To Alvin Drake and Alfred Blumstein
who stimulated and encouraged our early work
in public systems
CONTENTS

PREFACE xiii

1 INTRODUCTION 1
 1.1 Cost Effectiveness of Urban Operations Research Studies 3
 1.2 Problems Well Suited to Urban Operations Research 5
 1.3 Steps in an Operations Research Study 9
 1.4 Need for a Probabilistic Analysis 13

2 BRIEF REVIEW OF PROBABILISTIC MODELING 16
 2.1 Experiment, Sample Space, and Events 16
 2.2 Event Probabilities 20
 2.3 Random Variables 22
 2.4 Probability Mass Function 23
 2.5 Conditional PMF’s and Independence 25
 2.6 Functions of Random Variables 30
 2.7 Expectation 31
 2.8 The z-Transform 32
 2.9 Often-Used PMF’s 33
 2.9.1 Bernoulli PMF 34
 2.9.2 Geometric PMF 34
 2.9.3 Binomial PMF 35
 2.9.4 Poisson PMF 36
 2.10 Probability Density Functions 37
 2.10.1 Conditional PDF’s and independence 40
 2.10.2 Expectation 41
3.9 Alternative Spatial Processes

3.9.1 Spread process yielding the binomial PMF 157
3.9.2 Clustered process yielding the negative binomial PMF 159

3.10 Conclusion 161

4 INTRODUCTION TO QUEUEING THEORY AND ITS APPLICATIONS 182

4.1 Questions and Answers in Queueing Theory 183
4.2 Background, Terms, and Some Conventional Notation 185
4.3 Defining the Quantities of Interest 188
4.4 Some Important Relationships in Queueing Theory 190

4.5 Fundamental Queueing Model

4.5.1 Solving the balance equations 198

4.6 Center for Emergency Calls: Queueing Systems of the Birth-and-Death Type

4.6.1 Case I: one operator, infinite number of lines 200
4.6.2 Case 2: m operators, infinite number of lines 203
4.6.3 Case 3: one operator, finite number of lines 206
4.6.4 Case 4: m operators, finite number of lines 208
4.6.5 Extensions and variations 211

4.7 Spatially Distributed Queues and the M/G/1 Queueing System 211

4.8 Useful Results for Difficult-to-Analyze Queueing Systems 222

4.8.1 Why are M/G/m, G/G/1, and G/G/m difficult? 222
4.8.2 M/G/m queueing systems with no waiting space 224
4.8.3 G/G/1 system 227
4.8.4 G/G/m queueing systems 230

4.9 Queueing Systems with Priorities

4.9.1 Preemptive and nonpreemptive priorities 233
4.9.2 Important optimization result 237
4.9.3 Nonpreemptive priorities in a M/M/m system 239
4.9.4 Preemptive priorities 240

4.10 Queueing Networks

4.10.1 Important property of M/M/m queueing systems 242
4.10.2 State-transition-diagram approach to networks with blocking effects 245

4.11 Time-Dependent Analysis of the M/M/m Queueing System 249

5 SPATIALLY DISTRIBUTED QUEUES 268

5.1 Server-to-Customer Systems 269
5.2 Using the M/G/1 Model 272
5.3 Two-Unit Model (Zero Line Capacity)
- 5.3.1 Restrictions on service time and queueing behavior 275
- 5.3.2 General model 276
- 5.3.3 Nonhomogeneous rectangular city example 280
- 5.3.4 Optimal partitioning 284
- 5.3.5 Facility location 284

5.4 Hypercube Queueing Model
- 5.4.1 Some uses of the model 294
- 5.4.2 Model assumptions 300
- 5.4.3 Three-server example (infinite line capacity) 303
- 5.4.4 System performance measures (infinite line capacity) 316
- 5.4.5 Extensions to the basic hypercube model 323

5.5 Hypercube Approximation Procedure
(Infinitite Line Capacity)
- 5.5.1 Correction factor 327
- 5.5.2 Workload estimation 329
- 5.5.3 Return to the three-server example 331

