrated: 1/9/2017 Cal Due: 1/9/2019
Status: Received Sent
In tolerance: X X
Out of tolerance: _____
See comments: _____
Contains non-accredited tests: Yes No
Calibration service: Basic Standard
Address: 3 HMB Circle US 460
Frankfort, KY 40601

Tested in accordance with the following procedures and standards:
Calibration of Sound Level Meters, Scantek Inc., Rev. 6/26/2015
SLM & Dosimeters – Acoustical Tests, Scantek Inc., Rev. 7/6/2011

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

Instrument - Manufacturer	Description	S/N	Cal. Date	Traceability evidence	Cal. Due
				Cal. Lab / Accreditation	
483B-Norsonic	SME Cal Unit	31052	Oct 26, 2016	Scantek, Inc./ NVLAP	Oct 26, 2017
DS-360-SRS	Function Generator	33584	Oct 20, 2015	ACR Env./ A2LA	Oct 20, 2017
34401A-Agilent Technologies	Digital Voltmeter	US36120731	Oct 12, 2016	ACR Env./ A2LA	Oct 12, 2017
HM30-Thommen	Meteo Station	1040170/39633	Nov 1, 2016	ACR Env./ A2LA	Nov 1, 2017
PC Program 1019 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, Inc.	-
1251-Norsonic	Calibrator	30878	Nov 10, 2016	Scantek, Inc./ NVLAP	Nov 10, 2017
4226-Brüel&Kjær	Multifunction calibrator	2305103	Jul 25, 2016	Scantek, Inc./ NVLAP	Jul 25, 2017

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
23.3	102.34	40.1

Calibrated by:	Jeremy Gotwalt	Authorized signatory:	Steven E. Marshall
Signature		Signature	
Date	1/9/17	Date	1/10/2017

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.
This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Results summary: Device complies with following clauses of mentioned specifications:

1 CLAUSES FROM IEC/ANSI STANDARDS REFERENCED IN PROCEDURES:	RESULT ^{2,3}	EXPANDED UNCERTAINTY (coverage factor 2) [dB]
INDICATION AT THE CALIBRATION CHECK FREQUENCY - IEC61672-3 ED.2 CLAUSE 10	Passed	0.15
SELF-GENERATED NOISE - IEC 61672-3 ED.2 CLAUSE 11	Passed	0.30
ACOUSTICAL TEST OF A FREQUENCY WEIGHTING - IEC 61672-3 ED.2.0 CLAUSE 12	Passed	0.30
FREQUENCY WEIGHTINGS: A NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY WEIGHTINGS: C NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY WEIGHTINGS: Z NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY AND TIME WEIGHTINGS AT 1 KHZ IEC 61672-3 ED.2.0 CLAUSE 14	Passed	0.20
LEVEL LINEARITY ON THE REFERENCE LEVEL RANGE - IEC 61672-3 ED.2 CLAUSE 16	Passed	0.25
LEVEL LINEARITY INCLUDING THE LEVEL RANGE CONTROL - IEC 61672-3 ED.2.0 CLAUSE 17	Passed	0.25
TONEBURST RESPONSE - IEC 61672-3 ED.2.0 CLAUSE 18	Passed	0.30
OVERLOAD INDICATION - IEC 61672-3 ED.2.0 CLAUSE 20	Passed	0.25
HIGH LEVEL STABILITY TEST - IEC 61672-3 ED.2.0 CLAUSE 21	Passed	0.10
LONG TERM STABILITY TEST - IEC 61672-3 ED.2.0 CLAUSE 15	Passed	0.10

1 The results of this calibration apply only to the instrument type with serial number identified in this report.

2 Parameters are certified at actual environmental conditions.

3 The tests marked with (*) are not covered by the current NVLAP accreditation.

Comments: The sound level meter submitted for testing has successfully completed the class 2 periodic tests of IEC 61672-3, for the environmental conditions under which the tests were performed. However, No general statement or conclusion can be made about conformance of the sound level meter to the full requirements of IEC 61672-1 because evidence was not publicly available, from an independent testing organization responsible for pattern approvals, to demonstrate that the model of sound level meter fully conforms to the requirements of IEC 61672-1:2002, and because the periodic tests of IEC 61672-3 cover only a limited subset of the specifications in IEC 61672-1.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger.

