Precise olfactory responses tile the sniff cycle

Roman Shusterman1, Matthew C Smear1,2, Alexei A Koulakov3 & Dmitry Rinberg1

In terrestrial vertebrates, sniffing controls odorant access to receptors, and therefore sets the timescale of olfactory stimuli. We found that odorants evoked precisely sniff-locked activity in mitral/tufted cells in the olfactory bulb of awake mouse. The trial-to-trial response jitter averaged 12 ms, a precision comparable to other sensory systems. Individual cells expressed odor-specific temporal patterns of activity and, across the population, onset times tiled the duration of the sniff cycle. Responses were more tightly time-locked to the sniff phase than to the time after inhalation onset. The spikes of single neurons carried sufficient information to discriminate odors. In addition, precise locking to sniff phase may facilitate ensemble coding by making synchrony relationships across neurons robust to variation in sniff rate. The temporal specificity of mitral/tufted cell output provides a potentially rich source of information for downstream olfactory areas.

Sensory systems must capture time-varying features of the external world. Several sensory systems respond to rapid stimulus dynamics with millisecond precision1–4, which may be essential for information transmission5. Does olfaction employ similar principles to transmit information about odors to the brain? Compared with stimuli in other modalities, odorants have relatively slow kinetics, but, in many species, odor responses have temporal structure on a faster timescale, which may encode information about odor stimuli6.

In air-breathing vertebrates, odor stimuli are partitioned by sniffing. Numerous lines of evidence suggest that olfactory neurons may encode information about odor not only by how many spikes they fire per sniff cycle, but also by the timing of those spikes in each sniff2–9 (for a review, see ref. 10). For some olfactory discriminations, one sniff suffices for accurate perceptual decisions11–13, thus constraining the time window of relevant processing. Inhales are brief (50–150 ms), which suggests that coding is precisely and reliably timed.

To investigate information coding in olfaction, we studied how sniffing shapes the responses of mitral/tufted cells in awake mice. To address this question, we performed extracellular recording of mitral/tufted cell activity while simultaneously monitoring sniffing. For better stimulus control, we employed a head-fixed setup in which the animal's nose was in a constant position relative to the odor plume.

RESULTS

Modulation of odor responses by breathing cycle

We recorded mitral/tufted cell activity (7 mice, 66 cells) and sniffing in awake, head-restrained mice in response to passive odor delivery (467 cell–odor pairs) (Fig. 1 and Online Methods). Sniffing was measured by intranasal pressure cannula (Fig. 1a,b). In the pressure signal, inhalation was indicated by negative pressure and exhalation by positive pressure (Supplementary Figs. 1 and 2). The average cycle duration was 358 ± 131 ms (s.d.; Supplementary Table 1). When spikes were aligned to odor onset, mitral/tufted cells appeared to show sparse responses (Fig. 1c,d)14–17. However, alignment of responses to odor stimulus onset ignores a fundamental fact: the animal's sniffing controls access of odorants to olfactory receptor neurons18. Aligning mitral/tufted cell responses to the onset of the first inhalation after odor onset revealed strong and temporally precise odor responses (Fig. 1c,d). Many odorant responses consist of sharp peaks in activity, during which the firing rate may increase by several-fold above baseline. These peaks are often tightly locked to the sniff rhythm, reliably occurring at a particular latency after inhalation onset. Because these events can consist of a few spikes per trial, they can be seen only when the information about inhalation timing is used.

In the awake mouse, sniff cycles vary in duration, amplitude and waveform (Supplementary Fig. 2). As a result of this natural variability, the time course of receptor stimulation desynchronizes from trial to trial. Thus, aligning different trials only by inhalation onset may fail to capture the neuronal dynamics across multiple trials. To compare neuronal responses across trials, we stretched or compressed individual sniffs to a common standard. We defined two intervals: the inhalation phase and the remainder of the sniffing cycle, including exhalation (Fig. 1b and Supplementary Fig. 2). Across multiple animals and sessions, the average duration of the inhalation interval was 111 ± 44 ms and of exhalation is 247 ± 113 ms (see Supplementary Table 1). We morphed the first and second intervals of each sniff so that their durations became equal to these average values. Corresponding spike trains were morphed accordingly. This warping procedure transformed real-time coordinates into sniff phase coordinates (Fig. 1c,d)8–19, which we refer to as sniff-warped time.

