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INTRODUCTION

As part of theMathematicians in Our Livggogramme, the Irish Mathematical Trust (IMT) has

developed this package to celebrate the life and legcgir William Rowan Hamilton. The lesson is
A0NHZOGdzNBR Ay F2dzNJ aSOdAz2yay ! FOSNI I aK2NI NBOAS
on the main areas of his work, with sections on Geometrical Optics, Graph Theory, and Quaternions.
Eachsectif RA aOdzaasSa G(KS FdzyRIYSyidlt ljdzSatdAazya Ay GK
and includes a set of suggestions for class discussions, gambaradgbn exercises.The lesson

plan is designed so that you may extract sections to teach or téheseontent to build lessons

around the information provided. We hope that you enjoy this exploration of the brilliant mind that

gl a {ANI2AfEALY w26ly | FYAfdlG2yQao

Objectives:

1 Tointroduce William Rowan Hamilton as a person and as a Mathematician.

1 To explan the basic®f the Laws of Optics, Graph Theory, Quaternions.

1 To illustrate the rich interplay between Algebra and Geometry through examples from
Optics, Graphs, Complex numbers and Quaternions.

1 To solve games, practical tasks and logical exercisdsedopics above.

Required:

1 One copy oHamilton Museum Circuiffor each student.
1 Ore QuaternionBall kit scissors and stapler or ssthpe for group of 2 students.
1 One copy of the worksheet per student.

Lesson time: B lessons of 40 min each.
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https://drive.google.com/open?id=0Byaoho6Ly3rRRUNTSWVDbHhTNG8
https://drive.google.com/open?id=0Byaoho6Ly3rRQXR0YzRoeGZWRUE

WHO IS WILLIAM ROWAN HAMILTON?

Sir William Rowan Hamiltgqi18051865F 2y S 2 F L NXB fstishtdQ&vasdz2 ad T Y 2 dza

distinguished mathematician, physicist and astronomer. He made a large number of important

contributions to Optics, Mechanics, Graph Theory and Algebra. Many notable concepts in physics

take their name from him; like the Hamiltonian furmt and Hamiltonian mechanics, while in
Algebra, his bedtnown discovery is of the Quaternion number system.

HIS LIFE

1 The story of a childhood at the same time normal and exceptional. Invite your students for their
opinions on whether there was a connectibetween the early training in languages and the later
proficiency in mathematics?

T {GFNIAY3 FNBY | FYAfG2yQa &aiG2NBZ AYy@AGS aidR

AYyTFtdzSyOS || LISNBR2YQa FdzidzNB OF NBS NI

1 Ask your students they ever visiteén observatory. Give a short description of one. What
connections can be fourzktween a job at an observaty and research in mathematics?

1 Propose further historical investigation: Compare the lives of George Boole and William Rowan
Hamilton. Did theyive in Ireland at the same time? Did their lives/work intersect?

William Rowan Hamilton was born in Dublin dhAugust, 1805Judging by all his academic exploits

at an early ageyou wouldn't believe thaHamilton was a healthy boy whoved swimmingnature
and jolly gatherings of friendsyBhe ageof 13, nature walks brougttut his enthusiasm in the form
of poetry inat least 13 language&dtin, Greek, Persian, Hebrew, Aral8anskrit and othersHis
education was in the hands bfsuncle, araccanplished linguist] I Y A  niothef &nd fathethad
both died by the time he was 14.

The young Hamilton's first recorded mathematical adventure was
contest that pitted him against another child prodigy, the American
"calculating boy" Zerah Colburanfortunately, Hamilton lost). Once b
Hamilton's curiosity about mathematics was ignited, its fire spread
rapidly in his imagination. He entered Trinity College Dublin to stu
both classics and mathematigsichieving the highest honours in

both - but he wa more and more attracted by the later. He started ||
blending algebra and geometry to study the laws that explain howi
light moves. He hadn't yet completéis studies when he presented
KA & 3 NXBTheiry of SyBldmsafRays 612 GKS LNAAK ! OF RSyeg o!

“ o}

some welestablished astronomers, and despite the fact that he hadn't even applied for the job!

Hamilion worked at the Dunsink Observatory till the end of his life. This was a rich and layered life,

with many friends among poets as well as scientists.

