Biowaiver Extension Potential and IVIVC for BCS Class II Drugs by Formulation Design: Case Study for Cyclosporine Self-microemulsifying Formulation

Su-Geun Yang1,2
1Utah-Inha DDS and Advanced Therapeutics, Incheon 406-840, Korea and 2Clinical Research Center, School of Medicine, Inha University, Incheon 400-712, Korea

(Received May 11, 2010/Revised July 20, 2010/Accepted August 9, 2010)

The objective of this work was to suggest the biowaiver potential of biopharmaceutical classification system (BCS) Class II drugs in self-microemulsifying drug delivery systems (SMEDDS) which are known to increase the solubility, dissolution and oral absorption of water-insoluble drugs. Cyclosporine was selected as a representative BCS Class II drug. New generic candidate of cyclosporine SMEDDS (test) was applied for the study with brand SMEDDS (reference I) and cyclosporine self-emulsifying drug delivery systems (SEDDS, reference II). Solubility and dissolution of cyclosporine from SMEDDS were critically enhanced, which were the similar behaviors with BCS class I drug. The test showed the identical dissolution rate and the equivalent bioavailability (0.34, 0.42 and 0.68 of p values for AUC\textsubscript{0-24h}, C\textsubscript{max} and T\textsubscript{max}, respectively) with the reference I. Based on the results, level A in vitro-in vivo correlation (IVIVC) was established from these two SMEDDS formulations. This study serves as a good example for speculating the biowaiver extension potential of BCS Class II drugs specifically in solubilizing formulation such as SMEDDS.

Key words: Biopharmaceutics classification system (BCS), Biowaiver, In vitro-in vivo correlation (IVIVC), Cyclosporine, Self-microemulsifying drug delivery systems (SMEDDS)

INTRODUCTION

Water insolubility of drug is the most challenging problem in pharmaceutics. A great number of drug candidates have been discarded in pre-clinical stage due to their improper solubility (Porter et al., 2007). Water insolubility of a drug also hinders an imperative reformulation of marketed drugs. Various technologies have been studied to solve this problem for the past decades. One of the most promising answers for this problem is the self-microemulsifying drug delivery system (SMEDDS) (Gershank and Benita, 2000; Gursoy and Benita, 2004). SMEDDS is a pre-concentrate form of microemulsions composed of oils, surfactant and cosurfactant which spontaneously form microemulsions in the external water phase (Lawrence and Rees, 2000; Pouton, 2000; Liu et al., 2010). The potential of SMEDDS has been proven against oil-soluble and water-insoluble drugs such as cyclosporine (Trull et al., 1994), tacrolimus (Borhade et al., 2009), atorvastatin (Shen et al., 2005), silymarin (Wu et al., 2006), itraconazole (Woo et al., 2008), carvedilol (Wei et al., 2005), fenofibrate (Patel and Vavia, 2007), paclitaxel (Yang et al., 2004), ibuprofen (Araya et al., 2005) and simvastatin (Kang et al., 2004). Solubility, dissolution rate and oral bioavailability of these drugs were remarkably improved with the help of SMEDDS (Spernath and Aserin, 2006). This conspicuous improvement of solubility and bioavailability comes from the typical characteristics of microemulsion which is defined by the small droplet size (less than 100 nm) and low surface tension. Interestingly, most drugs which exhibit such an excellent feasibility for incorporation with SMEDDS are classified as BCS class II drugs with low solubility and high permeability. High permeability, which means
high lipid solubility, seems to make these BCS class II drugs more likely candidate for SMEDDS.

