Urban Travel Forecasting: A 50 Year Retrospective

David Boyce

Northwestern University
In collaboration with Huw C. W. L. Williams

Distinguished Transport Lecture
University of Hong Kong

December 15, 2011

Copyright © 2011 by David Boyce All rights reserved.

About the authors

Huw Williams and I met in 1972 at the University of Leeds. We didn't look much like this 40 years ago.

3

Actually, we looked more like this.

Why write a Retrospective on <u>Urban Travel Forecasting?</u>

- By 2003, we had each spent 30 years or more conducting research in this field.
- The 50th anniversary of the origins of the travel forecasting field was approaching.
- Huw was taking his sabbatical, while I had just retired from the teaching faculty.
- And, it seemed like an interesting way to spend 2 or 3 years topping off our careers.

5

- Now, 8 years later, we have each read extensively, consulted with our peers and written several hundred pages.
- Our manuscript remains incomplete, but we have largely accomplished what we intended at the outset.
- The invitation to present this Lecture in Hong Kong seemed like a fine place to try to summarize what we have learned.
- So, congratulations (or condolences) on attending the unveiling of our findings!

Dimensions of our review

- Research and Practice
- Travel Behavior Models and Transportation Network Models
- United States and United Kingdom, and more generally Europe

With a concern for the:

- Constraints imposed by data and computers
- Roles played by the leading contributors

7

Contents of the Lecture

- Emergence of the traditional approach US
- Further development of the traditional approach UK
- Integrated transportation network equilibrium models
- · Travel forecasting with individual choice models
- Further extensions of the discrete choice approach
- Activity-based travel analysis and forecasting
- Tradition and innovation in US practice
- · Tradition and innovation in UK practice
- Computing environment and forecasting software
- · Achievements and current challenges

Getting started – a look at the origins of terms			
Traditional and evolving terminology of travel forecasting			
	Traditional	Evolving	<u>Current</u>
Definition of travel	Trip-based	Tour-based	Activity- based
Unit of observation	Zone-based	Individual- based	Individual/ Household
Network representation	Link-based	Route-based	Origin-based
Choice representation	Aggregate	Disaggregate	Individual

Context of model formulation and use

Integrated/

combined

Simulation

Sequential

Solution

procedure

- Forecasts for a future design year, relative to a base year;
- Tests of the impacts of alternative policies;
- Explanation and exploration of observed travel behavior;
- Design of model systems and evaluation frameworks, given current computational feasibility;
- Design of transportation networks and patterns of activity location (land use).

Drivers of Change in Modeling

- 1950-1960s:
 - rapid increase in car ownership
 - population growth and urban decentralization
 - major road building, with declining transit use
- 1970-1980s:
 - environmental and financing restrictions
 - demand management
 - expanding rail transit systems
- 1990-2000s:
 - sustainability, non-motorized modes
- Developing regions now face these drivers of change all at once

The Formative Era – Practice - US

- Surveys and inventories: household travel, land use, road & transit systems
- Data processing and reduction → models

IBM 407 Accounting Machine

IBM 704 Computer

The Formative Era – Practice - US

- Surveys and inventories: household travel, land use, road & transit systems
- Data processing and reduction → models
- Representing travel through aggregation: (zones, 24 hour weekday, travel classes, ..)
- Partition of travel choices: frequency, O-D, route; no time of day, and often roads only
- Role of land use as the determinant of travel
- Early sequential procedure flowchart showing how to connect these 'steps'

The Formative Era – Practice - US

- Early sequential procedure flowchart showing how to connect these 'steps'
- Demand cost equilibrium intuitively solved with a simple feedback procedure
- Road network design:
 - expressway spacing formula
 - a strong orientation to road planning,
 with a secondary concern for transit

17

The Formative Era – Practice - US

- Demand cost equilibrium solved with a simple feedback procedure
- · An early attempt at road network design:
 - expressway spacing formula
 - a strong orientation to road planning, with a secondary concern for transit
- Failed early attempt to identify a desired land use pattern by forecasting the response of activity locations to road – transit network alternatives