Analysis of mitral/tufted cell responses in sniff-warped coordinates uncovered temporal structure that was not evident from alignment to inhalation onset alone (Fig. 1c,d). First, sniffing modulated the firing rate even in the absence of odor stimuli (Supplementary Fig. 3). Second, after odor onset, the firing rate peak was higher and sharper in warped time coordinates for 71 of 78 cases (mean difference was 25 ± 22.9 Hz). Thus, aligning mitral/tufted cell spikes to the time course of sniffing unmasks precise temporal structure in odor responses.

1Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA. 2Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, USA. 3Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA. Correspondence should be addressed to D.R. (rinbergd@janelia.hhmi.org).

Received 24 February; accepted 2 June; published online 17 July 2011; doi:10.1038/nn.2877
Odor responses tile the sniff cycle

Response time courses were highly diverse across both cells and odors (Fig. 2). The temporal structure of responses was odor specific. For a single cell, different odors were able to evoke excitatory or inhibitory responses with different latencies and durations (Fig. 2a). All of the cells in our sample had nonzero baseline firing rates (16.2 ± 8.0 Hz), and a majority were modulated by sniffs in the absence of odor stimulus (Supplementary Fig. 3), consistent with what has been previously reported in awake rats \(^{20}\).

One odorant could evoke diverse responses across cells (Fig. 2b). Cells differed in response sign and temporal pattern. Thus, a given odor evokes a heterogeneous set of firing events among mitral/tufted cells (Fig. 2b).

Across the population, sniff alignment and sniff warping revealed that responses were quite common among mitral/tufted cells. We scored a cell as being responsive to a given odorant if its cumulative spike count during odor presentation differed from its cumulative spike count without odor at one or more time points (Fig. 3a–c and Online Methods). Of the 467 cell-odor pairs, 275 (59%) displayed odor responses in the first sniff; 136 (29%) showed initially excitatory responses, 27 became excitatory later in the cycle, some temporal response patterns changed sign from excitatory to inhibitory or vice versa. Of the 139 initially inhibitory responses, 27 became excitatory later in the sniffing cycle (Fig. 3c; see Supplementary Table 2).

As a result of this multimodal patterning, some responses do not vary relative to background in the total number of spikes per sniff, but instead only vary in the phase of spikes in the sniff cycle \(^{30}\). We found that 19% of excitatory and 30% of inhibitory responses had the same total number of spikes during the first sniffing cycle (Fig. 3d,e). These cell-odor pairs, which had the same number of spikes per sniff with and without odor, most probably would not be counted as being odor responsive without synchronization with inhalation onset. In summary, 44% of cell-odor pairs had significant responses on the basis of first sniff spike count (Online Methods), and the percentage rose to 59% when precise timing was taken into account.

To determine whether odor responses tile the sniff cycle, we plotted sniff-warped, color-coded peristimulus time histograms (PSTHs) for all cell-odor pairs with significant excitatory or inhibitory responses (Fig. 3d,e). We subtracted spontaneous activity, here defined as the sniff-warped PSTH from unstimulated sniffs. We ordered the responses by latency, which is defined as the first time at which our statistical criterion was met. This rich diversity of response timings could strongly contribute to olfactory coding if the timings are sufficiently precise from trial to trial.

