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Abstract 
In this paper, we show how the 12 notes of the octave have inherent decimal references that correspond precisely to the internal 
angles of regular polygonal shapes that exhibit symmetries found abundantly in nature. This exact correspondence manifests itself 
only when the standard pitch tuning is set to 432Hz instead of the modern 440Hz, which is one indicator on the importance of this 
tuning, from a mathematical perspective at least.   
  

I. INTRODUCTION 
In their attempt to understand the nature of music, 
scientists and philosophers tried to formulate the 
experience within a mathematical or numerical 
context. 
Most famous of these attempts is that of the Greek 
Philosopher Pythagoras1 where one legend goes 
that while passing by a hammersmith shop, 
Pythagoras realized that specific hammers 
produced pleasant sounds when struck together 
while others didn’t. He observed that for a weight 
ratio of 2:1, the two hammers produced a 
consonance note, same as for ratios of 4:3 and 
3:2, etc. while for other ratios, the notes were 
dissonance.  
Whether this legend is true or not, it doesn’t 
matter as what matters is that the key concept is 
correct; specific ratios do create pleasant notes 
while others don’t2. And thus, came the concept 
of the octave with ratios of (2:1), the perfect 4th 
(4:3), the perfect 5th (3:2), etc. 
The figure below illustrates the main notes listed 
as string ratios for one octave. 
 

 
Fig.1: The various notes ratios for a string with their 

respective names. 

 
Studying individual sound tones can be achieved 
by studying their individual physical qualities3, 
such as frequency, wavelength, amplitude, etc.  
For music, however, the task is more complicated 
as we need to study the phenomenon as a whole 
and to do so while taking time as a relevant 
variable, as music is not a momentary experience; 
it can only be perceived over time.  
 
While putting forth a mathematical model to 
describe some aspects of music is feasible, as we 
saw earlier, still, formalizing the whole 
experience by the simple ratios of physical 
qualities or quantities is almost an impossible 
task. There are so much involved in the music 
experience that adds more variables and 
dimensions to its theory. 
In this paper, we investigate one of these 
dimensions by illustrating the connection the 
musical notes have with the geometry of certain 
regular polygons.  
 

II. GEOMETRICAL 
CORRESPONDENCE TO THE 

MUSICAL OCTAVE 
Music is composed of individual sound notes 
superimposed over time4. One of the most 
effective ways to quantify these notes is by 
measuring their frequencies; the rate of one 
complete vibration per second, measured in units 
of inverse second or Hertz (Hz). These notes 
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repeat within a harmonic ratio called the octave 
calculated by doubling or halving any Hertz 
value.  
There is a total of 12 notes in the Western musical 
scale with the 13th one being equivalent to the 
first, only an octave higher5.  
For example, notes A4 = 216 Hz, A5 = 432 Hz, 
and A6 = 864 Hz, are all different octaves or 
pitches of the same A note, and where the 
subscripts’ numbers are referring to their 
respective octave ranges.  
Notice that we used the tuning pitch of A5 = 
432Hz instead of the modern one of 440Hz. The 
432Hz is necessary for us in order to see the direct 
connections between geometry and sound. 
 
Below is a figure where two whole octaves are 
tuned to the 432Hz pitch. Notice how moving up 
the note scale requires progressively smaller 
distances, like guitar frets. 
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Fig.2:  Two whole octaves and their relative notes. Notice 
how the distances between the notes get smaller as we go 

form the 5th to the 6th octave.  
 
Connecting sound with shapes is not a new idea. 
It is well established that certain frequencies of 
sound create specific geometrical patterns, such 
as in Chladni figures6 (shown below) in reference 
to the German physicist and musician Ernst 
Chladni (1756 - 1827), who generated 
geometrical shapes using violin bow drawn over 
a piece of metal covered with sand. They can also 
be produced through an instrument called the 
Harmonograph7.  

