Porcine feasibility and safety study of a new paclitaxel-eluting biliary stent with a Pluronic-containing membrane

Authors
S. I. Jang¹, J.-H. Kim¹, M. Kim², S. Yang³, E. A. Jo¹, J. W. Lee⁴, K. Na⁵, J. M. Kim⁵, S. Jeong⁶, D. H. Lee⁷, D. K. Lee¹

Institutions are listed at the end of article.

Background and study aim: Metal stents for malignant biliary obstruction are susceptible to occlusion by tumor ingrowth or overgrowth. Therefore, we previously reported our use of a metal stent covered with a paclitaxel-incorporated membrane giving an antitumor effect to prevent occlusion from tumor ingrowth. We have also developed a new generation of paclitaxel-eluting biliary stent using a membrane containing Pluronic F-127 for effective drug delivery. The aim of this study was to investigate the safety and efficacy of drug delivery for this newly developed stent in the biliary tract.

Methods: Metal stents were coated with paclitaxel and various concentrations of Pluronic F-127 in phosphate-buffered saline solution. Stents containing varying concentrations were placed in the bile ducts of eight pigs divided as follows: group I, 0% Pluronic+0% paclitaxel; group II, 0% Pluronic+10% paclitaxel; group III, 10% Pluronic; group IV, 20% Pluronic+10% paclitaxel; group V, 30% Pluronic+10% paclitaxel; group VI, 40% Pluronic+10% paclitaxel; group VII, 50% Pluronic+10% paclitaxel; group VIII, 60% Pluronic+10% paclitaxel. The amount of paclitaxel released was also measured in vitro.

Results: Histologic changes in the porcine biliary epithelium were acceptable in terms of safety, based on inflammatory cell infiltration and fibrotic reaction. No significant differences in histology were observed between the groups. In the porcine serum analysis, released paclitaxel was detected for 28 days with the 10% Pluronic concentration (group III). However, released paclitaxel was observed for only 7 days in groups II and IV. In the in vitro experiments, long-lasting release of paclitaxel was also noted from the stent with 10% Pluronic.

Conclusions: The new paclitaxel-eluting stent with 10% Pluronic F-127 is safe and provides enhanced local drug delivery.

Introduction

Endoscopic stent insertion is the treatment of choice for unresectable malignant biliary obstruction. Self-expanding metal stents (SEMSs) have been shown to be superior to plastic stents in patency and efficacy [1,2] although they provide no improvement in survival. However, even metal stents can become occluded over time because of tumor overgrowth, ingrowth, and biliary sludge. Moreover, metal stents merely promote biliary drainage and have no antitumor effect [3]. Therefore, the local application of chemotherapeutic drugs via SEMSs has been proposed as a possible method to prevent tumor ingrowth [4].

We developed a metal stent covered with a paclitaxel-incorporated membrane (MSCPM) and have previously reported the safety and efficacy of this stent in preventing occlusion due to tumor ingrowth by its antitumor effects in the biliary tract [3,5]. For the MSCPM, paclitaxel was mixed in a tetrahydrofuran (THF) solution, which is used as a solvent for polyurethane. A coating of the polyurethane/paclitaxel liquid was added to the stent. Polyurethane membranes in intact biliary tracts can be biodegraded by hydrolysis and oxidation [6] and may be damaged because of contact with the continuous flow of bile [4,7]. Degraded membranes cause the formation of microcracks and holes in the stents, resulting in stent occlusion by tumor ingrowth [7,8]. Thus, membranes must be protected from biodegradation and the chemotherapeutic agents must remain effectively incorporated in the membrane to maintain a steady release of the drug over an adequate duration [4]. Therefore, we developed a new metal stent covered with a paclitaxel-incorporated membrane (MSCPM) using polytetrafluoroethylene (PTFE) as the inner layer for resistance to bile degradation and a polyurethane/Pluronic F-127 mixture as a surfactant for effective incorporation of the...
Materials and methods

Preparation of the new paclitaxel-eluting stents

The stents used in this study (Niti-S; Taewoong Medical, Gimpo, Korea) were 6mm wide and up to 20mm long, the length determined by the size of the lumen in which the composite stents were to be implanted (Fig. 1). Polyurethane was selected as the covering material because it is widely used for medical purposes and has a good safety record. Four sets of paclitaxel-incorporated Pluronic F-127–polyurethane (PTX–Pluronic)–coated stents with varying concentrations of Pluronic in the membrane were prepared for the in vitro and in vivo studies. Based on a previous study [3], the concentration of paclitaxel in three of the sets of stents, used for the in vivo and in vitro studies, was fixed at 10%; the fourth set formed the control with no paclitaxel or Pluronic present and was used in only the in vivo study.