Responses are more precise in sniff phase coordinates

How precise is odor response timing? The relatively high spontaneous firing rate of mitral/tufted cells (16.2 ± 8.0 Hz) constrains the available methods for quantifying temporal precision. Thus, we focused our analysis on a subset of cell-odor pairs with a large increase in
firing rate above baseline, hereafter referred to as sharp events (Fig. 4 and Online Methods). Of these, 78 cell-odor pairs met our criterion for sharp events. To quantify precision, we determined the time of the first spike followed by an interspike interval below a criterion value\(^1\) (Fig. 4b). For these sharp events, we defined latency as the across-trial mean of these first spike times. We quantified the precision of a sharp event by its jitter, that is, the s.d. of these first spike times across multiple trials. We defined a sharp event’s reliability as the fraction of trials in which this interspike interval criterion was met (Fig. 5). We plotted sniff-warped PSTHs for all cell-odor pairs with sharp events, ordered by latency (Fig. 4c). The latencies tiled the whole inhalation interval and the beginning of the exhalation interval (Fig. 4d).

Temporal warping transforms the real time coordinates of spike trains to sniff phase time coordinates. How much does the temporal structure of mitral/tufted cell responses depend on our choice of time coordinates? We compared the precision distributions for all sharp events in sniff-warped and unwarped time coordinates (Fig. 5a). Without warping, the jitter was distributed broadly (mean, 23.7; median, 22.9 ms), whereas the jitter distribution tightened toward lower values in sniff-warped time coordinates (median, 10.5 ms; mean, 12.5; Kolmogorov-Smirnov test, \(P = 4.6 \times 10^{-8}\)). As another comparison, we plotted peak firing rates computed in both time coordinates (Fig. 5b). The majority of sharp-event firing-rate amplitudes were higher in the warped-time domain than in the real-time domain. Thus, by both measures, almost all sharp events were more precise in sniff-warped coordinates, suggesting that mitral/tufted cells encode information in sniff phase rather than real time.

Sniff-phase coding further predicts that jitter should co-vary with inhalation duration. To test this prediction, we selected the same cell-odor pairs with sharp events, split their trials into shortest and longest halves in terms of inhalation duration, and compared timing jitters across the two groups in real time. The jitter was smaller for fast inhalations (\(F\) test of distributions of jitters for long and short inhalations, \(P = 6.1 \times 10^{-3}\)), as evidenced by the preponderance of positive slopes (\(t\) test on slope distributions, \(P = 1.3 \times 10^{-3}\); Fig. 5d). Consistent with sniff-phase coding, firing events became more precisely timed for shorter inhalations.

Odor information is transmitted on fast timescales

The refined temporal precision of odor responses (Fig. 4c) suggests that mitral cell activity carries information about odor at subsniff timescales. To measure this information, we evaluated the accuracy with which odorants can be discriminated on the basis of the mitral cell responses, on a trial-by-trial basis. If a mitral cell’s firing carries a large amount of information about odorants, it will be highly predictive of the stimulus. To discriminate odorants from single trial responses, we used the template matching algorithm (TMA)\(^2\). This analysis enabled us to evaluate both robustness and temporal dynamics of olfactory information carried by the mitral cells (see Online Methods).

How well can a single neuron discriminate between two odor stimuli on the basis of a single trial? We applied TMA to all possible odor pairs for all neurons in warped time (1,734 cell-odor combinations; Fig. 6). TMA was performed on concatenated bin vectors of firing rates with 5-ms bin size. Discrimination performance rose with the divergence of the PSTHs in response to the two odors (see example neurons in Fig. 6a). To quantify the temporal dependence of discrimination performance, we fit the rise in discrimination with a sigmoid function with three parameters: \(\tau\), the latency of transition, \(\delta\), the width of the transition, which characterizes the rise time of information accumulation, and \(D\), the maximal discrimination success. Single neurons were able to discriminate odorants with high accuracy.

