Analytic Methods in Accident Research: The Current Methodological Frontier and Future Directions

Fred Mannering
Charles Pankow Professor of Civil Engineering
Purdue University

Traditional Crash Data

- Available mostly from police and possibly other reports
 - Road conditions
 - Estimates of injury severity (property damage only, possible injury, evident injury, disabling injury, fatality)
 - Occupant characteristics (age, gender)
 - Vehicle characteristics
 - Crash description, primary cause, etc.

Emerging Data Sources

- Data from driving simulators
- Data from naturalistic driving
- Other "non-traditional" sources (detailed hospital injury data, etc.)

Why Analyze Traditional Crash Data?

- Identify crash-prone locations
- Hoping that data analysis will suggest effective countermeasures
- Evaluate the effectiveness of implemented countermeasures

Traditional Analysis Approaches:

- Modeling of crash frequency
- Modeling of crash-injury severity
- Some modeling approaches seek to combine the two (frequency and severity)

Traditional crash data

Crash Frequency Models:

- Study the number of crashes over some specified time and space
- Various count-data and other methods have been used
- Explanatory variables:
 - Traffic conditions
 - Roadway conditions
 - Weather conditions

Traditional crash data

Crash Injury Severity Models:

- Study injury severities of specific crashes
- Models are conditional on a crash having occurred
- Various discrete-outcome methods
- Explanatory variables:
 - Traffic Conditions, Roadway conditions, Weather conditions
 - Specific crash data: Vehicle information, Occupant information, Crash specific characteristics

Traditional Crash Data

What Methodological Barriers have Encountered:

- Unobserved Heterogeneity
- Endogeneity
 - Self-selectivity
- Temporal Correlation
- Spatial Correlation

Traditional crash data

Unobserved Heterogeneity:

- Many factors influencing the frequency and severity of crashes are simply not observed
- If these are correlated with observed factors, incorrect inferences could be drawn

Unobserved heterogeneity

Example:

A study finds age to be an important factor in crash frequency/severity

Problem:

 Age is correlated with many underlying factors such as physical/mental health, attitudes, income, lifecycle factors, etc.

Naive methodological application:

 Effects of age are a proxy for unobserved factors – the correlation may not be stable over time and inferences will be incorrect

Endogeniety

Example:

Impact of ice warning signs on frequency/severity of ice-related crashes

 Analyze the frequency/severity of crashes when ice warning signs are present vs. not present

Problem:

 Ice warning signs are put at locations with a high frequency and severity of ice crashes

Naive methodological application:

 Effectiveness of ice-warning signs understated (may find they actually increase frequency and severity)

Example:

Effectiveness of Side-Impact Airbags

 Analyze the severity of crashes involving vehicles with and without side-impact airbags

Problem:

- People owning side-impact airbags are not a random sample of the population (likely safer drivers)
- Naive methodological application:
 - Side-impact airbag effectiveness is overstated

Good Morning America

http://abcnews.go.com/Video/playerIndex?id=2530346

Ignoring self-selectivity will almost always overstate the effectiveness of new safety features due to self-selectivity

- May mask important factors relating to possible risk compensation, etc.
- Statistical corrections must be used

Endogeneity: Self Selectivity

The issue of risk compensation

- In the presence of advanced safety features drivers can drive faster, engage in distracted driving, etc. and maintain an acceptable level of safety
- Simulator study of the effectiveness of an in-vehicle hazard warning system:
 - Slow down during the hazard
 - Speed up afterward to make up for lost time

Example:

Use of Airbags or other safety features as an Explanatory Variable

 Use airbag deployment as an explanatory variable finding it reduces injury severity

Problem:

- People owning airbag cars are not a random sample of the population (likely safer drivers)
- Naive methodological application:
 - Airbag effectiveness is overstated

Endogeneity: Self Selectivity

Example:

Effectiveness of Motorcycle Safety Courses

- Analyze the frequency and severity of crashes involving riders with and without course experience
- Problem:
 - People taking the course are not a random sample of the population (likely less skilled)
- Naive methodological application:
 - Effectiveness of the course understated (course participants may have higher crash rates)

Underlying issue:

- There is unobserved heterogeneity about drivers that can manifest itself as a self-selectivity problem
- This can mask causality and lead to erroneous inferences and policies

Traditional crash data

Temporal and Spatial Correlation

- Crashes in close spatial proximity will share correlation due to unobserved factors associated with space (unobserved visual distractions, sight obstructions, etc.)
- Crashes in occurring near the same or similar times will share correlation due to unobserved factors associated with time (precise weather conditions, similar sun angle, etc.)
- Much to be learned from spatial econometrics

Traditional crash data

Omitted Variables

- Many crash frequency models use few explanatory variables (some only use traffic)
- This creates a massive bias in parameter estimates that most certainly will lead to incorrect and temporally unstable inferences

Traditional crash data

Building on Bad Research

- Highway Safety Manual (HSM) in the U.S. is an important practice-oriented document
- However, it is several methodological generations behind the cutting-edge econometrics in the field
- Problem: Some researchers view the HSM as the cutting edge and they base their work on terribly outdated methods and thinking

Current Methodological Frontier

Accident Frequency Models

- Random parameters count models (track unobserved heterogeneity) – Random parameters negative binomial
- Markov switching/finite mixture count-data models (track unobserved heterogeneity by allowing observations to switch between two or more states)

Current Methodological Frontier

Accident Severity Models

- Random parameters Logit model
- Random parameters ordered probit models with thresholds that move as a function of explanatory variables
- Markov switching/finite mixture variants

Current Methodological Frontier

Accident Severity Models – Ordered vs. Unodered

- Unordered models have far more flexible functional form, may perform better in underreporting of minor crashed
- Ordered models account for the ordering of injury severity levels (no injury, possible injury, evident injury, fatality)

Current Methodological Frontier

Ordered vs. Unordered Which is better?

- Likely to depend on the crash data
- Example: Some crash data show a simple multinomial logit is best, others nested logit, etc.
- There is no generalization that can be made

Traditional Crash Data

Data frontier

Emerging Data Sources

Naturalistic Driving and Simulator Data

- Unobserved heterogeneity
- Endogeneity
 - Self-selectivity (route choices, etc.)
- Temporal correlations
- Spatial correlations
- Subject correlations
- Realism (how does experiment affect behvior)

Naturalistic Driving and Simulator Data

Massive correlation problems

 Spatial and temporal correlation in the traditional sense are compounded subject correlation

Realism problems

 The effect of subjects knowing they are in a simulator or naturalistic driving experiment is a constant concern

Summary

- In the past, comparatively "static" data quality and quantity has enabled sophisticated methodological applications to extract much of the available information
- A new data-rich era is beginning
- With few exceptions, sophisticated methodologies have not been widely used on these data

Summary (cont.)

- Methodological applications are needed that address underlying data issues (unobserved heterogeneity, etc.)
- The methodological frontier needs to expand to include sophisticated new statistical and econometric methods

Without expanding the methodological frontier:

- At best: We will be effectively ignoring important information on crash and injury mitigation
- At worst: Incorrect analyses of data will lead to erroneous and ineffective safety policies