Compliance with any standard cannot be claimed based solely on the periodic tests.

Tests made with the following attachments to the instrument:

Microphone: Rion UC52 s/n 77412 for acoustical test
Preamplifier: Rion NH21 s/n 00177 for all tests
Other: line adaptor ADP005 (18pF) for electrical tests
Accompanying acoustical calibrator: Rion NC-73 s/n 10417585
Windscreen: Rion WS-10

Measured Data: in Test Report # 37641 of nine pages.

Place of Calibration: Scantek, Inc.

6430 Dobbins Road, Suite C
Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167
callab@scantekinc.com

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.
This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Summary of Test Report No.:37641

Rion Type: NL20 Serial no: 00110039

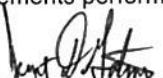
Customer: HMB Professional Engineers, Inc.
Address: 3 HMB Circle US 460 Frankfort, KY 40601
Contact Person: Mitchell Green
Phone No.: 502-695-9800
Fax No.: 502-695-9810

Microphone:	Rion	Type: UC52	Serial no: 77412	Sens:dB
Preamplifier	Rion	Type: NH21	Serial no: 00177	
Calibrator:	Rion	Type: NC-73	Serial no: 10417585	Level:93.97dB
Wind screen	Rion	Type: WS-10		

Measurement Results:

Indication at the calibration check frequency - IEC61672-3 Ed.2 Clause 10	Passed
Self-generated noise - IEC 61672-3 Ed.2 Clause 11	Passed
Acoustical test of a frequency weighting - IEC 61672-3 Ed.2.0 Clause 12	Passed
Frequency weightings: A Network - IEC 61672-3 Ed.2.0 Clause 13	Passed
Frequency weightings: C Network - IEC 61672-3 Ed.2.0 Clause 13	Passed
Frequency weightings: Z Network - IEC 61672-3 Ed.2.0 Clause 13	Passed
Frequency and time weightings at 1 kHz IEC 61672-3 Ed.2.0 Clause 14	Passed
Level linearity on the reference level range - IEC 61672-3 Ed.2 Clause 16	Passed
Level linearity including the level range control - IEC 61672-3 Ed.2.0 Clause 17	Passed
Toneburst response - IEC 61672-3 Ed.2.0 Clause 18	Passed
Overload indication - IEC 61672-3 Ed.2.0 Clause 20	Passed
High level stability test - IEC 61672-3 Ed.2.0 Clause 21	Passed
Long term stability test - IEC 61672-3 Ed.2.0 Clause 15	Passed

Environmental conditions:


Pressure: 102.34 Temperature: 23.3 Relative humidity: 40.1

Date of calibration: 1/9/2017

Date of issue: 1/9/2017

Supervisor: Steven E. Marshall

Measurements performed by:

Jeremy Gotwalt

Software version: 6.1 T

Scantek, Inc.

6430 Dobbin Rd., Suite C, Columbia, MD 21045
Ph: 410-290-7726 eMail: callab@scantekinc.com

Test Report No.:37641

Manufacturer: Rion
Instrument type: NL20
Serial no: 00110039
Customer: HMB Professional Engineers, Inc.
Department:
Order No:
Contact Person: Mitchell Green
Address: 3 HMB Circle US 460 Frankfort, KY 40601

Environmental conditions:

Pressure: 102.34
Temperature: 23.3
Relative humidity: 40.1

Supervisor Steven E. Marshall
Engineer Jeremy Gotwalt
Date: 1/9/2017

Measurement Results:

Indication at the calibration check frequency - IEC61672-3 Ed.2 Clause 10

Reference Calibrator: WSC4 - NOR1251-30878
Reference calibrator level: 114.00
Before calibration:
 Environmental corrections: 0.00
 Other corrections: -0.2
 Notional level: 113.80
Reference calibrator level before calibration: 113.9
After calibration:
 Environmental corrections: 0.00
 Other corrections: -0.2
 Notional level: 113.80
Reference calibrator level after calibration: 113.8
Associated Calibrator: Rion - NC-73 - 10417585
Associated calibrator level: 93.97
Initial level check:
 Environmental corrections: 0.00
 Other corrections: -0.2
 Notional level: 93.77
Indicated level before calibration: 93.9
Final level statement:
 Environmental corrections after calibration: 0.00
 Other corrections: -0.2
 Notional level: 93.77
Indicated level after calibration: 93.8
This value shall be used for adjusting the sound level meter in the future.
Test Passed

Self-generated noise - IEC 61672-3 Ed.2 Clause 11

Network	Level (dB)	Max (dB)	Uncert. (dB)	Result	Comment
A	12.2	20.0	0.3	P	Equivalent capacity
C	17.7	27.0	0.3	P	Equivalent capacity
Z	24.8	32.0	0.3	P	Equivalent capacity

Test Passed

Acoustical test of a frequency weighting - IEC 61672-3 Ed.2.0 Clause 12

A-Weighted results: free field response					
Frequency	Response (dB)	Tol. (dB)	Uncert. (dB)	Result	
125 Hz	-0.2	1.5	-1.5	0.2	P
1 kHz	0.0	1.0	-1.0	0.2	P
4 kHz	-1.3	3.0	-3.0	0.3	P
8 kHz	-1.8	5.0	-5.0	0.5	P

Test Passed

The overall frequency response of the sound level meter, typical wind screen response and microphone response has shown to conform with the requirements in IEC 61672-3 for a class 2 sound level meter.

Frequency response test using multi frequency calibrator.

Sources for correction data:

Calibrator levels and uncertainty: Scantek - SCL

Microphone field corrections and uncertainty:

Case reflections and uncertainty:

Wind screen corrections and uncertainty:

Tabular information

Calibrator = WSC4 at 94dB

txtMFCL125 = 94.07

txtMFCLU125 = 0.11

txtSU125 = 0.20

txtM125_1 = 78.1

txtM125_2 = 78.1

txtM125_3 = 78.1

txtMFCL1k = 94.07

txtMFCLU1k = 0.11

txtSU1k = 0.15

txtM1k_1 = 93.9

txtM1k_2 = 93.9

txtM1k_3 = 93.9

txtMFCL4k = 94.02

txtMFCLU4k = 0.11

txtSU4k = 0.40

txtM4k_1 = 93.6

txtM4k_2 = 93.6

txtM4k_3 = 93.6

txtMFCL8k = 93.88

txtMFCLU8k = 0.14

txtSU8k = 0.50

txtM8k_1 = 88.6

txtM8k_2 = 88.6

txtM8k_3 = 88.6

txtSLM125 = 78.1

txtNC125 = 16.1

txtSLMU125 = 0.1

txtMic125 = 0.0

txtMicU125 = 0.05

txtCR125 =

txtCRU125 =

txtWS125 = 0.0

txtWSU125 = 0.1

txtSLM1k = 93.9

txtNC1k = 0

txtSLMU1k = 0.1

txtMFCL1k = 94.07

txtMFCLU1k = 0.11

txtMic1k = 0.4

txtMicU1k = 0.1

txtCR1k =

txtCRU1k =

txtWS1k = 0.1

txtWSU1k = 0.1

txtSLM4k = 93.6

txtNC4k = -1.0

txtSLMU4k = 0.1

txtMFCL4k = 94.02

```

txtMFCLU4k = 0.11
txtMic4k = 0.2
txtMicU4k = 0.2
txtCR4k =
txtCRU4k =
txtWS4k = 0.3
txtWSU4k = 0.2
txtSLM8k = 88.6
txtNC8k = 1.1
txtSLMU8k = 0.1
txtMFCL8k = 93.88
txtMFCLU8k = 0.14
txtMic8k = 2.7
txtMicU8k = 0.4
txtCR8k =
txtCRU8k =
txtWS8k = 0.0
txtWSU8k = 0.3