- Detroit (DMATS) 1953-56
 - early gravity model experiments (J.D. Carroll, Jr.)
 - early attempt at automated traffic assignment
- Chicago (CATS) 1956-62
 - intervening opportunities model (M. Schneider)
 - shortest routes on large networks (E. F. Moore)
 - linked distribution & assignment (M. Schneider)
 - expressway spacing (R. Creighton, I. Hoch)
- Philadelphia (PJTS) 1959-67
 - transportation networks imply land use patterns (R. Mitchell and B. Harris)
 - residential location model(J. Herbert and B. Stevens)

- U.S. Bureau of Public Roads 1958-66
 - trip distribution by gravity model
 - capacity restrained assignment (G. Brokke et al)
 - zone-based trip generation & modal split
- Alan M. Voorhees and Associates 1962-69
 - transit forecasting model system (R. Dial)
 - creation of first travel forecasting model system: TRIPS (W. Hansen and T. Deen)

Alan Voorhees, 2000

Britton Harris, 2003

Ben Stevens, 1985

- Land use transportation programs, 1959-68
 - preparation & evaluation of alternative plans for metropolitan land use and transportation in several regions (Boyce, Day and McDonald, review & synthesis)
 - attempts to apply land use models declared a failure by D. B. Lee, Jr. in his 'Requiem for Large-scale Models.'

Transfer of US Practice to the UK

- Early traffic research (Wardrop, 1952)
- Consulting consortia initially transferred US modeling practice to London and Glasgow
- British practitioners, and young researchers, began to improve the <u>Transport Model</u>, as it became known, with substantial innovations:
 - variations in trip frequency at household level
 - empirical curves replaced by analytic functions for distribution and mode steps – entropy maximization

- generalized costs based on micro-behavioral foundations
- issues concerning the order of the steps and how to connect the steps:
 - Dest → Mode, Mode → Dest, or Dest Mode?
- definition of composite cost functions, model interfaces, and specification of nested models
- dispersion of route flows across routes
- line-based Public Transport representation
- trip-based benefit analysis for evaluation

Early contributors, 1960-75

- US-trained British engineers
 - Tony Ridley and John Wootton (UC Berkeley)
 - Brian Martin (MIT)
- UK-trained economists and mathematicians
 - Christopher Foster & Michael Beesley (Oxford)
 - Alan Wilson (Cambridge, and later Oxford)
 - David Quarmby (Cambridge, and later Leeds)
- London Traffic Survey/Transportation Study, 1962-68
 - Household-based generation (category analysis)
 - User benefit analysis rule of one-half
 - TRANSITNET

- Math. Advisory Unit, Ministry of Transport
 - maximum entropy derivation of share models of logit form for trip distribution and modal split
 - generalized cost functions
 - examination of the proper sequence of models
 - increased emphasis on evaluation
- SELNEC Transportation Study (1967-72) included all major UK innovations to date
- Road Research Laboratory studies
- Next generation of British researchers:
 Michael Batty, Dirck Van Vliet, Huw Williams,
 Peter Batey, to name several

Integrated Network Equilibrium Models: A Missed Opportunity in the 1950s

- Cowles Commission study on allocation of scarce resources (T. Koopmans, 1952-55)
- Formulation of network equilibrium and efficiency models with new tool of nonlinear programming and the Kuhn-Tucker theorem (Martin Beckmann, with McGuire & Winsten, 1956)
- Variable demand and network flow models with average and marginal cost pricing
- Models of network user-equilibrium with fixed demand (Jorgensen, Charnes, Prager, Gibert, Dafermos, Braess, 1962-70)

31

Martin Beckmann, 1977

Michael Florian spoke with Martin Beckmann, after he received the Robert Herman Lifetime Achievement Award in Transportation Science in 1994.