US FDA allows biowaiver of in vivo bioavailability and bioequivalence studies for BCS class I drugs in immediate-release (IR) solid oral dosage forms. Currently extending biowaiver to other classes has been suggested extensively and is still a contentious issue (Yu et al., 2002; Cheng et al., 2004; Rinaki et al., 2004; Jantratid et al., 2006). Some of these arguments have been aroused from the emerging pharmaceutical technologies which can highly enhance drug solubility and permeability (Vicosa et al., 2009; Koga et al., 2010). SMEDDS is one of the most prominent technologies for enhancing solubility. So, it is worth of contemplating if SMEDDS could extend the biowaiver potential for BCS class II drugs. Cyclosporine is one of those typical drugs, categorized in BCS class II and formulated in SMEDDS. Sandimmune Neoral® is the first marked cyclosporine SMEDDS. And FDA recently approved five cyclosporine generics (Masri, 2003). The use of generic cyclosporine offers a reduced cost alternative with equal therapeutic efficacy and outcomes. The generic cyclosporine total cost of the immunosuppressive therapy almost by 40% (Masri, 2003). Although technical difficulties lie on development of cyclosporine SMEDDS, new generic cyclosporine is still on demand from the market. From technical point of view, currently available cyclosporine generics are formulated based on the SMEDDS technology. So, cyclosporine SMEDDS is a good example to answer the current questions for biowaiver extension potential through formulation design.

In this study, a new generic candidate of cyclosporine SMEDDS was introduced to solubility, dissolution and permeability studies to identify the pharmaceutical properties of cyclosporine could be altered by formulation design. Subsequently, the relative bioavailability of cyclosporine SMEDDS was estimated with reference SMEDDS against dogs to verify if the altered pharmaceutical properties (e.g., solubility, dissolution and permeability) also precisely reflect in vivo bioavailability. Additionally, in vivo and in vitro correlation (IVIVC) was estimated based on the US FDA guidance (Emami, 2006).

MATERIALS AND METHODS

Materials

New cyclosporine SMEDDS was employed for the test drug, based on the reported formula (Yang et al., 2006). The test SMEDDS, containing 100 mg of cyclosporine, was filled into empty soft gelatin capsules and heat-sealed. Sandimmune Neoral 100 mg soft gelatin capsule (Novartis Co.) was used for reference SMEDDS (reference I) and purchased in the market. Cyclosporine self-emulsifying formulation (self-emulsifying drug delivery system: SEDDS), which forms macro-emulsions with mean droplet size of more than 2 µm, was selected as another reference (reference II) and fabricated following reported composition (Yang, 2006). 3H-cyclosporine (specific activity; 8 Ci/mmol) was obtained from Amersham Pharmacia Biotech for the cell permeability study.

Solubility of cyclosporine in microemulsions

Solubility of cyclosporine was analyzed. Cyclosporine formulations (test, reference I and reference II), containing 100 mg of cyclosporine, were dropped into 100 mL of pH 1.2, 4.8 and 6.8 buffers at 37°C, vigorously shaken for 24 h. The medium was centrifuged at 1,500 rpm for 10 min. The supernatant was analyzed by HPLC (Alliance 2610, Waters) using a capcellpak C8 column (UG120, Shiseido) at 70°C. The mobile phase, consisted of 65% (v/v) acetonitrile, 15% (v/v) methanol and 20% (v/v) phosphate buffer, was delivered at rate of 1 mL/min and monitored at 210 nm.

Dissolution test

The dissolution test was carried out on cyclosporine formulations in soft capsules, following US FDA BCS guidance (Lobenberg and Amidon, 2000). Test was conducted using the dissolution apparatus II of the USP 24 at 50 rpm under 37°C in 900 mL of each of the following dissolution media: simulated gastric fluid USP without enzymes (pH 1.2), pH 4.5 phosphate buffer and simulated intestinal fluid USP without enzymes (pH 6.8). 5 mL of aliquot was withdrawn for analysis from the gastric juice at scheduled time points, ultra-filtered (0.45 µm) at 2500 rpm and analyzed by HPLC. The same volume of fresh medium was added to the juice after the sampling.