The coating solution was made from 400 mg of the PTX–Pluronic polymer and 10 mL of THF. The proportions of the solution in the four sets of PTX–Pluronic–coated stents were as follows: (i) no paclitaxel/no Pluronic (polyurethane 400 mg + THF 10 mL); (ii) 10% paclitaxel/no Pluronic (polyurethane 360 mg + paclitaxel 40 mg + THF 10 mL); (iii) 10% paclitaxel/10% Pluronic (polyurethane 320 mg + paclitaxel 40 mg + Pluronic 40 mg + THF 10 mL); and (iv) 10% paclitaxel/20% Pluronic (polyurethane 280 mg + paclitaxel 40 mg + Pluronic 80 mg + THF 10 mL).

The coating process was carried out using the dip-coating technique. The dipping solution for the PTX–Pluronic membrane was made by dissolving the appropriate amount of paclitaxel with the premixed polyurethane and Pluronic in a THF solution. A Teflon bar with a diameter similar to that of the stent was selected. The stent was mounted on the bar and was dipped in a container filled with the mixture of medical-grade polyurethane, Pluronic, and paclitaxel. The coated stents were dried at 40 °C in an oven for 30 minutes to completely remove the solvent.

Preparation of coated films

Four sets of PTX–Pluronic films were prepared for the in vitro toxicity study to give the following concentrations by weight in the film: (i) 10% paclitaxel/no Pluronic; (ii) 10% paclitaxel/10% Pluronic; (iii) 10% paclitaxel/20% Pluronic; and (iv) a control film with no paclitaxel and no Pluronic. The PTX–Pluronic film was entirely coated by a thin (70–80 μm) film of the polymeric material.

Experimental animals

The in vivo experiments were performed using eight female domesticated mini-pigs with a mean weight of 42 kg. These animals were randomly divided into four groups and underwent insertion into their bile ducts of covered SEMSs coated with different proportions of Pluronic and paclitaxel as follows: group I, 0% Pluronic + 0% paclitaxel; group II, 0% Pluronic + 10% paclitaxel; group III, 10% Pluronic + 10% paclitaxel; and group IV, 20% Pluronic + 10% paclitaxel. Details of the eight experimental pigs are shown in Table 1.

Stent insertion

The stents were inserted surgically with the bile duct approached via the duodenum. The pigs were anesthetized with 25 mg/mL telitil; Virbac, Carros, France) that was given by intramuscular injection as induction. During the operations, anesthesia was maintained by inhaled isoflurane. Once anesthetized, each pig’s abdomen was opened to confirm the position of the duodenum. After an opening with a minimum size of approximately 0.5 cm had been made in the duodenum, the bile duct was cannulated with a catheter via the ampulla and a guide wire was advanced into the bile duct. The MSCP-2 stent was deployed over the guide wire using fluoroscopic guidance and the opening in the duodenum was sutured with chromic catgut (#5–0). The ab-

<table>
<thead>
<tr>
<th>Experimental group</th>
<th>Proportion of Pluronic and paclitaxel contained within the stent</th>
<th>Animal number</th>
<th>Color</th>
<th>Weight, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0% Pluronic + 0% paclitaxel</td>
<td>A-1</td>
<td>Black/yellow</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-2</td>
<td>Black/yellow</td>
<td>43</td>
</tr>
<tr>
<td>II</td>
<td>0% Pluronic + 10% paclitaxel</td>
<td>B-1</td>
<td>Black/white</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B-2</td>
<td>Black</td>
<td>39</td>
</tr>
<tr>
<td>III</td>
<td>10% Pluronic + 10% paclitaxel</td>
<td>C-1</td>
<td>Black/yellow</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C-2</td>
<td>Black/white</td>
<td>40</td>
</tr>
<tr>
<td>IV</td>
<td>20% Pluronic + 10% paclitaxel</td>
<td>D-1</td>
<td>Black/white</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D-2</td>
<td>Black/yellow</td>
<td>45</td>
</tr>
</tbody>
</table>

