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Parasitic infection risks in domestic animals may increase as a result of out-

door activities, often leading to transmission events to and from owners,

other domestic animals and wildlife. Furthermore, outdoor access has not

been quantified in domestic animals as a risk factor with respect to latitude

or parasite transmission pathway. Cats are an ideal model to test parasitic

infection risk in outdoor animals because there have been many studies ana-

lysing this risk factor in this species; and there is a useful dichotomy in cat

ownership between indoor-only cats and those with outdoor access. Thus,

we used meta-analysis to determine whether outdoor access is a significant

risk factor for parasitic infection in domestic pet cats across 19 different

pathogens including many relevant to human, domestic animal and wildlife

health, such as Toxoplasma gondii and Toxocara cati. Cats with outdoor access

were 2.77 times more likely to be infected with parasites than indoor-only

cats. Furthermore, absolute latitude trended towards significance such that

each degree increase in absolute latitude increased infection likelihood by

4%. Thus, restricting outdoor access can reduce the risk of parasitic infection

in cats and reduce the risk of zoonotic parasite transmission, spillover to

sympatric wildlife and negative impacts on feline health.
1. Background
Domestic animals, including pets, are responsible for spreading pathogens to

humans and sympatric wildlife [1–3]. Notable examples include dogs transmitting

rabies to humans [4] or cattle transmitting Cryptosporidium parvum to humans and

sympatric wild ruminants [5,6]. However, relatively few domestic animals have

such stark dichotomies regarding outdoor access, where environmental contact

can, therefore, be evaluated as a means of exposure. Understanding how outdoor

access affects infection, and infection by which pathogens are most affected by this

risk factor, can have important implications when mitigating parasite transmission

among domestic animals, humans and wildlife.

A model organism that is widespread and lives in close proximity to

humans is the domestic cat (Felis catus), which has coexisted with humans glo-

bally for millennia (ca 9500 years; [7,8]). In fact, pet cats often sit on their

owners’ laps and sleep in their beds [9]. Furthermore, cats are common as

pets around the world, with an estimated 89–90 million in the USA alone

[10]. Given that cats are widespread and associated with humans, risk factors

for parasitic infections in pet cats are important for zoonotic parasite trans-

mission, with implications for cat health as well as spillover of parasites to

sympatric wildlife [11,12].
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Table 1. Host ranges of pathogens analysed in this study.

pathogen hosts citation(s)

Aelurostrongylus abstrusus caracal (Caracal caracal), lion (Panthera leo), serval (Leptailurus serval) [21]

Cystoisospora felis Felidae (including European wild cat (Felis sylvestris), ocelot (Felis pardalis), serval (Felis serval), tiger

(Leo tigris), jaguar (Leo onca), Eurasian lynx (Lynx lynx)), house mouse (Mus musculus), golden

hamster (Mesocricetus auratus)

[22]

Cystoisospora revolta Felidae (including European wild cat, jungle cat (Felis chaus), tiger, leopard (Leo pardus)), house mouse,

opossum (Didelphis virginiana), Norway rat (Rattus norvegicus), golden hamster

[23]

Cytauxzoon spp. meerkat (Suricata suricatta), bobcat (Lynx rufus), cougar (Puma concolor), Florida panther (Felix concolor

coryi), ocelot, puma (Puma yagouaroundi), jaguar (Panthera onca)

[24 – 27]

Dipylidium caninum crab-eating fox (Cerdocyon thous), red fox (Vulpes vulpes), golden jackal (Canis aureus), wolf (Canis

lupus)

[28,29]

feline coronavirus Felidae (including cheetah (Acinonyx jubatus), European wildcat, Canada lynx (Lynx canidensis)) [30 – 32]

feline leukemia virus Felidae (including European wildcat), spotted hyena (Crocuta crocuta) [31 – 33]

feline immunodeficiency

virus

Felidae (including European wildcat, sand cat (Felis margarita)), spotted hyena [31 – 33]

Giardia lamblia Giardia affects a large number of mammal and bird species, but it appears that the assemblage in

domestic cats is not found in other species

[34]

Hemoplasma spp. Iberian lynx, Eurasian lynx, European wildcat, lion, puma, oncilla (Leopardus tigrinis), Geoffroy’s cat

(Leopardus geoffroyi), margay (Leopardus wiedii), ocelot

[35]

Hepatozoon spp. coyote (Canis latrans), bobcat, ocelot [36]

Mycoplasma spp. Iberian lynx, Eurasian lynx, lion, European wildcat [37]

Neospora caninum Canidae (including red fox, grey fox (Urocyon cinereoargeneteus), Australian dingo (Canis familiaris dingo),