```

Frequency weightings: A Network - IEC 61672-3 Ed.2.0 Clause 13

Freq (Hz)	Ref. (dB)	Meas. (dB)	Tol. (dB)	Uncert. (dB)	Dev. (dB)	Result
63.1	83.0	83.0	2.0	-2.0	0.2	0.0 P
125.9	83.0	82.9	1.5	-1.5	0.2	-0.1 P
251.2	83.0	82.9	1.5	-1.5	0.2	-0.1 P
501.2	83.0	82.9	1.5	-1.5	0.2	-0.1 P
1000.0	83.0	83.0	1.0	-1.0	0.2	0.0 P
1995.3	83.0	83.1	2.0	-2.0	0.2	0.1 P
3981.1	83.0	83.1	3.0	-3.0	0.2	0.1 P
7943.3	83.0	83.2	5.0	-5.0	0.2	0.2 P

Test Passed

Frequency weightings: C Network - IEC 61672-3 Ed.2.0 Clause 13

Freq (Hz)	Ref. Level (dB)	Meas. Value (dB)	Tol. (dB)	Uncert. (dB)	Dev. (dB)	Result
63.1	83.0	83.0	2.0	-2.0	0.2	0.0 P
125.9	83.0	83.0	1.5	-1.5	0.2	0.0 P
251.2	83.0	83.0	1.5	-1.5	0.2	0.0 P
501.2	83.0	83.0	1.5	-1.5	0.2	0.0 P
1000.0	83.0	83.0	1.0	-1.0	0.2	0.0 P
1995.3	83.0	83.1	2.0	-2.0	0.2	0.1 P
3981.1	83.0	83.1	3.0	-3.0	0.2	0.1 P
7943.3	83.0	83.2	5.0	-5.0	0.2	0.2 P

Test Passed

Frequency weightings: Z Network - IEC 61672-3 Ed.2.0 Clause 13

Freq (Hz)	Ref. Level (dB)	Meas. Value (dB)	Tol. (dB)	Uncert. (dB)	Dev. (dB)	Result
63.1	83.0	83.0	2.0	-2.0	0.2	P
125.9	83.0	83.0	1.5	-1.5	0.2	P
251.2	83.0	83.0	1.5	-1.5	0.2	P
501.2	83.0	83.0	1.5	-1.5	0.2	P
1000.0	83.0	83.1	1.0	-1.0	0.2	P
1995.3	83.0	83.1	2.0	-2.0	0.2	P
3981.1	83.0	83.1	3.0	-3.0	0.2	P
7943.3	83.0	83.1	5.0	-5.0	0.2	P

Test Passed

Frequency and time weightings at 1 kHz IEC 61672-3 Ed.2.0 Clause 14

Weightings	Ref. Netw (dB)	Measured (dB)	Tol. (dB)	Uncert. (dB)	Dev. (dB)	Result
Fast A	94.0	94.0	0.1	-0.1	0.2	P
Fast C	94.0	94.1	0.1	-0.1	0.2	P
Fast Z	94.0	94.1	0.1	-0.1	0.2	P
Fast Flat	94.0	94.1	0.1	-0.1	0.2	P
Slow A	94.0	94.0	0.1	-0.1	0.2	P
Leq A	94.0	94.0	0.1	-0.1	0.2	P
SEL A	104.0	104.0	0.1	-0.1	0.2	P