Table 1 Characteristics of the eight female pigs that underwent insertion of the new generation of biliary metal stents covered with a paclitaxel-incorporated membrane (MSCPM-2s) containing varying proportions of Pluronic and paclitaxel.
A dominal wall opening was sutured with chromic catgut (#2–0) and nylon (#1) to complete the operation.

**Extraction of specimens**

Blood samples were withdrawn on days 0, 1, 3, 7, 14, and 28 after stent placement. Serum was separated immediately using a centrifugal separator, then preserved in a freezer at or below –60 °C. After an observation period of 4-weeks from insertion of the stents, the experimental animals were killed and specimens including the common bile duct (CBD) with the stent and a section of the duodenum were removed. The bile ducts were sutured just below the liver without removing the stents, with this end of the bile duct being indicated as proximal. The bile ducts were incised longitudinally, and each stent was gently removed from the bile duct. The resected specimens were preserved in 100% formalin for later pathologic examination.

All experimental procedures were performed in accordance with the rules of the Institutional Animal Care Committee and were approved by the Committee on Animal Research at Inha University and the Animal Protection Committee of the Korean government.

**Histologic analysis**

The CBD was then cross-sectioned at five levels: the central, proximal, and distal portions of the stented area (A, B, and C, left panel in Fig. 2) and the proximal and distal portions of the non-stented area (D and E, left panel in Fig. 2). Photographs were taken of the macroscopic appearance, and each cross-sectioned specimen was immediately fixed in 10% buffered formalin.

Each of the specimens was then sectioned and stained with hematoxylin and eosin (H&E) for microscopic examination. The severity of inflammation, fibrosis, mucosal sloughing, atrophy, and hyperplasia were evaluated in the central, proximal, and distal portions of the stented area (A, B, and C, right panel in Fig. 2) and the proximal and distal portions of the non-stented area (D and E, right panel in Fig. 2).

**Porcine serum analysis**

The amount of paclitaxel released into the porcine serum was measured by high-performance liquid chromatography (HPLC) on days 0, 1, 3, 7, 14, and 28 after stent insertion. To prepare the samples, 20 μL of internal standard material (4-butyl-benzoic acid, 1 mg/mL) was mixed with 1 mL of porcine serum sample that had been preserved at –60 °C. Methyl tertiary butyl ether (MTBE; 2 mL) was then added, mixed with the resulting solution and left in an ice-bath for 20 minutes. After this procedure, the mixture was vortexed and centrifuged. The supernatant was then filtered through a 0.45-μm pore-size filter. A 10-μL sample of the filtered fluid was analyzed by HPLC (flow rate, 1.0 mL/min; sample injection volume, 20 μL; lowest limitation, 0.05 μg/mL; methanol to water, 70:30 vol/vol; and time 12 minutes).

**In vitro drug release**

To investigate the efficacy of drug release, stents coated with different concentrations of Pluronic and a fixed amount of paclitaxel were placed in phosphate-buffered saline solution for 6 weeks. The proportions in the three sets of PTX–Plu–PU-coated stents were as follows: (i) 0% Pluronic (polyurethane 720 mg + paclitaxel...
80 mg + Pluronic 0 mg); (ii) 10% Pluronic (polyurethane 640 mg + paclitaxel 80 mg + Pluronic 0 mg); (iii) 20% Pluronic (polyurethane 560 mg + paclitaxel 80 mg + Pluronic 160 mg). Four stents were used in each set and the amount of paclitaxel released was measured by HPLC (methanol to water, 70:30; flow rate, 1.0 mL/min; run time, 20 minutes; wavelength 227 nm; injection volume, 50 μL). After completion of the drug-release study, the membrane surface was examined by scanning electron microscopy.