Chiloé fox (Pseudolapex fulvipes)), cheetah, raccoon (Procyon lotor)

[38,39]

Taenia spp. several Taenia species infect a wide variety of carnivores [40]

Toxocara cati can infect small mammals (including Guinea pigs (Cavia porcellus) and house mouse but data are

lacking

[41]

Toxoplasma gondii wide host range of almost any bird or mammal evaluated [42]

Trichuris spp. widespread across mammal species depending on species of Trichuris [43,44]

Troglostrongylus brevior European wild cat [45]
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Domestic pet cats allowed outdoors can also pose health

risks to cat owners [13–19]. For instance, Toxoplasma gondii
(the causative agent of toxoplasmosis; [15]) and Bartonella hen-
slae (which causes cat-scratch disease; [17]), both infect people

worldwide. In addition, there are many infectious diseases that

have health consequences for cats themselves. For example,

feline immunodeficiency virus (FIV) causes immunosuppres-

sion which can increase susceptibility to other infections [20].

Finally, interactions with sympatric wildlife may result in spil-

lover of parasites from domestic cats (table 1). For example,

domestic cats have been responsible for the spread of FIV to

mountain lions (Puma concolor) and feline panleukopenia to

the Florida panther (Puma concolor coryi) [11,12].

Many parasites known to infect cats have life cycles invol-

ving transmission from the soil, prey, or other cats [15,46–49].

Here, we hypothesize that cats with outdoor access (free-

roaming) will be more likely to be infected with parasites

than indoor-only cats. To test our hypothesis, we conducted

a meta-analysis of outdoor access as a risk factor for infection

across 19 pathogens and 16 countries. Because differences in

risk of infection may exist owing to changes in pathogen

diversity (i.e. richness and abundance) across transmission
type and space [50–52], we considered transmission type

and latitude as separate moderators.
2. Results
(a) Overall effects
Our synthesis incorporated 21 studies with 31 sets of infec-

tion prevalence between indoor-only cats and those with

outdoor access (table 2). Among the 21 studies, 19 parasites

were analysed (see electronic supplementary material,

figure S1 for odds ratios (OR) by parasite and study). Accord-

ing to the overall model, cats with outdoor access are 2.77

(95% confidence limits (95% CL) ¼ 2.10–3.67; p , 0.0001)

times as likely to be infected with parasites as indoor-only

cats (figure 1). Heterogeneity, or differences in outcomes

between studies [70], in the overall model was high (I2 ¼

84.02%). The publication bias analysis estimated six missing

studies on the left side of the funnel plot (figure 2a,b) and

incorporation of these randomly created studies using the

trim and fill technique still resulted in the effect of outdoor

access as a significant risk factor (2.39 OR; p , 0.0001).



Table 2. Pathogen prevalence in domestic cats (Felis catus) in this study by
country.

pathogen country prevalence citation

Aelurostrongylus

abstrusus

Cyprus 0.02 [53]

Cystoisospora revolta Cyprus 0.12 [53]

Cytauxzoon spp. Spain 0.01 [54]

Dipylidium caninum Cyprus 0.01 [53]

feline coronavirus Australia 0.41 [55]

FIV Australia 0.10 [56]

0.31 [57]

Canada 0.63 [58]

Giardia lamblia Cyprus 0.07 [53]

Hemoplasma spp. Chile 0.15 [59]

Mycoplasma spp. Spain 0.07 [54]

Germany 0.10 [60]

Switzerland 0.09 [61]

Neospora caninum Brazil 0.03 [62]

Taenia spp. Cyprus 0.01 [53]

Toxocara spp. Cyprus 0.12 [53]

Netherlands 0.05 [63]

Toxoplasma gondii Estonia 0.62 [64]

Pakistan 0.26 [65]

Latvia 0.53 [66]

Romania 0.48 [67]

Trichuris spp. St Kitts 0.22 [68]

Troglostrongylus spp. Cyprus 0.05 [53]

Netherlands 0.20 [69]
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(b) Moderators
Transmission type was not a significant moderator ( p ¼ 0.62;

figure 1), but infection risk in indoor-only pet cats versus

those with outdoor access trended towards significance

with latitude (figure 2). Specifically, for every degree increase

in absolute latitude, cats with outdoor access were 4% more

likely to be infected with parasites (95% CL ¼ 1.0–7.0%;

p ¼ 0.081; figure 2a). Heterogeneity decreased considerably

with the inclusion of this moderator to I2 ¼ 55.7% (from

84.0%), suggesting differences in latitude may account for a

significant portion of the variation among studies.