Permeability of cyclosporine on MDCK cell

The absorptive permeability of cyclosporine was estimated by using Madin-Darby canine kidney (MDCK) cell monolayer. Cyclosporine SMEDDS (test and reference I), cyclosporine SEDDS (reference II) and cyclosporine were subjected to the estimation. MDCK cells were seeded on porous (0.4 µm) polycarbonate bottom-layered cup (Transwell #3412, Corning Inc.) at a density of 2.5 × 10^5 cells/cm² and incubated over 3 days. Before the experiment, cell monolayer was washed with pH 7.4 Hank’s balanced salts solution (containing 15 mM D(+)-glucose, 10 mM HEPES), and then equilibrated for 30 min at 37°C in 95% humidity. Transep-
thelial electrical resistance (TEER Ω·cm²) of each monolayer was measured at 37°C using an epithelial votohammeter (World Precision). MDCK monolayer with TEER values <90 Ω·cm² were not used for the study (Irvine et al., 1999). Permeability assay was conducted using 0.5 mL of apical (AP) donor solution and 1.5 mL of basolateral (BL) acceptor solution. Donor solution was prepared as followings. Cyclosporine formulations were mixed with ³H-labeled cyclosporine and dispersed in transport medium and then shaken for 30 min to get cyclosporine microemulsions. The resulting solution at the concentration of 10 µM of cyclosporine with 2 µCi of ³H-labeled cyclosporine was placed on the apical side of the transwell plate under incubation at room temperature. Aliquots (200 µL) of medium in the acceptor compartment were taken at 0.5, 1.0, 1.5, and 2.0 h. The same amount of fresh medium was added to the acceptor compartment after sampling. Radioactivity of the samples was determined by a liquid scintillation counter (LSC, System 1400, Wallac). Permeability (P_app) of cyclosporine was calculated by dividing the permeation velocity of cyclosporine by the initial concentration of cyclosporine in the donor compartment.

Oral bioavailability study

The oral bioavailability of cyclosporine formulations (test, reference I and reference II) was estimated against dogs. Animal study was performed in accordance with the Ethical Standards of the International Association for the Study of Pain and based on the animal protocols.

Six male dogs, weighing 12.0~15.0 kg, were subjected for each formulations. Dogs were fasted for 12 h before dosing and additional 4 h after dosing. 100 mg of cyclosporine in formulation was orally administered via the pharynx. 30 mL of water was administered immediately using a syringe. The whole blood samples (3 mL) were obtained from the cephalic vein into plastic tubes containing EDTA before dosing and at 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8 and 24 h after dosing. Samples were frozen under −20°C until analysis. The whole blood concentrations of cyclosporine were measured by radioimmunoassay using Cyclo-Trac SP® RIA kit (Diasorin).

Data analysis

Whole blood concentration-time data of cyclosporine were analyzed by conventional non-compartmental method using WinNonlin program (Pharsight Corp.). The estimated pharmacokinetic parameters were statistically compared using the unpaired student’s t-test. P values less than 0.05 were interpreted as significant. All parameters are expressed as mean ± S.D.

RESULTS AND DISCUSSION

Solubility of cyclosporine in microemulsions

Microemulsions have been regarded as a transparent “one-phase solution” rather than a two-phase mixture because of complete miscibility of oil and water (Kahlweit, 1988). The solubility of cyclosporine in microemulsions was observed based on the same assumption.

Cyclosporine is relatively insoluble with 6 µg/mL of aqueous solubility at 37°C (Ismailos et al., 1991). In this study cyclosporine was solubilized up to 0.91 ± 0.08 and 0.93 ± 0.13 mg/mL in microemulsion, which was acquired from test and reference I, respectively. No statistical difference was observed in solubility at different pH. We could not determine the solubility of cyclosporine from the reference II because it formed a heterogeneous emulsion which caused a large variation of the data.

In the BCS system, the drug substance is considered “highly soluble” when the highest strength of drug is soluble in 250 mL or less of aqueous media over the pH range of 1.0 to 7.5. Our solubility data suggests cyclosporine may be considered as a “highly soluble drug” in microemulsion system.