In vitro toxicity study
A cholangiocarcinoma cell line (SK-Cha-1) was incubated in a 96-well culture plate (Nunc, Rochester, New York, USA) with 2 × 10⁴ cells per well for 24 hours at 37 °C with 5% CO₂ to evaluate the concentration-dependent toxicity of the paclitaxel–Pluronic F–127 combination. Four stents were used in each set and the amount of paclitaxel released was measured by HPLC (methanol to water, 70:30; flow rate, 1.0 mL/min; run time, 20 minutes; wavelength 227 nm; injection volume, 50 μL). After completion of the drug-release study, the membrane surface was examined by scanning electron microscopy.

Statistical analyses
Quantitative data from the in vitro drug release and toxicity studies were compared using Student’s t test, with results expressed as mean ± standard deviation. All data were analyzed using statistical software (SPSS, version 12.0; SPSS, Inc., Chicago, Illinois, USA). P values less than 0.05 were considered statistically significant.

Results

Outcome following stent insertion
No animals experienced perforation or necrosis of the bile duct, or stent occlusion, and there were no deaths after stent insertion.

Histologic changes
The appearances of the CBDs from the four animal groups were grossly similar 4 weeks after insertion of the stents. The areas which had been stented (A, B, and C, right panel in Fig. 2) had larger luminal diameters and thinner wall thicknesses than the non-stented areas (D and E, right panel in Fig. 2) because the stent widened the lumen by compressing the wall. The mucosal surfaces of the stented areas were flat and atrophic. Microscopically, the stented areas showed thinning and sloughing of the mucosa due to compression by the stent compared with the non-stented areas (Fig. 2). However, inflammatory or fibrotic reactions were minimal in both the stented and non-stented areas.

The central portion of the CBD wall from each of the four animal groups showed similar histologic findings, which included a dilated lumen, mucosal atrophy, and decreased wall thickness (Fig. 3a–d). The CBD wall of the stented area revealed mild to moderate inflammation, mild or no fibrosis, and various degrees of mucosal sloughing and/or atrophy at high magnifications (Fig. 3e). Occasionally, intestinal metaplasia was detected. The non-stented area showed mild inflammation, mild or no fibrosis, and mild or no mucosal sloughing and/or atrophy (Fig. 3f).
In vivo study of drug release
The total amount of paclitaxel released into the porcine serum over the 4 weeks was analyzed using HPLC. In group III (Pluronic 10% + paclitaxel 10%) released paclitaxel was detected for 28 days, but in groups II (0% Pluronic + 10% paclitaxel) and IV (20% Pluronic + 10% paclitaxel) released paclitaxel was observed for only 7 days (Fig. 4a). In group I (0% Pluronic + 0% paclitaxel), paclitaxel was not detected at any time. The amount of paclitaxel released in group III decreased with time. A similar tendency was observed in groups II and IV.

In vitro study of drug release
The effects of our strategy of using nanoscale drug entrapment on the release of paclitaxel from the stents with a fixed concentration of paclitaxel (10% paclitaxel) and different concentrations of Pluronic are shown in Fig. 4b. When compared to the 0% and 10% Pluronic stents, 20% Pluronic stents provided much faster paclitaxel release. An initial burst of more than 30% paclitaxel release within the first day of experiment was observed from the 20% Pluronic stents, whereas no apparent burst of paclitaxel release occurred within the first day from the control and 10% Pluronic stents. After 3 days, the amount of paclitaxel released from the 20% Pluronic stents was statistically more than from the 10% and 0% Pluronic stents (20% Pluronic stents vs. 10% Pluronic stents, P = 0.012; 20% Pluronic stents vs. 0% Pluronic stents, P = 0.001). After 10 days, the cumulative percentage of drug released from the 20% Pluronic stents was approximately 70%, and this was followed by a continuous release for approximately 50 days. In contrast, the cumulative percentages of drug released from the 10% Pluronic and 0% Pluronic stents were notably lower at 10 days (54% and 50%, respectively). A concentration of 10% Pluronic in the membrane exhibited a low initial burst and prolonged release behavior, while 20% Pluronic showed a high burst for 1 day.