Test Passed

Level linearity on the reference level range - IEC 61672-3 Ed.2 Clause 16

Ref. (dB)	Measured (dB)	Tol. (dB)	Uncert. (dB)	Dev. (dB)	Result
Full scale setting: 120dB					
The following measurements are SPL measurements					
Measured at 31.5 Hz					
74.0	74.0	1.1	-1.1	0.25	P
79.0	79.0	1.1	-1.1	0.25	P
84.6	84.6	1.1	-1.1	0.25	P
85.6	85.6	1.1	-1.1	0.25	P
86.6	86.6	1.1	-1.1	0.25	P
87.6	87.6	1.1	-1.1	0.25	P
88.6	88.6	1.1	-1.1	0.25	P
74.0	74.6	1.1	-1.1	0.25	P
69.0	69.1	1.1	-1.1	0.25	P
64.0	64.0	1.1	-1.1	0.25	P
59.0	59.1	1.1	-1.1	0.25	P
54.0	54.1	1.1	-1.1	0.25	P
49.0	49.1	1.1	-1.1	0.25	P
44.0	43.9	1.1	-1.1	0.25	P
39.0	38.9	1.1	-1.1	0.25	P
37.0	37.0	1.1	-1.1	0.25	P
36.0	35.9	1.1	-1.1	0.25	P
35.0	35.0	1.1	-1.1	0.25	P

Level linearity on the reference level range - IEC 61672-3 Ed.2 Clause 16

Ref. (dB)	Measured (dB)	Tol. (dB)	Uncert. (dB)	Dev. (dB)	Result
34.0	33.9	1.1	-1.1	0.25	-0.1 P
33.0	32.9	1.1	-1.1	0.25	-0.1 P
Measured at 1 kHz					
94.0	94.0	1.1	-1.1	0.25	0.0 P
99.0	99.0	1.1	-1.1	0.25	0.0 P
104.0	104.0	1.1	-1.1	0.25	0.0 P
109.0	109.0	1.1	-1.1	0.25	0.0 P
114.0	114.0	1.1	-1.1	0.25	0.0 P
119.0	119.0	1.1	-1.1	0.25	0.0 P
124.0	124.0	1.1	-1.1	0.25	0.0 P
125.0	125.0	1.1	-1.1	0.25	0.0 P
126.0	126.0	1.1	-1.1	0.25	0.0 P
127.0	127.1	1.1	-1.1	0.25	0.1 P
128.0	128.1	1.1	-1.1	0.25	0.1 P
94.0	94.0	1.1	-1.1	0.25	0.0 P
89.0	89.0	1.1	-1.1	0.25	0.0 P
84.0	84.0	1.1	-1.1	0.25	0.0 P
79.0	79.0	1.1	-1.1	0.25	0.0 P
74.0	74.0	1.1	-1.1	0.25	0.0 P
69.0	69.0	1.1	-1.1	0.25	0.0 P
64.0	64.0	1.1	-1.1	0.25	0.0 P
59.0	59.0	1.1	-1.1	0.25	0.0 P
54.0	54.0	1.1	-1.1	0.25	0.0 P
49.0	49.0	1.1	-1.1	0.25	0.0 P
44.0	44.0	1.1	-1.1	0.25	0.0 P
39.0	38.9	1.1	-1.1	0.25	-0.1 P
37.0	37.0	1.1	-1.1	0.25	0.0 P
36.0	36.0	1.1	-1.1	0.25	0.0 P
35.0	35.0	1.1	-1.1	0.25	0.0 P
34.0	33.9	1.1	-1.1	0.25	-0.1 P
33.0	33.0	1.1	-1.1	0.25	0.0 P
Measured at 8 kHz					
94.0	94.0	1.1	-1.1	0.25	0.0 P
99.0	99.0	1.1	-1.1	0.25	0.0 P
104.0	104.0	1.1	-1.1	0.25	0.0 P
109.0	109.0	1.1	-1.1	0.25	0.0 P
114.0	114.0	1.1	-1.1	0.25	0.0 P
119.0	119.0	1.1	-1.1	0.25	0.0 P
122.9	122.9	1.1	-1.1	0.25	0.0 P
123.9	123.9	1.1	-1.1	0.25	0.0 P
124.9	124.9	1.1	-1.1	0.25	0.0 P
125.9	126.0	1.1	-1.1	0.25	0.1 P
94.0	94.0	1.1	-1.1	0.25	0.0 P
89.0	89.0	1.1	-1.1	0.25	0.0 P
84.0	84.0	1.1	-1.1	0.25	0.0 P
79.0	79.0	1.1	-1.1	0.25	0.0 P
74.0	74.0	1.1	-1.1	0.25	0.0 P
69.0	69.0	1.1	-1.1	0.25	0.0 P
64.0	64.0	1.1	-1.1	0.25	0.0 P
59.0	59.0	1.1	-1.1	0.25	0.0 P
54.0	54.0	1.1	-1.1	0.25	0.0 P
49.0	49.0	1.1	-1.1	0.25	0.0 P
44.0	44.1	1.1	-1.1	0.25	0.1 P
39.0	39.0	1.1	-1.1	0.25	0.0 P
37.0	37.0	1.1	-1.1	0.25	0.0 P
36.0	36.0	1.1	-1.1	0.25	0.0 P
35.0	35.0	1.1	-1.1	0.25	0.0 P