Figure 3 Excitatory and inhibitory odor responses tile the sniff cycle. (a–c) Examples of common types of odor response PSTHs: initially excitatory (a), initially inhibitory (b) and initially inhibitory switching to excitatory later in the sniffing cycle (c). The gray lines are PSTHs from unodorized sniffs. The black lines indicate response latency (\(\tau\)), defined as the first moment when cumulative distributions with and without stimulus become statistically different. (d,e) Color plot of all excitatory (d) and all inhibitory (e) responses. Each horizontal line represents the difference in spike histograms between odorized and unodorized sniffs for one cell-odor pair. The cell-odor pairs are ordered by response latency marked by black dots. The black crosses on the right of the color plot mark cell-odor pairs for which full sniff spike counts did not significantly differ between odorized and unodorized sniffs.
This level of accuracy approaches the performance of animals in two-alternative tasks on a comparable timescale. Furthermore, a mitral cell’s information about odorants can emerge quite quickly, that is, the transition between the chance level and maximum performance can occur rapidly (for the example in Fig. 6a, $\delta = 8$ ms).

We found that 835 of 1,734 cell-odor-odor combinations had discrimination success above chance level (see Online Methods). The mean and median of the rise-time distribution were 104 and 75 ms, respectively; that of the discrimination-success distribution was 0.63 and 0.60, respectively (Fig. 6b). For some cell-odor-odor combinations, discrimination rose from chance level to maximal level ($D = 0.9$) in 10 ms (Fig. 6b). These fast transitions followed from the high temporal precision and reliability of the odor responses. We plotted the time courses of discrimination success for all above-chance cell-odor-odor combinations by the latency of the transition (Fig. 6c). Latencies of the transitions tiled the whole sniff cycle, similar to the odor responses.

Discrimination performance of neuronal populations

We next investigated the information contained in responses of populations of neurons. For five odors, the discrimination success of 25 neurons was 91% (TMA was performed on concatenated 30-ms time bins covering the whole sniff cycle). Decreasing the number of neurons from 25 to 5 lowered the discrimination success from 91% to 57% (Fig. 7a). However, if the best five discriminators were used for the given set of smells rather than using random sets of neurons, the performance went up to 84%. Discrimination success depended on which neurons were included in the pool. For a given number of neurons, the best discriminators outperformed randomly chosen neurons (Fig. 7a). The five best neurons performed only slightly worse (84%) than all 25 neurons (91%).

The best five neurons performed noticeably better than a random subset of five neurons. The maximum level of discrimination success was larger and the rate of growth was faster for the best five neurons (Fig. 7b). At the same time, both in the case of random and best subsets, the discrimination continued to improve throughout the sniff cycle. This feature was in contrast with the single-cell discrimination (Fig. 6a) and could be explained by tiling of the sniff cycle by the individual cells (Fig. 6c).
The precision that we observed is comparable to that seen in other sensory modalities such that a few cells may suffice to discriminate multiple stimuli. Although olfaction is traditionally considered to be a ‘slow’ sense, the precision that we observed is comparable to that seen in other sensory modalities. A further parallel with the visual system is that the precision of the neural representations becomes sharper as the timescale of stimulation becomes faster. For naturalistic movies, lateral geniculate nucleus neuronal responses have precision in the same range that we observed, whereas it approaches the 1-ms timescale for faster random flicker movies. Similarly, we found that mitral/tufted cells responded to odor more precisely for faster sniffs (Fig. 5d).

Information content in single and multi-unit activity

As a consequence of high temporal precision and reliability, a single cell’s activity carries robust information about stimuli. This information was transmitted on different timescales, ranging from a few ms to the entire sniff cycle, as can be seen by the broad distribution of discrimination success rise times (Fig. 6b). Some cells transition from chance to highly accurate discrimination in a very short time interval ~10 ms. Across cells, these transitions occur at broad variety of latencies relative to the inhalation onset, consistent with the diversity of the odor response patterns.

The existence of individual neurons whose activity can discriminate two odors suggests that a small number of mitral/tufted cells can suffice for accurate classification of a larger number of odors. Indeed, with the activity of only 25 neurons, a classifier can discriminate among five odors with 91% accuracy. The activity of five neurons suffices for 84% accuracy. Such high performance with so few cells is in marked contrast with a recent study in freely moving rats. For that study’s dataset, classifier analysis required the activity of 232 neurons to achieve 90% performance. This difference in the number of cells needed for accurate discrimination is likely a result of the greater stimulus control that is possible in the head-fixed preparation.

