

AGS (HK) & HKIE Geotechnical Division Joint Evening Talk

Artificial Ground Freezing

Hu Xiangdong 2013-10-28

TOPICS

Introduction to Artificial Ground Freezing
Application of AGF in Tunneling Works
Risk and Control Measures
Case Study

Artificial Ground Freezing (AGF) is a special construction technology through which artificial freezing is used to temporary change rock/soil properties at certain soil strata by consolidation.

vertical freezing

Horizontal freezing

According to freezing pipe arrangement, there are vertical freezing and horizontal freezing.

Brine freezing
-Indirect freezing

Liquid Nitrogen (LN) freezing
-Direct freezing

Comparison of refrigeration methods

	LN Freezing	Brine Freezing	
Freezing Plant	Simple, no equipment	Complex, big equipments	
Electrical Power No		Large cost	
Min. Temp.	-196°C	-30°C	
Frozen soil	Low temp., high strength	High temp., low strength	
Freezing rate	Rapid	Slow	
Environmental impact	No pollution, no noise, no vibration	Noise, occasional brine leakage	
Cost-effective	Not good	Good	
Applicability	Economic for small volumes or time critical operations	Economic for large volumes and/or long time periods	
Controlability	Not easy	Easy	
Risk	Cold burns and lack of oxygen		

Comparison of refrigeration methods

Freezing rate:

1week by LN = 1 month by brine

After SEIKEN Co. Ltd.

Frozen soil structure characteristics

Good water tightness

High soil strength

Low risk on loss of ground & strength

Soil strength could be monitored by temperature

Soil strength could be controlled by temperature

History of Artificial Ground Freezing

- In 1883, freezing method was initially used to sink a shaft for a coalmine in Kaebari, German, with success.
- ◆ In 1955, freezing method was initially used to excavate shaft for coal mine in China.
- By the end of 1960s, freezing method was initially used in Beijing metropolitan.
- Currently, freezing method is widely used in cross passage and shield break-in and break-out reinforcement construction for metro tunnel in most of the metro cities, such as Shanghai, Beijing, Tianjin, Guangzhou, Shenzhen...

Application of Artificial Ground Freezing

- Cross-passage construction
- Ground reinforcement for shield launching or arriving
- Tunnel restoration

4

Cross-passage construction

Cross-Passages in Metro (with drainage sump)

Cross-passage construction

Drainage Sump in Metro (in DOT)

2

Ground reinforcement for shield launching or arriving

2

Ground reinforcement for shield launching or arriving

Restoration of the tunnel collapse of Line 4, Shanghai Metro

Three Critical Risks:

- Drilling from within sub-surface space
 - Water and soil ingress
- Freezing and excavation
 - Segment deformation
- Ice-wall failure
 - Flood and tunnel collapse

Drilling from within tunnel

Using stuffing-box
- As Blow-Out Preventer (BOP)

2

Tunnel deformation limitation

Prestressed deformation limitation support

3

Flood-prevention facility

Safety door

Experience of STEC

Experience of STEC

No.	Project name	Length	Overburden	Project type/parts/location	Remarks	
1	Shanghai Yangtze River tunnel project(shield with largest diameter in the world)	15	33~39	8 cross passages circular section with diameter around 5m		
2	Metro No.9, Shanghai	12	21.6	cross passage	cases -	
3	Xinjian road tunnel	25	35	road/cross passage	tunnel excavation by NATM	
4	Tianjin metro	13	17	cross passage		
5	Hangzhou metro	12	23.5	cross passage		
6	Shantou Huaneng electricity factory project	_	25	reinforcement		
7	Naniina matus		15	shield break-in	cases –	
8	Nanjing metro	_	16	shield break-out		
9	Hangghan matus		23	shield break-in	shield	
10	Hangzhou metro		23	shield break-out	break-in and break-	
11	Shanghai Qingcaosha raw	## T	18	shield break-in	out soil improvement	
12	water supply project		23	shield break-out		

Case Study

 Cross Passage Construction in the Shanghai Yangtze River Tunnel (Shanghai)

Stonecutters Island Sewage Treatment Works (Hong Kong)

Special Cases

 Replacement of the wire brush tail seal during the long-distance shield driving in Shanghai Yangtze River Tunnel

Restoration of the tunnel collapse of Line 4, Shanghai Metro