- Convergent algorithms for cases of fixed and variable demand (Dafermos, Murchland, Evans, Florian and Nguyen, LeBlanc, 1968-73)
- Correspondence between Beckmann's formulation and the sequential procedure mathematically explored (S. Evans, 1973)
- Nonlinear complementarity and variational inequalities (Smith, Dafermos, 1979-84)
- Implementation of models of activity location (land use) with endogenous travel costs (Boyce & Lundqvist, Erlander)
- Implementation and validation of combined travel choice and user-equilibrium models (Lam & Huang, Boyce & Bar-Gera)

Suzanne Evans and Anna Nagurney at 2003 recognition of *Studies in the Economics of Transportation* by Beckmann, McGuire and Winsten

Martin Beckmann & Bart McGuire being honored for their *Studies* at San Francisco INFORMS in 2005

Individual Choice Models (~1965-75)

- Widening criticism of 'traditional methods' in late 1960s to 1973 – lack of behavioral basis at the level of individual travelers
- Discrete choice models based on random utility maximization (Quandt, McFadden)
- Early exploration of nested logit models (McFadden, Ben-Akiva)
- Economic-statistical properties of multinomial logit model (McFadden)
- Increased recognition of restrictive properties of multinomial logit (IIA property)
- Improved mathematical specification of systems of models (Manheim)

Daniel McFadden receiving the Nobel Prize in Economic Science from the King of Sweden in 2000

Moshe Ben-Akiva and Daniel McFadden in Stockholm in 2000

Individual Choice Models (~1975-85)

- Nested logit with parameter restrictions (Williams, Daly-Zachary)
- General extreme value models, with nested logit as a special case (McFadden)
- Ordering of hierarchical choices, as an improved basis for traditional models (Williams and Senior)
- Individual choice models offered practical alternative to the sequential procedure (Richards and Ben-Akiva, Daly)
- Use of stated preference methods to supplement revealed preference data

37

Activity-based model framework

- Widening criticism of traditional procedures and discrete choice theory:
 - lack of behavioral basis
 - inability to represent observed complex tours
- Activity-based choices of households: response to time constraints and alternative plans (Hagerstrand, What about people ...? 1970)
- Econometric approach (Ben-Akiva & Bowman)
- Rule-based approach based on satisficing behavior (Pas and Kitamura)
- Early fixed travel cost prototypes without endogenous travel costs/congestion effects) (Bowman & Bradley, Vovsha)

Tradition and Innovation in US Practice

- Lawsuit challenging the Bay Area model (Garrett & Wachs, *Transp. Planning on Trial*, 1996)
- Federal requirements for solving the sequential procedure with feedback, 1991
- Travel Model Improvement Program (TMIP) initiated by Federal Highway Administration
- TMIP funding reallocated to TRANSIMS, a microsimulation software development effort at Los Alamos National Laboratory
- Prototype use of activity-based models, and later integration with land use and dynamic traffic assignment simulation methods (Pendyala, Waddell and Chiu, Urban Continuum)

Tradition and Innovation in UK Practice

- Decline of travel modeling since the 1980s
- Increased technical guidance of government, partly a result of *Trunk Roads and the Generation of Traffic* (Standing Advisory Committee for Trunk Road Assessment, 1994)
- Incremental nested logit model applied in various situations
- Traffic management and microsimulation: SATURN, PARAMICS, VISSIM
- Integrated land use transport models (MEPLAN, TRANUS, DELTA-START)
- Innovations in goods movement models

Computing Environment and Software

- Mainframes to minis to microcomputers, 1951-2008
- Microcomputer revolution from the 1980s

Apple Lisa, improved version of Apple II, 1983

IBM PC, model 5150,1982

Computing Environment and Software

- Mainframes to microcomputers, 1951-2008
- Microcomputer revolution in the 1980s
- · Origins of travel forecasting software
 - Urban transportation studies: CATS, PJTS, etc.
 - Bureau of Public Roads distribution and assignment
 - US Dept. of Housing transit planning package
 - Transportation Planning Exchange Group
 - Alan M. Voorhees and Associates TRIPS, a combination of BPR and HUD packages
 - Control Data Corporation TRANPLAN
 - London Traffic Survey and London Transportation Study, 1962-68 – TAP, TRANSITNET
 - Martin & Voorhees Associates, moved TRIPS to the UK