Temporal encoding and decoding mechanisms

Our observations support the hypothesis that response timing can encode information about the odor stimulus. By what mechanisms might this encoding process work? At least some of the precision and diversity of response times may originate in olfactory sensory neurons (OSNs). Recent work suggests that OSN response kinetics can be quite fast and can vary across odor stimuli. If OSN responses are insufficiently precise, the olfactory bulb circuit may be necessary to enforce the temporal precision that we observed. Inhibitory inputs from periglomerular and granule cells could work to sculpt precise firing events from more prolonged, jittery OSN input. Mitral/tufted cells receive prominent sniff-driven oscillatory input in the absence of odor, which may combine with stimulus-driven input to determine response timing.

Although our analysis quantifies the trial-to-trial timing precision of individual cells, the cell-to-cell timing relationships during individual sniffs may be more functionally relevant. What does the timing precision of individual cells tell us about the synchrony of cell ensembles? As presented above, 78 of 467 (17%) of cell-odor pairs responded with sharp firing events with a precision on the order of 10 ms. The reliability of sharp events was, on average, 0.68 and tended to be higher for more precise events (Fig. 5c). The latency distribution of these sharp events tiled the sniff cycle (range, 43–324 ms; Fig. 4d). Given this precision, reliability and sniff cycle tiling, we estimate that in each 10-ms window of a sniff in the presence of odor, a new ensemble comprising roughly 0.5% of mitral/tufted cells (approximately 250 cells in the mouse) will begin a sharp excitatory response. The timescale at which these mitral/tufted cell ensembles lock to the sniff rhythm matches the integration time window for coincidence detection of piriform cortical neurons.

Sniffing in awake animals is quite variable. We found that mitral/tufted cell response timing covaried with cycle-by-cycle variation in the sniff cycle, showing higher precision in sniff phase coordinates than in real time. This locking to sniff phase works to maintain synchrony relationships among mitral/tufted cells. Thus, sequential activation of synchronized assemblies of mitral/tufted cells will lead to excitation of the same population...
of pyramidal cells independently of sniffing frequency, providing a basis for coding invariance relative to sniffing rhythm variability.

The organization of the bulb's projection to piriform cortex seems well suited to transmit such an ensemble code. Anatomical and imaging studies have suggested that mitral cells project diffusely and randomly to the piriform cortex. In this sense, the projection from bulb to cortex resembles the connection between the homologous structures in the insect: the antennal lobe and the mushroom body. In both systems, time-locked feed-forward inhibition defines a narrow integration window for principal neurons: piriform pyramidal cells in rodents and mushroom body Kenyon cells in insects. In locusts, numerous mechanisms stabilize the phase relationships of spiking in spite of frequency variability of local field potential oscillations. Similar mechanisms may generate the sniff invariance that we found. These similarities between phylogenetically distant species suggest that synchronization of cell assemblies and coincidence detection is an evolutionarily conserved strategy for olfactory computation.

However, although our data are consistent with an ensemble coding hypothesis, the accurate discriminations achievable by individual neurons (Fig. 6) suggest that the activity of small numbers of neurons may suffice for perception. In addition, although we found that neurons can transmit information on fast timescales, the rise time of discrimination can also be slow. Why does this information surplus exist? This likely reflects the simplicity of our stimulus set compared with what olfactory systems have evolved to solve. In natural olfactory scenes, individual odor sources can emit hundreds of chemical species, which propagate to the nose by turbulent airflow. Before we can begin to grapple with these complicated conditions, we must first establish a baseline with simplified stimuli under tight experimental control. In this way, our work facilitates studies that push olfaction closer to perceptual limits and/or naturalistic stimuli.

METHODS

Methods and any associated references are available in the online version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.