Level linearity on the reference level range - IEC 61672-3 Ed.2 Clause 16

Ref. (dB)	Measured (dB)	Tol. (dB)	Uncert. (dB)	Dev. (dB)	Result
34.0	34.0	1.1	-1.1	0.25	0.0 P
33.0	33.0	1.1	-1.1	0.25	0.0 P

Test Passed

Level linearity including the level range control - IEC 61672-3 Ed.2.0 Clause 17

Full Scale (dB)	Ref. Value (dB)	Measured Value (dB)	Tol. Value (dB)	Uncert. (dB)	Dev. (dB)	Result
-----------------	-----------------	---------------------	-----------------	--------------	-----------	--------

Measured at 1 kHz

The following measurements are SPL measurements

Measuring the reference level on the available ranges.

130	94.0	94.0	1.1	0.25	0.0	P
120	94.0	94.0	1.1	0.25	0.0	P
110	94.0	94.0	1.1	0.25	0.0	P
100	94.0	94.0	1.1	0.25	0.0	P

Measuring 5 dB below full scale on all available ranges.

130	125.0	125.0	1.1	0.25	0.0	P
120	115.0	115.0	1.1	0.25	0.0	P
110	105.0	105.0	1.1	0.25	0.0	P
100	95.0	95.0	1.1	0.25	0.0	P
90	85.0	85.0	1.1	0.25	0.0	P
80	75.0	75.0	1.1	0.25	0.0	P

Test Passed

Toneburst response - IEC 61672-3 Ed.2.0 Clause 18

Burst type	Ref. (dB)	Measured (dB)	Tol. (dB)	Uncert. (dB)	Dev. (dB)	Result
Fast 200 mSec	125.0	125.0	1.0	-1.0	0.3	0.0 P
Fast 2.0 mSec	108.0	108.0	1.0	-2.5	0.3	0.0 P
Fast 0.25 mSec	99.0	98.9	1.5	-5.0	0.3	-0.1 P
Slow 200 mSec	118.6	118.6	1.0	-1.0	0.3	0.0 P
Slow 2.0 mSec	99.0	99.0	1.0	-5.0	0.3	0.0 P
SEL 200 mSec	119.0	119.0	1.0	-1.0	0.3	0.0 P
SEL 2.0 mSec	99.0	99.0	1.0	-2.5	0.3	0.0 P
SEL 0.25 mSec	90.0	89.9	1.8	-5.0	0.3	-0.1 P