In vitro study of cell toxicity
The in vitro cancer cell viability test revealed that the toxicity of the PTX–Plu–PU films was increased only in the sets containing paclitaxel (10% paclitaxel/no Pluronic, 10% paclitaxel/10% Pluronic, 10% paclitaxel/20% Pluronic), with a tendency to increased toxicity in the cancer cells with increasing concentrations of Pluronic F-127, although there were no statistically significant differences between the three sets that contained paclitaxel (Fig. 4c).
Discussion

In our previous animal study [3], we showed that a metal stent covered with a paclitaxel-incorporated membrane (MSCPM) could be developed into a new and safe treatment modality in malignant biliary obstruction. A human pilot study using MSCPMs demonstrated acceptable levels of safety and effectiveness in patients with malignant biliary obstruction [5]. Although the safety of MSCPMs was reconfirmed in a multicenter prospective study [10], MSCPMs produced no significant differences in the duration of stent patency or survival time compared with non-drug-eluting covered metal stents. There seems to be two reasons for this. First, the membrane used in the MSCPMs was degraded by the flow of bile so that stent occlusion occurred due to tumor ingrowth through microcracks and holes in the stent before the paclitaxel could exhibit sufficient antitumor effects [7,8]. Second, the paclitaxel was not released steadily from the MSCPMs for a long enough time.

To overcome these problems, we developed a new-generation MSCPM-2 that has two improved characteristics. First, the membranes of the MSCPM-2 have a double-layer structure manufactured using PTFE to prevent degradation of the membrane by bile in the inner layer and a PTX-Plu PU membrane in the outer layer. To suppress tumor ingrowth and progression, the long-term and continuous release of high concentrations of paclitaxel is necessary. For this purpose, Pluronic F-127 was applied to the drug delivery system in the new drug-eluting membrane. Paclitaxel can be incorporated into the core of polymeric micelles formed by Pluronic F-127 [11]. Because these micelles increase solubility, metabolic stability, and circulation time for paclitaxel [9], they facilitate the steady release of paclitaxel. Although applications of polymeric micelles in various drug delivery and gene delivery systems have been attempted [9], this study was the first trial to apply polymeric micelles to drug-eluting stents.

MSCPM-2s caused mild to moderate inflammation, mild or no fibrosis, and a variable degree of mucosal sloughing and/or atrophy in the CBD wall. This result was similar to our previous study [3] using MSCPMs, except that mucinous metaplasia and bile-duct thickening did not occur with the new stents. Metal stents have been reported to cause mucosal hyperplasia [12], inflammatory reaction [2], and extensive fibrosis [13] in bile ducts. Although MSCPMs reportedly caused significant mucosal hyperplasia compared with non-drug-eluting SEMSs in the canine biliary model, a relatively large diameter stent may have resulted in mechanical irritation causing mucosal hyperplasia via inflammation and fibrotic reactions [14].

If normal bile mucosa were irritated or injured by stent expansion, the antiproliferative effects of paclitaxel including the inhibition of fibroblasts [15,16] might reduce tissue hyperplasia by inhibiting tissue regeneration and stabilization [17]. Therefore, we postulate that the release of paclitaxel will be slower and longer-lasting in MSCPM-2s than in MSCPMs so that the antiproliferative effects of paclitaxel in MSCPM-2s will prevent mucosal hyperplasia more effectively. Moreover MSCPM-2s are safe because no significant complications such as tissue necrosis, cholangitis, or perforation were observed in any of the animals with the stent. Although MSCPM-2s were inserted by a surgical percutaneous transduodenal approach, the CBD was not injured and consequently methodological differences between peroral endoscopic and surgical stent placement should not cause histologic changes in the CBD.