Absorptive permeability of cyclosporine SMEDDS in MDCK cells

TEER values of the MDCK monolayer did not change significantly after application of these formulations, suggesting that the integrity of the monolayer was maintained during the test. The absorptive P_app values (nm /sec) of cyclosporine were 3.84 ± 0.36, 3.68 ± 0.72 and 2.83 ± 0.78 for test, reference I and II, respectively. No significant difference (p > 0.05) was detected between the test and reference I. However, the P_app (nm/sec) of cyclosporine in these formulations decreased compared to that of cyclosporine by itself (7.3 ± 1.3). P_app value of 3.84 is similar to the reported P_app value of furosemide which is typically low permeable drug (Irvine et al., 1999; Taub et al., 2002). The absorptive permeability of cyclosporine in the MDCK cell monolayer did not reflect the enhanced solubility. Similar results have been reported in previous works showing a decreased P_app of drugs when the drugs were dissolved in solubilizing systems such as cyclodextrin (Taub et al., 2002), microemulsion (Spernath et al., 2007) or micelles (Chiu et al., 2003). Taub et al. reported P_app for mefenamic acid decreased after formulating with hydroxypropyl-bbb-cyclodextrin, although the solubility of mefenamic acid was increased by five fold in the formulation (Taub...
et al., 2002). Spernath et al. also reported a decreased P_{app} for diclofenac in microemulsions (Spernath et al., 2007). Chiu et al. proved that the P_{app} of cyclosporine in caco-2 cell lines decreased in micelle formulation (Chiu et al., 2003). They explained that micellar solubilization of cyclosporine decreased the fraction of “free” unbound cyclosporine that would be available for transport across the monolayer causing the decrease in P_{app}. On the other hand, they proved that cyclosporine has much higher intrinsic human jejunal permeability. The P_{app} of cyclosporine in the caco-2 cell monolayer might not reflect the exact situation in the gastro-intestinal tract.

Many other factors should be considered to precisely explain the decreased P_{app} of cyclosporine in microemulsions. Cyclosporine is a typical substrate of p-glycoprotein (Chiu et al., 2003). Some ingredients, especially surfactants, interfere with the function of p-glycoprotein and the integrity of the cell monolayer (Kabanov et al., 2003). But these apprehensions are possibly dismissed for the following reasons in this study. One is that both formulations (test and reference I) showed the equivalent P_{app} in MDCK monolayer. This equivalent P_{app} suggests both formulations will probably show the equivalent permeability in the gastro-intestinal membrane as well. Secondly, the previous studies showed that an oral absorption of cyclosporine increased by 2 fold with the help of microemulsions (Trull et al., 1994). This enhanced absorption also suggests that other factors such as the dissolution rate are much more reflective in explaining oral absorption of cyclosporine rather than the cellular permeability (Chiu et al., 2003). US FDA also recommends to observe the rate of mass transfer across human intestinal membrane to get more reasonable P_{app} (Chiu et al., 2003).

Dissolution of cyclosporine from SMEDDS

According to BCS guidance a drug product is considered to be rapidly dissolving when 85% or more of the labeled amount of the drug substance dissolves within 30 min using an USP apparatus I at 100 rpm (or apparatus II at 50 rpm) with a volume of 900 mL or less in each of the following media: (a) 0.1 N HCl or simulated gastric fluid USP without enzymes; (b) a pH 4.5 buffer; and (c) a pH 6.8 buffer or simulated intestinal fluid USP without enzymes.

But the current dissolution methods that are described in the BCS guidelines are irrelevant to estimate the real dissolution of class II drugs in the gastrointestinal tract (Yu et al., 2002). A more relevant *in vitro* dissolution method is required to precisely predict the oral absorption of class II drugs. US FDA allows the addition of surfactants or solvents to the dissolution medium to mimic the *in vivo* situation for water-insoluble drugs like class II drugs (Yu et al., 2002). However, this method is still under question about its reflective power on *in vivo* dissolution. Likewise, the proper dissolution test for SMEDDS has not been established yet. In this study a centrifugal ultrafiltration method was applied to estimate the dissolved amount of cyclosporine (Chen et al., 2008).