Today, these shapes are commonly known as 
Cymatics8.  
 

 
Fig.3:  A sample of Chladni figures. Notice the perfect 

symmetry of the geometry. 
 

Producing shapes due to sound may not seem 
very intriguing at first. After all, sound is 
basically a vibrational phenomenon, and when a 
piece of metal with sand beads on it vibrates, 
these beads will also vibrate and move around 
forming different shapes.  
However, when the vibrations form perfectly 
symmetrical geometrical patterns, this is when 
the phenomena become much more interesting.    
 
Even though producing these sound-generated 
shapes is an easy and uncomplicated process, 
however, putting forth a general mathematical 
formalism capable of fully explaining this 
phenomenon is very difficult and complicated9. 
This is because these shapes not only depend on 
the sound notes and their properties, they also 
depend on the material of the vibrating surface, 
the medium used to create the shapes, the ambient 
temperature, etc. among many other factors.  
However, we will show that, on a very 
fundamental level, connecting music to 
geometry, numerically, can be achieved and with 
a high degree of precision.  
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We start by setting up the following table which 
lists the harmonic relationships between notes in 
the chromatic scale and their degrees references. 
 

NOTE HZ DECIMAL 
(HZ/432) 

LENGTH 
(UNIT) 

DECIMAL DEGREES INTERNAL 
ANGLE 

SUM OF 
ANGLES 

A5 432 1.00 12/12 1.00 360◦ 0◦ 0◦ 

A#5 450 1.0416 11/12 0.916 330◦ 30◦ 30◦ 

B5 468 1.083 10/12 0.833 300◦ 60◦ 180◦ 

C5 504 1.166 9/12 0.750 270◦ 90◦ 360◦ 

GAPI        540◦ 

C#5 540 1.250 8/12 0.666 240◦ 120◦ 720◦ 

D5 576 1.333 7/12 0.583 225◦ 135◦ 1080◦ 

D#5 612 1.416 6.75/12 0.562 210◦ 150◦ 1800◦ 

E5 648 1.500 6.48/12 0.540 195◦ 165◦ 3960◦ 

F5 684 1.583 6.24/12 0.520 187.5◦ 172.5◦ 8280◦ 

F#5 720 1.666 6.18/12 0.517 186.32◦ 173.68◦ 9900◦ 

G5 756 1.750 6.124/12 0.510 184.76◦ 175.24◦ 13140◦ 

G#5 792 1.833 6.062/12 0.505 182.4◦ 177.6◦ 26640◦ 

GAPII 828 1.916 6.039/12 0.503 181.2◦ 178.8◦ 53640◦ 

A6 864 2.00 6/12 0.5 180◦ Next Octave 0 

 
The Length field refers to the various notes’ ratios 
for a string length of 12 units.   
By taking the values of the Length field in 
Decimal and multiply them by 360, we get the 
Degrees reference for the notes. For example, 
11/12 = 0.916 and 0.916×360◦ = 330◦, and so is 
for the rest of the notes.  
 
The Internal Angle field is calculated by 
subtracting the Degrees field from that of the 
starting point, being the note A5. Therefore, for 
the note B5 (468hz), the internal angle will be A5° 

– B5° or 360°-300° = 60°, which corresponds to 
an equilateral triangle a shown in Figure (4) 
below.  
Moving a “half-step” from A5 to A#5, spans a 30° 
angle, a shape commonly used as a symbol for the 
compass. 
 
The note C5 produces an inscribed square since 
its internal angle of 90° is 1/4th of the 360°-unit 
circle. The note C#5 produces an inscribed 
hexagon since the angle is 120°.  

 

 
Fig.4:  The tonal unit circle of the perfect 5th with note B5 

creating an equilateral triangle with the note A5. 
 