In the in vivo study of drug release, the MSCPM-2 (10% Pluronic + 10% paclitaxel) was shown to release paclitaxel for 28 days. We reported that a low level of paclitaxel (1.5 ×10−2 to 2.0 ×10−2 mg/mL) released from MSCPMs was detected in the blood of patients for over 50 days in a human study (therapeutic range of paclitaxel 0.9 ×10−4 to 1.1 ×10−1 mg/mL) [5]. In the in vitro part of this study, MSCPM-2s released paclitaxel for over 50 days, which was similar to our previous study using MSCPMs (over 6 weeks) [3]. Our current study used a 10% (wt/vol) paclitaxel-incorporated membrane, which is the same concentration as in the previous human study [5], and used Pluronic F-127 for drug delivery, which will promote steady release of paclitaxel from stents. Therefore, we expect this will result in a lower blood concentration than previously achieved and believe this will extend the duration of release in future human studies.

It is important to obtain the optimal therapeutic effects from a locally applied chemotherapeutic agent on a stent, minimizing the systemic effect of the agent while maximizing its concentration within the bile duct. We previously reported the release profiles of paclitaxel from the polyurethane/Pluronic mixture membranes [4]. Although the duration of drug release of MSCPM-2s was similar to that of MSCPMs, the pattern of drug release was different between the two stents. The amount of the initial burst of paclitaxel release from MSCPMs was larger in stents covered with 10% (wt/vol) Paclitaxel than in stents covered with 20% Paclitaxel [3]. In contrast, the initial burst in MSCPM-2s was greater with 20% Pluronic. We assumed that the concentration of Pluronic F-127 in MSCPM-2s caused this result because the amount of paclitaxel released from the membrane increased as the concentration increased.

The in vitro study on drug release showed that the initial burst of paclitaxel release was greater when the concentration of Pluronic F-127 was higher and the amount of paclitaxel released decreased in line with the decrease in the concentration of Pluronic F-127. This finding indicates that the amount of paclitaxel released from MSCPM-2s can be controlled by regulating the concentration of Pluronic F-127. Moreover, in the in vitro study on drug toxicity, when the concentration of paclitaxel was fixed at 10% (wt/vol), the increased amount of paclitaxel released from the membrane in proportion to the concentration of Pluronic F-127 resulted in decreased cell viability.

In another human study [10] performed using drug-eluting stents containing 20% (wt/vol) paclitaxel, there were no serious complications, such as transmural necrosis, bile duct perforation, or systemic toxic effects including neutropenia or neurotoxicity, related to the high concentration of paclitaxel. Our study used a 10% (wt/vol) paclitaxel-incorporated membrane so that serious complications related to paclitaxel should not occur in future human studies. The addition of Pluronic F-127 is also not expected to cause any systemic toxic effect in future human studies because the agent will result in a slow release of paclitaxel and the total concentration of paclitaxel released from the MSCPM-2 will be the same as from the MSCPM. Therefore, an MSCPM-2 incorporating 10% (wt/vol) paclitaxel and 10% Pluronic F-127 would seem to be suitable for human application because it will minimize cell toxicity and maximize the effective release of paclitaxel.

In conclusion, insertion of MSCPM-2s was shown to be as safe as MSCPMs in porcine biliary ducts, with no complications observed, indicating that MSCPM-2s can be used safely in clinical trials. The MSCPM-2 will require trials in humans to validate its significant benefits in terms of stent patency and drug delivery. However, further studies are needed to determine the optimal
paclitaxel and Pluronic F-127 ratio to maximize the effective release of the antitumor agent and to minimize toxicity to the bile duct.

**Competing interests:** The authors have no commercial associations that might be a conflict of interest in relation to this article. Tae-Woong Medical Company provided only free stents and scientific consultation, without any other support.

**Institutions**
1. Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
2. Utah-Inha DDS & Advanced Therapeutics Research Center, Incheon, Korea
3. Department of Research and Development, Taewoong Medical Co., Ltd., Gimpo, Korea
4. Department of Biotechnology, The Catholic University, Bucheon, Korea
5. Department of Internal Medicine, Inha University College of Medicine, Incheon, Korea

**Acknowledgement**

This research was supported by the grants from the Korean Health Industry Development Institute (KHIDI) and also by the National Center of Efficacy Evaluation for the Development of Health Products Targeting Digestive Disorders (NCEED).

**References**


Jang Si et al. Feasibility and safety of a new paclitaxel-fluting biliary stent... Endoscopy 2012; 44: 825–831