- US Department of Transportation
 - Urban Transportation Planning System, initially TRIPS of Voorhees, distributed and extended by the Urban Mass Transportation Administration
 - PLANPAC, a collection of programs developed by the Federal Highway Administration
- Legacy mainframe applications in 1970s
 - UTPS (Robert Dial) UMTA, US DOT
 - PLANPAC, FHWA, US DOT
 - TRANPLAN, James Fennessey, CDC

- Transition to microcomputers
 - Knowledgeable software developers began developing software for the IBM PC and Apple microcomputers in early 1980s
 - TRANPLAN, James Fennessey, DKS Associates
 - TMODEL, Robert Shull, Professional Solutions
 - MINUTP, Larry Seiders, Comsis
 - MicroTRIPS, PRC Voorhees/MVA Systematica
 - EMME/2, Michael Florian, INRO
 - QRS II, Alan Horowitz, AJH Associates
 - VISUM/VISEM, Tom Schwerdfeger, PTV AG
 - SATURN, Dirck Van Vliet, University of Leeds
 - · A few others that did not survive in the marketplace

- Travel forecasting software systems today
 - CUBE (Citilabs, US) evolved from TRANPLAN, TRIPS, MinUTP and TP+, and combining features of these legacy systems
 - EMME (INRO, Canada)
 – developed from research of Michael Florian, University of Montreal, and continues to be based upon research advances of Florian and his students
 - TransCAD (Caliper, US) developed by Howard Slavin and his associates by seeking to incorporate the best available models
 - VISUM (PTV, Germany) developed from research at University of Karlsruhe, and later adapted to US travel forecasting practice

- Specialized forecasting software systems
 - ESTRAUS (MCT, Chile)
 - OmniTRANS (OmniTRANS Int., Netherlands)
 - QRS II (AJH Associates, US)
 - SATURN (WS Atkins, UK)
 - STRADA (Japan International Cooperation Agency, Japan)
 - TRACKS (Gabites Porter Consultants, New Zealand)
 - TRANUS (Modelistica, Venezuela)
 - UFOSNET (RST International, US)

Achievements and current challenges

- The track record for academic research:
 - research was nearly non-existent in the 1950s, whereas practice was offering innovations
 - continuous improvements in foundations and understanding of models of specific choices
 - less success in advancing the demand-network equilibrium framework
 - lack of empirical validation and understanding of how urban travel phenomena have changed over the past 60 years
 - successful use of the huge advances in computing capability
 - who made the leading innovations?

49

- The track record for professional practice:
 - following its early innovations, contributions from practice slowed substantially
 - practitioners are able to apply their software tools, but often without understanding of their properties (black box vs. glass box)
 - relatively few practitioners understand and are able to explain the properties of the models they apply, and sometimes offer misleading or invalid descriptions of model properties
 - is this situation a failure of their education?
 - difficulties of understanding model properties will only become greater in the future

- Partially unaddressed problems of our field:
 - disaggregation in time and space:
 - geographic scale (zones)
 - timing of travel (static vs. dynamic)
 - design of networks and activity location systems
 - basic normative properties of location and networks remain unstudied and unknown (e.g. land use density and network layout)
 - these questions were studied in the 1960s without success, perhaps because the models were insensitive; is this still the situation?
 - overly simplified assumptions of basic models
 - representation of travel delay at intersections
 - cross-elasticities of demand by mode and destination

- What are the ways ahead?
 - how should research and demonstration on design problems be undertaken? who decides?
 - at what scale should exploratory research be organized and funded?
 - likewise, at what scale should experimental implementations be undertaken in practice?
 - how should innovative thinking be rewarded?
 - who decides what research is supported?
 - how should progress be evaluated in another 25 years?