The cumulative percentage of the dissolved cyclosporine is plotted as a function of time in Fig. 1. pH of the medium did not affect the dissolution of cyclosporine from SMEDDS (Fig. 1A). Typically dissolution of cyclosporine from SMEDDS was reproducible (< 10% variability at all time points measured) and rapidly exceeded 85% of dissolution rate within 30 min. The dissolution profiles between the test and reference I were nearly identical when analyzed according to a simple model independent approach (Moore and Flanner 1996), i.e. the difference factor, f_1, was 7.3~12.6 except that at 10 min (18.1) and the other similarity factor, f_2, was 53.4, thus satisfying the criteria for identical dissolution characteristics (i.e. $f_1 < 15$ and $f_2 > 50$, respectively). The dissolution of cyclosporine from SEDDS was much lower than those from SMEDDS, which showed only 30% of dissolved cyclosporine at 60 min (Fig. 1B).

Relative oral bioavailability of cyclosporine SMEDDS

Fig. 2 shows the whole blood concentration-time profiles of cyclosporine after single oral administration of cyclosporine formulations. The whole blood cyclosporine concentration-time profiles of the test and the reference I are almost identical each other. The mean pharmacokinetic parameters after the oral administration of the test were: $\text{AUC}_{0→24\text{h}} = 7203.1 ± 1297.0$ ng h/mL, $C_{\text{max}} = 1189.0 ± 132.9$ ng/mL, $T_{\text{max}} = 1.3 ± 0.3$ and $T_{1/2} = 5.2 ± 1.2$ h, as shown in Table I. The relative bioavailability (AUC$_{0→24\text{h}}$) and C_{max} of the test were 91.9% and 95.8%, respectively. No significant differences were detected in pharmacokinetic parameters between two formulations ($p > 0.05$). The oral absorption of the reference II (cyclosporine SEDDS) was approximately 40% of that from SMEDDS with a delayed T_{max} (2.3 h).

In vitro and in vivo correlation

Recently practical application of IVIVC for optimization of drug formulation has been suggested in the pharmaceutical field (Emami, 2006). IVIVC also serves as another criterion of biowaiver extension. In this study, we estimated IVIVC based on the correlation between the fraction of cyclosporine absorbed and the
fraction of cyclosporine dissolved. The fraction of drug dissolved was determined from the dissolution data. The fraction of drug absorbed was determined using the Wagner-Nelson method from the cyclosporine concentration vs time data (Emami, 2006) and approximated again by the Hill equation using the non-linear least square regression program (WinNonlin, Pharsight Corp.). As shown in Fig. 3, level A correlation was observed between the fractions of drug dissolved and the fraction of drug absorbed for the pooled data of the test (●) and the reference I (○), and r_a^2 was acquired from the data of the reference II (▼) alone.

Table I. Pharmacokinetic parameters of cyclosporine after single oral administration of test, reference I and reference II against dogs (n = 6)

<table>
<thead>
<tr>
<th></th>
<th>SMEDDS</th>
<th>SEDDS</th>
<th>P valuea</th>
</tr>
</thead>
<tbody>
<tr>
<td>$AUC_{0\rightarrow24h}$ (ng · h/mL)</td>
<td>7203.1 ± 1297.0</td>
<td>7833.6 ± 874.5</td>
<td>0.34</td>
</tr>
<tr>
<td>$AUC_{0\rightarrow\infty}$ (ng · h/mL)</td>
<td>7901.6 ± 1525.6</td>
<td>8683.4 ± 1045.7</td>
<td>0.32</td>
</tr>
<tr>
<td>C_{max} (ng/mL)</td>
<td>1189.0 ± 132.9</td>
<td>1241.1 ± 69.4</td>
<td>0.42</td>
</tr>
<tr>
<td>T_{max} (h)</td>
<td>1.3 ± 0.3</td>
<td>1.3 ± 0.4</td>
<td>0.68</td>
</tr>
<tr>
<td>$T_{1/2}$ (h)</td>
<td>5.2 ± 1.2</td>
<td>7.2 ± 0.7</td>
<td>0.35</td>
</tr>
</tbody>
</table>

aP value was acquired from unpaired t-test between test and reference I.
Biowaiver extension potential of class II drugs in SMEDDS

US FDA allows the claim for biowaiver if drug substances satisfy the following conditions: 1) a drug with high solubility; 2) a drug with high permeability; and 3) a drug substance in IR solid oral dosage forms that exhibit rapid in vitro dissolution (no less than 85% of dissolution within 30 min) (Emami, 2006).