5.6 Fraction of Dispatches That Are Interresponse Area Dispatches

5.7 Spatial Distribution of Busy Servers

5.8 Expected Travel Distances and Expected Travel Times, Revisited
- 5.8.1 Extensions and empirical evidence 342

6 APPLICATIONS OF NETWORK MODELS 359

6.1 Definition of Terms and Notation 361

6.2 Travel Distances on Networks
- 6.2.1 Shortest paths from a given node to all other nodes \([\ell(i,j) \geq 0]\) 364
- 6.2.2 Shortest paths between all pairs of nodes \([\ell(i,j) \geq 0]\) 367
- 6.2.3 Traffic assignment problem 373
- 6.2.4 Some complications for urban travel 375
- 6.2.5 Complexity of algorithms 376

6.3 Minimum-Spanning-Tree Problem
- 6.3.1 Solving the MST problem 380

6.4 Routing Problems
- 6.4.1 Edge covering: the Chinese postman’s problem 384
- 6.4.2 Chinese postman’s problem on an undirected graph 386
- 6.4.3 Obtaining an Euler tour 389
- 6.4.4 Solving the Chinese postman’s problem 390
- 6.4.5 Node covering: the traveling salesman problem 395
6.4.6 Solving TSP1 398
6.4.7 Euclidean TSP 404
6.4.8 Probabilistic view of the traveling salesman problem 407
6.4.9 Multiroute problems 411
6.4.10 Multiroute node covering 412
6.4.11 m-TSP problem 413
6.4.12 Single-depot VRP 416
6.4.13 Multidepot VRP 424
6.4.14 Multiroute Chinese postman problem 425

6.5 Facility Location Problems 427
6.5.1 Basic model 428
6.5.2 Median problems 429
6.5.3 Generalization and extensions 436
6.5.4 Center problems 437
6.5.5 Multiple centers 443
6.5.6 Requirements problems 443
6.5.7 Set-covering problems 446
6.5.8 Related problems 450

6.6 Probabilistic Networks 450
6.6.1 Description and some properties of probabilistic networks 452
6.6.2 Discrete and finite state space for probabilistic networks 455
6.6.3 Facility locations on probabilistic networks 458

7 SIMULATION IN THE URBAN CONTEXT 481

7.1 Simulating Probabilistic Events 483
7.1.1 Generating random numbers 483
7.1.2 Using several random-number generators 486
7.1.3 Generating samples from probability distributions 487
7.1.4 Simulating event times from a time-dependent Poisson process 499

7.2 Geometrical Relations in Urban Simulation 501
7.2.1 Efficient sorting and searching 502
7.2.2 Simulating the locations of urban events 504
7.2.3 Identifying the zones where events occur 507
7.2.4 Do n line segments intersect? 508
7.2.5 Intersections of reporting zones 511

7.3 "Advancing the Clock" in a Simulation 514
7.3.1 Event-paced simulation of a spatially distributed queueing system 515

7.4 Choice of a Language for a Simulation 520
7.5 Advantages, Disadvantages, and Misuse of Simulation 521
 7.5.1 Advantages of simulation 521
 7.5.2 Disadvantages of simulation 522
 7.5.3 Misuses of simulation 523

8 IMPLEMENTATION 531

8.1 Some Mini “War Stories” 532
 8.1.1 Don’t take my men away! 532
 8.1.2 What—design a non-perfectly working system? 533
 8.1.3 Why spend time and money making decisions? 536
 8.1.4 Busing to build 537
 8.1.5 Buses come in bunches 539
 8.1.6 Hypercubed ambulances 540
 8.1.7 Vanishing advocate (Figure 8.3) 541
 8.1.8 Model “on the road” 541

8.2 Model-Related Issues Affecting Implementation 542
 8.2.1 Performance measures 543
 8.2.2 Model accuracy 543
 8.2.3 Data for the model 544
 8.2.4 Documentation 545
 8.2.5 Model adaptability 546
 8.2.6 Exploring alternatives 547

8.3 Issues Related to People and Institutions 548
 8.3.1 The user 548
 8.3.2 The analyst 549
 8.3.3 The user’s agency 550
 8.3.4 Other groups and agencies 551
 8.3.5 Model constituency 552
 8.3.6 Training: conquering the learning curve 554
 8.3.7 Politics and improper reasons for analysis 556

8.4 Concluding Remarks 556

GENERAL REFERENCES 559

INDEX 561