Test Passed

Overload indication - IEC 61672-3 Ed.2.0 Clause 20

	Measured (dB)	Tol. (+/-dB)	Uncert. (dB)	Result
Level difference of positive and negative pulses:	0.1	1.5	0.25	P
Positive 1/2 cycle 4 kHz. Overload occurred at:	139.3			
Negative 1/2 cycle 4 kHz. Overload occurred at:	139.2			
Test Passed				

High level stability test - IEC 61672-3 Ed.2.0 Clause 21

Test signal:	Sine wave at 1 kHz				
Initial level (dB)	Final level (dB)	Diff. (dB)	Tol. (dB)	Uncert. (dB)	Result
137.0	137.1	0.1	0.3	0.10	P
Test Passed					

Long term stability test - IEC 61672-3 Ed.2.0 Clause 15

Test signal:	Sine wave at 1 kHz				
Time interval (mm:SS)	StartLevel (dB)	StopLevel (dB)	Difference (dB)	Tolerance (dB)	Result
26:24	94.0	94.0	0.0	0.3	P
Test Passed					

JDB

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1
ACCREDITED by NVLAP (an ILAC MRA signatory)

Calibration Certificate No.37640

Instrument: Acoustical Calibrator
Model: NC-73
Manufacturer: Rion
Serial number: 10417585
Class (IEC 60942): 2
Barometer type:
Barometer s/n:

Date Calibrated: 1/9/2017 Cal Due: 1/9/2019
Status: Received Sent
In tolerance: X X
Out of tolerance:
See comments:
Contains non-accredited tests: Yes No

Customer: HMB Professional Engineers, Inc. Address: 3 HMB Circle US 460
Tel/Fax: 502-695-9800 / 502-695-9810 Frankfort, KY 40601

Tested in accordance with the following procedures and standards:

Calibration of Acoustical Calibrators, Scantek Inc., Rev. 10/1/2010

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

Instrument - Manufacturer	Description	S/N	Cal. Date	Traceability evidence Cal. Lab / Accreditation	Cal. Due
483B-Norsonic	SME Cal Unit	31052	Oct 26, 2016	Scantek, Inc./ NVLAP	Oct 26, 2017
DS-360-SRS	Function Generator	33584	Oct 20, 2015	ACR Env. / A2LA	Oct 20, 2017
34401A-Agilent Technologies	Digital Voltmeter	US36120731	Oct 12, 2016	ACR Env. / A2LA	Oct 12, 2017
HM30-Thommen	Meteo Station	1040170/39633	Nov 1, 2016	ACR Env. / A2LA	Nov 1, 2017
140-Norsonic	Real Time Analyzer	1406423	Oct 29, 2016	Scantek / NVLAP	Oct 29, 2017
PC Program 1018 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, Inc.	-
4134-Brüel&Kjær	Microphone	173368	Nov 10, 2016	Scantek, Inc. / NVLAP	Nov 10, 2017
1203-Norsonic	Preamplifier	14052	Aug 24, 2016	Scantek, Inc./ NVLAP	Aug 24, 2017

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK)

Calibrated by:	Jeremy Gotwalt	Authorized signatory:	Steven E. Marshall
Signature		Signature	
Date	1/9/17	Date	1/10/2017

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.
This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Cal 2017\RIONNC73_10417585_M1.doc

Page 1 of 2

Results summary: Device was tested and complies with following clauses of mentioned specifications:

CLAUSES ¹ FROM STANDARDS REFERENCED IN PROCEDURES:	MET ²	NOT MET	COMMENTS
Manufacturer specifications			
Manufacturer specifications: Sound pressure level	X		
Manufacturer specifications: Frequency	X		
Manufacturer specifications: Total harmonic distortion	X		
Current standards			
ANSI S1.40:2006 B.3 / IEC 60942: 2003 B.2 - Preliminary inspection	X		
ANSI S1.40:2006 B.4.4 / IEC 60942: 2003 B.3.4 - Sound pressure level	X		
ANSI S1.40:2006 A.5.4 / IEC 60942: 2003 A.4.4 - Sound pressure level stability	X		
ANSI S1.40:2006 B.4.5 / IEC 60942: 2003 B.3.5 - Frequency	X		
ANSI S1.40:2006 B.4.6 / IEC 60942: 2003 B.3.6 - Total harmonic distortion	X		

1 The results of this calibration apply only to the instrument type with serial number identified in this report.

2 The tests marked with (*) are not covered by the current NVLAP accreditation.

Main measured parameters³:

Measured ⁴ /Acceptable ⁵ Tone frequency (Hz):	Measured ⁴ /Acceptable ⁵ Total Harmonic Distortion (%):	Measured ⁴ /Acceptable Level ⁵ (dB):
995.32 ± 1.0/1000.0 ± 20.0	0.18 ± 0.10/ < 4	93.97 ± 0.12/94.0 ± 0.75

3 The stated level is valid at measurement conditions.

4 The above expanded uncertainties for frequency and distortion are calculated with a coverage factor k=2; for level k=2.00

5 Acceptable parameters values are from the current standards

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
23.2 ± 1.1	102.51 ± 0.000	38.2 ± 2.7

Tests made with following attachments to instrument:

Calibrator ½" Adaptor Type: Rion NC-71-S02

Other:

Adjustments: Unit was not adjusted.

Comments: The instrument was tested and met all specifications found in the referenced procedures.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger.

Compliance with any standard cannot be claimed based solely on the periodic tests.

Measured Data: in Acoustical Calibrator Test Report # 37640 of one page.

Place of Calibration: Scantek, Inc.

6430 Dobbin Road, Suite C
Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167
callab@scantekinc.com

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.
This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Cal 2017\RIONNC73_10417585_M1.doc

Page 2 of 2

Test Report No.:37640

Manufacturer: Rion
Type: NC-73
Serial no: 10417585

Customer: HMB Professional Engineers, Inc.
Department:
Address: 3 HMB Circle US 460 Frankfort, KY 40601
Order No:
Contact Person: Mitchell Green
Phone No.: 502-695-9800
Fax No.: 502-695-9810

Measurement Results:

	Level: (dB)	P. Stab : (dB)	Frequency: (Hz)	F. Stab : (%)	Distortion: (% TD)
1:	93.97	0.02	995.30	0.01	0.18
2:	93.97	0.01	995.33	0.01	0.18
3:	93.97	0.01	995.34	0.01	0.18
Result (Average) :	93.97	0.01	995.32	0.01	0.18
Expanded Uncertainty:	0.12	0.02	1.00	0.01	0.10
Degree of Freedom:	>100	>100	>100	7	>100
Coverage Factor:	2.00	2.00	2.00	2.43	2.00

The stated levels are relative to 20µPa.

The stated level is valid at measurement conditions.

Reference microphone: 4134-173368. Volume correction: 0.000 dB

Records: Z:\Calibration Lab\Cal 2017\RIONNC73_10417585_M1.nmf

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k = 2$, which for a normal distribution corresponds to coverage probability of approximately 95%. The standard uncertainty of measurement has been determined in accordance with EA publication EA-4/02.

Environmental conditions:

Pressure: Temperature: Relative humidity:
102.510 ± 0.020 kPa 23.2 ± 1.1 °C 38.2 ± 2.7 %RH

Date of calibration: 1/9/2017

Date of issue: 1/9/2017

Supervisor : Steven E. Marshall

Measurements performed by:

Jeremy Gotwalt
Software version: 6.1T

Scantek, Inc.

6430 Dobbin Rd., Suite C, Columbia, MD 21045
Ph: 410-290-7726 eMail: callab@scantekinc.com