The data shown in this study support that SMEDDS alters the pharmaceutical properties of cyclosporine which is pretty similar to those of BCS Class I drug. The test formulation, which exhibited an equivalent dissolution with the reference I, showed the identical oral absorption compared to the reference I. Additionally, highly reliable correlation (level A) between in vitro dissolution and in vivo absorption was detected in both cyclosporine SMEDDS formulations. These results highly support the rationale for biowaiver extension potential to cyclosporine SMEDDS.

US FDA sets another following conditions for biowaivers: 1) the drug must be stable in the gastrointestinal tract; 2) excipients used in the IR solid oral-dosage forms have no significant effect on the rate and extent of oral drug absorption; 3) the drug must not have a narrow therapeutic index; and 4) the product is designed not to be absorbed in the oral cavity (Emami 2006).

Until now, biowaiver could be justified only for solid oral-dosage forms which are eligible for the traditional dissolution test. Unfortunately, SMEDDS is liquid based dosage form in soft gelatin capsules. However recent several studies reported a significant linear relationship (level A) in IVIVC for the drugs in soft gelatin capsules such as ritonavir (Rossi et al., 2007), lopinavir (Donato et al., 2008) and arundic acid (Nishimura et al., 2007). These drugs also belong to BCS class II. These studies indicated liquid based soft gelatin capsules are also eligible for the biowaiver extension with level A correlation in IVIVC.

US FDA recommends not to use excipients that affect the rate or extent of absorption of drugs for the biowaiver of class I drugs. But BCS class II drugs require specific ingredients, usually surfactants, in their formulation to guarantee the reliable and reproducible dissolution and bioavailability. For the formulation of cyclosporine SMEDDS, surfactants also play key roles in achieving the steady absorption of cyclosporine. Microemulsions dissolve the whole dose of cyclosporine without additional endogenous surfactants, such as bile acids in the gastrointestinal tract. The gastrointestinal absorption of cyclosporine from SMEDDS is unaffected by bile juice secretion and food intake in this reason (Trull et al., 1994; Yang et al., 2006). Surfactants act as an absorption enhancer in this formulation. The inevitable incorporation of surfactants in SMEDDS needs to be reviewed in these respects.

Narrow therapeutic index (NTI) is another limitation for cyclosporine SMEDDS to claim biowaiver. But several studies already showed biowaiver potential of drugs with NTI. Carbamazepine, which belongs to BCS class II and NTI drugs, was reported to have a considerable biowaiver potential with level A correlation in IVIVC studies (Lake et al., 1999; Kovacevic et al., 2009). Kovacevic et al. mentioned “A risk associated with a therapy failure and occurrence of dose-dependent adverse drug reactions in target patients should be evaluated additionally” for biowaiver extension of drugs with NTI (Kovacevic et al., 2009). So, biowaiver potential for cyclosporine SMEDDS may be possibly considered in the same way.

Nowadays, many other drugs, especially BCS class II drugs such as silymarin, ibuprofen, saquinavir and ritonavir etc, are on the market in SMEDDS (Gursoy and Benita, 2004; Woo et al., 2007) and the number of SMEDDS products is increasing. Many factors still remain as a limitation for marketing authorization of these drugs with only in vitro studies. However our study showed a rational for biowaiver potential of BCS class II drugs in SMEDDS formulation and this issue could be explored more extensively in the future.

CONCLUSION

In this study, cyclosporine SMEDDS showed an enhanced solubility, an increased dissolution rate and an identical oral absorption with prior-marketed SMEDDS product. Cyclosporine SMEDDS satisfied biowaiver conditions and level A IVIVC. These results provide insight for the biowaiver extension potential of BCS class II drugs by SMEDDS formulation.

ACKNOWLEDGEMENTS

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, KRF-2006-214-E00039), and International R&D Center START-UP FUND Program funded by Incheon Free Economic Zone Authority(IFEZA) and Ministry of Knowledge and Economy (MKE).
REFERENCES