ACKNOWLEDGMENTS

We thank J. Osborne and T. Tabachnik for design and fabrication of experimental equipment, S. Royer for help with electrophysiological setup, J. Nunez-Iglesias for help with statistical analysis, P. Ahammad, D.B. Chklovskii and S. Druckmann for discussions and A. Resulaj, J.T. Dudman, V. Jayaraman, E. Pasalkova and K. Svoboda for comments on the manuscript. R.S., M.C.S. and D.R. are supported by the Howard Hughes Medical Institute. A.A.K. was supported by US National Institutes of Health grant R01 EY018068.

AUTHOR CONTRIBUTIONS

R.S. and D.R. conceived and designed the experiments. R.S., M.C.S. and D.R. performed experiments. R.S., A.A.K. and D.R. analyzed the data. R.S., M.C.S., A.A.K. and D.R. wrote the manuscript.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Published online at http://www.nature.com/natureneuroscience/, Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

ONLINE METHODS

Animals. Data were collected in four C57BL/6j mice and three OMP-ChannelRhodopsin-YFP heterozygous mice that had a targeted insertion in the OMP locus (data not shown). All mice had at least one normal copy of Omp. No differences were observed between these two groups of mice. Subjects were 6–8 weeks old at the beginning of behavioral training and were maintained on a 12-h light/dark cycle (lights on at 8:00 p.m.) in isolated cages in a temperature- and humidity-controlled animal facility. All animal care and experimental procedures were in strict accordance with a protocol approved by the Howard Hughes Medical Institute Institutional Animal Care and Use Committee.

Electrophysiology. Mitral/tufted cell spiking activity was recorded using 16- or 32-channel Si-probes (NeuroNexus, model: a2x2-tet-3mm-150-150-312(F16), a4x8-5mm-150-200-312(F32)) or home-made microdrive with 16 individually adjustable 3 MOhm PtIr electrodes. Cells were recorded in both ventral and dorsal mitral cell layers. The identity of mitral/tufted cells were established on the basis of criteria formulated in previous work. All the data were acquired using a 32-channel data acquisition system (Digital Lynx, Neuralynx) with widely open broadband filters and sampling frequency of 0.1–9,000 Hz.

Sniff recording. To monitor the sniff signal, we implanted a thin 7-mm-long stainless cannula (gauge 23, Small Parts capillary tubing) in the nasal cavity. The cannula was capped between experimental recordings. During experiments, the cannula was connected to a pressure sensor with polyethylene tubing (801000, A-M Systems). The pressure was measured with pressure sensor (MPX5090, Freescale Semiconductor) and homemade preamplifier circuit. The signal from the preamplifier was recorded together with electrophysiological data on one of the data acquisition channels. The timing of the pressure signal was calibrated against the hot wire anemometer (mini CTA 5439, Dantec Dynamics, Denmark) and shifted back for 32 ms for all analysis (Supplementary Note and Supplementary Fig. 1).

Surgery. Mice were anesthetized using isofluorane gas anesthesia. The horizontal bar for head fixation, pressure cannula and electrode chamber were implanted during a single surgery. To implant the sniffing cannula, a small hole was drilled in the nasal bone, into which the cannula was inserted and affixed with glue and stabilized with dental cement. To implant the electrode chamber, a small craniotomy (~1 mm²) was done above left or right olfactory bulb. After the insertion of the Si-probe/electrodes, the electrode chamber was fixed by dental cement to the skull, posterior to the olfactory bulb. The reference electrode was implanted in cerebellum. The mice were given at least 5 d after a surgery for recovery.

Behavioral procedure and training. After recovery, the mice were placed in the head-fixation setup. The first few sessions were brief (10–20 min) and served to acclimate the animals to head fixation in the setup. Mice typically remained head-fixation setup. The first few sessions were brief (10–20 min) and served to acclimate the animals to head fixation in the setup. Mice typically remained