To determine the true effect of increasing latitude (since

OR is only a relative comparison of indoor-only and outdoor

cats), we also conducted a meta-regression using a raw pro-

portion of the total number of infected cats, with absolute

latitude as a moderator. In this model, the overall proportion

of infected cats significantly increased, by 0.7% (95% CL ¼

0.17–1.3%; OR 95% CL ¼ 1.01–1.07; p ¼ 0.010) for each

degree latitude increase (figure 2b), indicating that increasing

risk of infection in cats with outdoor access with increasing

latitude is an important interaction.

3. Discussion
Outdoor access is a significant risk factor for parasitic infec-

tion in pet cats, where cats with outdoor access were 2.77
times more likely to be infected with parasites than

indoor-only cats, demonstrating support for our hypothesis.

Of the 21 studies we included, only three suggested

non-significantly higher risk of infection in indoor-only cats.

Furthermore, latitude had a marginally significant effect on

the likelihood of infection. While there was publication bias

indicating positive results for outdoor access as a risk

factor, following the trim and fill method the effects were

similar and still significant, suggesting publication bias did

not influence the significance of the meta-analysis results.

The parasites we analysed have relevance to zoonotic

parasite transmission, feline health and wildlife conservation.

Given the association between humans and domestic cats [9],

habitat and lifestyle risk factors ought to be investigated with

respect to zoonotic parasite infection. Furthermore, despite

ubiquity of domestic cats, cat–human transmission is likely

under-reported [71].

Not only are parasitic infections impactful to feline health,

they are also relevant to wildlife. Parasites of domestic cats

have already been reported in sympatric wild congeners,

such as FIV in cougars (Felis concolor) and Candidatus Myco-

plasma haemominutum in wild felids deriving from domestic

cats [11,12,37]. Positive associations between feline herpesvirus

type 1 (FHV-1) and Bartonella in cougars and urban land-use

have also been reported, suggesting interactions with domestic

cats [72]. However, further investigation into infection preva-

lence in wild populations and risk factors for transmission

between domestic cats and these species is warranted [12].

Among the transmission types analysed (i.e. direct, vector-

borne and environmental), none differed significantly from

either of the others with respect to effect of outdoor access

on parasitic infection. Two explanations are the small sample

size between groups or within studies, and high variability

across studies. Additionally, a Bayesian approach using a

Markov chain Monte Carlo method may have better

accounted for this uncertainty [73]. Directly transmitted para-

sites (i.e. cat–cat transmission), such as FIV, were not

significantly different from other transmission types with

respect to outdoor access, which suggests these parasites

may be more frequently encountered through contact with

feral populations or other pet cats allowed outdoor access

rather than from cats in shelters or the household.

Latitude as a moderator on infection risk in cats with out-

door access trended towards a significant positive effect. The

trend identified ran contrary to what has been demonstrated

for parasite richness and diversity, which typically decrease

with increasing latitude [50–52]. Although one might

assume that higher parasite diversity results in higher infec-

tion risk in hosts, there have been multiple findings

demonstrating the opposite—that infection rates decrease

with higher parasite diversity [74,75]—which is consistent

with our finding that cats with outdoor access in northern

regions are at greater risk of infection. Interestingly, these

results were also consistent with global patterns of zoonoses

in rodents, a common prey of domestic cats, where higher

latitudes saw greater numbers of species carrying zoonoses

[76]. Higher latitudes also predicted greater risk of helminth

parasites from wildlife found in domestic animals [2].

Organizations including the American Bird Conservancy

(ABC) and People for the Ethical Treatment of Animals

(PETA) have created campaigns that raise awareness about

the detrimental impacts of cats with outdoor access in

relation to feline health and impacts on wildlife [77,78],
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though allowing pet cats outdoors is still common occurrence

[79,80]. Increased awareness of the risks involved in outdoor

access is one facet, but legislation restricting outdoor access in

cats would be an ideal outcome [81]. Despite hurdles in

enacting new legislation, this issue has a relatively simple

solution—keep cats indoors.

Domestic cats act as potent reservoirs for parasites trans-

missible to wildlife and humans [82–84], and are a unique

model for understanding pathogen transmission dynamics

given their global ubiquity and contact with humans, other

animals and the environment. Our analysis is the first to

our knowledge to summarize across many parasites and geo-

graphical localities that outdoor access increases the odds of

parasitic infection in pet cats as a model for domestic animals.