The pattern continues through the audible 
spectrum of sound and is calculated for one full 
octave as shown in the table below. The Arc 
Length field is calculated by measuring the 
distance around the circle from the starting point 
(note A5). For example, the note C#5 produces an 
inscribed hexagon since the arc length of 60° is 
1/6th of the unit circle, meaning there would be a 
total of 6 equal sides to the polygon, and so for 
the rest of the notes. 
 

NOTE INTERNAL 
ANGLE 

ARC 
LENGTH 

POLYGON 

A5 0◦ 0◦ Line 

A#5 30◦ 30◦ Angle/Compass 

B5 60◦ 60◦ Triangle 

C5 90◦ 90◦ Square 

C#5 120◦ 60◦ Hexagon 

D5 135◦ 45◦ Octagon 

D#5 150◦ 30◦ 12-sided 

E5 165◦ 15◦ 24-sided 

F5 172.5◦ 7.5◦ 48-sided 

F#5 173.68◦ 6.32◦ 57-sided 

G5 175.24◦ 4.76◦ 75-sided 

G#5 177.6◦ 2.4◦ 150-sided 
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Fig.5:  Note C and C# create a square and a hexagon 

respectively.  
 
All further progressions of regular polygonal 
geometry follow with perfect symmetry as shown 
in figure (6) below. Notes F5, F#5, G5, and G#5 
correlate to polygons (48-, 57-, 75-, and 150-
sided polygons) that are not shown as they closely 
resemble the circle. 
The F#5 note is particularly interesting with its 
length being 6.18/12. The number 6.18 is 
equivalent to 10/Φ, where Φ is the famous golden 

section10,11. Hence F#5 can be written as ଵ଴

ଵଶ×థ
=

0.8333 𝜙 . Also, the value of 6.18/12 = 0.515 is 
almost identical to Φ/π. 
 

 
Fig. 6: All notes values plotted around a circle, connecting 
the musical scale to arc lengths, interior angles, and natural 

progressions of regular polygons. 

The pentagon seems to relate to “dissonant” or 
enharmonic notes, or gap notes like B#5, which 
are not used in the classical chromatic scale of 
music and therefore this shape is missing from the 
list of the polygons. 
 

 
Fig. 7: Two pentagons, one in reverse to the other, denoting 

the dissonant or gaps on the musical scale. 
 
Also missing from the list is the heptagon, the 
nonagon, and the hendecagon. Interestingly, 
these shapes correspond to symmetries that are 
not observed in nature12.  
(The decagon is also missing; however, we can 
think of the double pentagons of the gap notes as 
one decagon.) 
 
Pentagons, however, are very much observed in 
nature13 and on many levels. Thus, maybe we 
should reconsider those gap notes that correspond 
to pentagons and reevaluate their role. They may 
not be pleasant to our ears; however, they may 
play an essential role in nature in a way that we 
do not yet comprehend. 
 
Interestingly, the two notes that are used to tune 
the musical scale, A5 and C5, correspond to the 
shapes of the circle and the square, which are two 
opposites that have the same sum of internal 
angles (360◦). (These are the same two shapes that 
mathematician and philosophers have struggled 
to unify in what is generally known as squaring 
the circle problem12.) 
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Thus, for the notes of the octave to have this exact 
correspondence with polygonal symmetries that 
are found abundantly in nature, while those that 
are not exhibited in nature have no musical 
parallel, this indicates a very profound link 
between geometry and music on a level that we 
may not fully understand at the moment. This 
topic definitely requires much more study and 
attention.  
 

IV. CONCLUSION 
By implementing the pitch tuning of 432 Hz for 
the A5 note, we were able to establish a profound 
connection between the 12 notes of the octave 
and regular geometrical polygons of natural 
symmetries. The exactness of the correspondence 
provides us with a new perspective toward music, 
geometry, and the role they play in nature.  
Moreover, the above correspondence is urging us 
to reconsider the standard pitch tuning value; as 
when working with the modern value of 440 Hz, 
the geometrical correspondence disappears 
completely. 
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