Odor responses. We compared the distributions of the neuronal activity with and without odors. Distribution without stimulus was sampled from five sniffs preceding the odor delivery across all trials (approximately 1,500–2,000 sniffs for each session). Distribution of neuronal responses for a given odor was sampled from the first sniff after stimulus onset for the trials containing a correspondent odor delivery. Latencies of odor responses were estimated as the first time point when the cumulative distribution of the number of spikes from the inhalation onset was significantly different for background and stimulus distributions (Kolmogorov-Smirnov test, P < 0.004, corresponding to a false discovery rate of 0.05 using the Benjamini-Hochberg multiple testing correction). The cumulative distributions were calculated using spike times binned at 1 ms. The response was considered to be excitatory or inhibitory if the first deviation from the background distribution was positive or negative, respectively. For estimation of the responses based on the whole sniff spike count, we compared the total number of spike in sniff with and without stimulus (Kolmogorov-Smirnov test, P < 0.009, corresponding to a false discovery rate of 0.05 using the Benjamini-Hochberg multiple testing correction). For estimation multimodal responses the distributions of number of spikes at each sequential 10-ms bin for odorized and not-odorized sniffs were compared (Kolmogorov-Smirnov test, P < 0.01, corresponding to a false discovery rate of 0.05 using the Benjamini-Hochberg multiple testing correction).

Precision estimation. To estimate precision, we used a previously proposed method. First, we found events of sharp firing rate increase based on the peak of the PSTH calculated using 10-ms bins. If the amplitude of the PSTH in presence of stimulus was at least twice as high as the averaged firing rate in pre-stimulus sniffing cycle, this response was chosen for precision analysis. We searched for the occurrence of the spikes with an interspike interval shorter than 1.5/PSTH peak amplitude) in the temporal vicinity of the peak (from −2 to +4 interspike interval) (Fig. 4). The precision was defined as a jitter of the first spike (green circle) across trials. The reliability was defined as a portion of trials when such spikes exist.
Information content estimation. To quantify information content we used the TMA procedure21. For the case of single neurons (Fig. 6), we used 5-ms bins starting 200 ms before inhalation onset. The calculation was based on 1,734 cell-odor combinations. For every cell and for every pair of odorants we counted spikes in time bins for every trial. For every trial, we built a set of templates that defined average spike counts produced by this cell to each of the included odorants \(\mathbf{r}_{OT} \). Here, the indices \(O \) and \(T \) denote odorant and time bin. The averaging excluded data in the given trial. The spike counts in the given trial \(r_T \) were then compared with \(\mathbf{r}_{OT} \) and the nearest vector \(\mathbf{r}_O \) specified the guess for the odorant \(O \) presented in the trial on the basis of mitral cell activity. This guess was then compared with the odorant actually presented to yield the estimate for discrimination success. We increased the length of vector \(r_T \) to include progressively larger concatenated set of bins to yield discrimination success as a function of time \(c(t) \). \(c(t) \) was fitted with a sigmoid function \(c(t)=p_1+p_2(\tanh(2(t−t_0)/\delta)+1)/2 \). Here the parameters \(p_1, p_2, t_0 \) and \(\delta \) represent the asymptotic values of success rate, response latency and response width (Fig. 6a). The maximum correct rate (Fig. 6b) was defined by \(D=p_1+p_2 \). We chose 886 pairs with significant increase in the discrimination success rate by performing right-tailed \(t \) test on the values of \(p_2 \) obtained from fitting the bootstrapped values of \(c(t) \) resampled from different trials with repetitions (Fig. 6b,c). 300 iterations of bootstrap were used. 886 odor-odor-cell triples were included out of 1,734 on the basis of false discovery rate of 0.01 (Fig. 6b,c). For population analysis, we used a similar TMA procedure. In this case the response vector \(r_{TN} \) and the template \(\mathbf{r}_{OTN} \) included the additional set of indices \(N \) describing the neuron for which given response is obtained. The guess for odorant \(O \) was found in individual trials from the identity of the template \(\mathbf{r}_{OTN} \) that is most similar to the response vector \(r_{TN} \). The classification success was determined by comparing this guess with the odorant actually presented. Because neurons were not recorded simultaneously, trials corresponding to different neurons were assembled from the data randomly. For multi-neuronal analysis we increased the bin size from 5 to 30 ms to avoid undersampling problems arising from larger number of dimensions44.