Future research might investigate this risk factor across other

domestic species and across factors, such as land use and

presence of sympatric congeners. While we do not necessarily
advocate that all domestic animals be restricted indoors,

determining routes and risk factors of transmission with

respect to environmental contact may be useful in mitigating

parasitic infection in domestic animals.
4. Methods
(a) Literature search
A literature search using Web of Science was conducted on 11

January 2018, following PRISMA [85] guidelines, with the fol-

lowing keywords: ‘feral cat’ OR ‘feral dog*’ AND ‘infect*’ OR

‘parasit*’ OR ‘disease*’ OR ‘virus*’, excluding reviews. This

search returned 500 research articles, which were manually

sorted for relevance. Final output was based on the following

exclusion criteria: review articles; case studies; sample size less

than 20 cats; lack of comparison between indoor-only versus
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outdoor access pet domestic cats; or outdoor access group

included feral or stray cats.

An additional search was performed in Web of Science on

31 May 2018, using the following keywords: ‘domestic cat*’ OR

‘pet cat*’ OR ‘Felis catus’ AND ‘outdoor access’ AND TOPIC:

(‘infection*’ OR ‘parasit*’ OR ‘disease*’ OR ‘pathogen*’ OR

‘virus*’ OR ‘sick*’ OR ‘illness*’), which returned 213 additional

articles. One search was conducted in Google Scholar using the

keywords as follows: domestic OR pet cat OR Felis catus, out-

door access, infection* OR parasit*. This Google Scholar search

returned 1190 results. We manually sorted through the first 100

studies using the exclusion criteria described above. After manu-

ally sorting the original output of 813 studies, 21 studies fitted the

inclusion criteria and were used in the meta-analysis [86] (see

https://figshare.com/s/3eebaf42e161c0e7e1ef to access dataset).

(b) Treatment of moderators
Parasite transmission type included direct, vector-borne and

environmental pathways (see electronic supplementary material,

figure S2 for list of citations for each parasite). Latitude of each

study was determined using Google Earth by selecting the

middle of the smallest geographical area provided (such as

country, state/province or city). Studies that included multiple

countries were removed from analysis of this moderator.

(c) Statistical analysis
All analyses were completed in R v.1.1.453 using the metafor
package for random effects models to account for between-

study heterogeneity using the OR effect size [87,88], where an

OR is the probability of an outcome as related to an exposure

[89]. Here, the outcome is likelihood of infection as related to out-

door access as the exposure mechanism. OR ¼ 1 means outdoor

access does not affect the likelihood of infection; OR , 1 (upper
95% CI is less than 1) means outdoor access is associated with

lower odds of infection; and OR . 1 (lower 95% CI is greater

than 1) means outdoor access is associated with greater odds of

infection. We considered p , 0.05 to indicate the significance of

effect size. Two moderators, transmission type and latitude,

were evaluated using mixed effects models.

To estimate heterogeneity across studies, we used I2, where a

value of 0% indicates no heterogeneity; 25%, low heterogeneity;

50%, moderate; and 75% is considered high heterogeneity [90].

To test for publication bias, we used a trim and fill method to

estimate the number of missing studies [91].
Data accessibility. Literature search: Figshare repository figshare.com/s/
3eebaf42e161c0e7e1ef [86]. R code in analyses: Figshare repository
figshare.com/s/a334c7815b128cb63b98 [87].
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M, Agulla B, Sainz Á. 2017 Molecular detection of
Hepatozoon spp. and Cytauxzoon sp. in domestic
and stray cats from Madrid, Spain. Parasites Vectors
10, 112. (doi:10.1186/s13071-017-2056-1)

54. Bell ET, Toribio JLML, White JD, Malik R, Norris JM.
2006 Seroprevalence study of feline coronavirus in
owned and feral cats in Sydney, Australia. Aust. Vet.
J. 84, 74 – 81. (doi:10.1111/j.1751-0813.2006.
tb12231.x)

55. Chang-Fung-Martel J, Gummow B, Burgess G,
Fenton E, Squires R. 2013 A door-to-door
prevalence study of feline immunodeficiency virus
in an Australian suburb. J. Feline Med. Surg. 15,
1070 – 1078. (doi:10.1177/1098612X13491959)

56. Norris JM, Bell ET, Hales L, Toribio J-ALML, White
JD, Wigney DI, Baral RM, Malik R. 2007 Prevalence
of feline immunodeficiency virus infection in
domesticated and feral cats in eastern Australia.
J. Feline Med. Surg. 9, 300 – 308. (doi:10.1016/j.
jfms.2007.01.007)

57. Ravi M, Wobeser GA, Taylor SM, Jackson ML. 2010
Naturally acquired feline immunodeficiency virus
(FIV) infection in cats from western Canada:
prevalence, disease associations, and survival
analysis. Can. Vet. J. 51, 271 – 276.

58. Walker VR, Morera Galleguillos F, Gómez Jaramillo
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