HIS WORKT AN OVERVIEW

f hdzit AyS GKS (KNZBSsworlkwhithwill N&SnlveStigate¥in this-lessor: Otios;Q
Graph Theory; Quaternions.
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LINRA f X
before he had time to finish the final exams, he was appointed professor of astronomy, ahead of

f Discss practicat LILI A Ol A2y a 2F | FYAtG2yQa 62NJY O2yAO0lf

Hamiltonian mechanics to quantum mechanics and its uses in modern lifesetaf quaternion in

describing 3D rotations for airplane/spaskip flights and for computer games. See more resources

at the end of this document.
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Hamilton started his scientific work out of curiosity about optics: the laws that explain how light
travelsthrough different media like air, water and glass, and how it reacts to obstacles or other

OKI y3S&ad THeofy okSysiems&#RElys lay R A a &adzlllX SySyidas KS RS
characteristic function: a tool for measuring the time it would tagét to travel along various

paths, in terms of the start and erwbordinates. This allowed him to explain the laws of optics based

on the principle thatight always choses the fastest pattthe Minimum Principlie

A X% /4 A x

¢CKA&d ONRdzAKG KAY (2 &aLISO0GI OdzZt I NJ FyR dzy SELISOGSR L
people before him had observed one ray splitting into two or thréewpassing through a crystal,

but Hamilton discovered that in certain cases there would be an infinite number, a cone of refracted

rays¢ which was confirmed by experiments and won him a Royal Medal in Physics.

Even though your lasdras emittedjust oneline beam,from the other side of certaiorystals you see #s a ring of light:

imaginary
ring-like source

C , [ — 0 0
input beam |-~ / output beam

biaxial crystal

Fig. 1. Transformation of laser beam by conical refraction in a biaxial crystal.

I FYAt G2y Qa ¢2N] Ay 3IS2YSGNROFE 2LXaA0a FAG Ay St
J. L. Lagrange (17-3813), but Hamilton brought a simplicity and clarity which allowed him to carry
over all of his methods effortlessly to the most gengnadblems of mechanics.

Almost one hundred years after Hamilton presented his work to the Royal Irish Academy, his
methods were found to be just what was needed for the creation of quantum mechanics in 1925
1926, which has in turn brought us the marvelghe digital world.

In his later life Hamilton became more and more intrigued by the interplay between algebra and
geometry. This led him to th@iscovery of the quaternions, a fodimensional extension of complex
numbers determined by the equatio® Q Q "QQQ p (which he famously carved into the
side of Broom Bridge in Dublin). He spent the greater part of the rest of his life studying the
guaternions and their properties, putting forward applications in the study of rotatibat are used
in aero- and astronauticso this day

Center of l
\ Gravity ) ¥

Pitch Axis

+ Pitch

Roll Axis
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In graph theory he introduced the notions of Hamiltonian paths and circuits while searching for a
closed path along the edges of a dodecahedron that visith @artex exactly once. These ideas
generate theorems to this day.

OPTICS

9 A short introduction into Optics through the example of light refraction.

1 Encourage your students to get involved in a class discussion on the Minimum Principle:
8 How does it apply to Refraction in Optics?
8§ Why do they think the principle holds true?
8 How did Hamilton apply it and how does it relate with the Google Maps

directions app?
1 You may organize the students in teams-@f @nd let them work on choosing the best paths
between two points when the medium of propagation changes.

For millennia, people have been attracted to the night sky and the movement ofcstiagsmain
guestions of astronomy. This is how Galileo Galilei (158%) had come to invent the telescope in
1609, by cunningly exploiting a property of light called refraction.

What is Refraction?

is the bending of light as it

travels from one medium to another.

Since then, the best mds of their time tried to find the true explanation for the refraction of light.

For example, when pasgj from
water to air, thelight ray bends. This
is why our minds get tricked into A A —
perceiving a fish asloser to the ool -

surface than it isindeed, orthe way '/"" / :

from the fish to ar eye, the light ray ",.—" o 2 p—

had bent but our minds still thinks :
it's straight. So in our mind we "see"|
the fish in an imaginary position

along a straight line, instead of its
real position lower down.

REFRACTION AND TWMENIMUM PRINCIPLE
Class Discussip8o, what causes the light to bend when passing from water to air?

Answer The light travels faster through air than through water.
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ClasDiscussionWhy do you think the light travels faster through air than through water?

AnswerLT ¢S O2dzZ R 221 Fd FANIFYR ¢6FG0SN) G§KNRdzZIK | LI
of little pieces we call molecules. The air is made of molecules of diffgesets, which keep apart from

each other. The water molecules are more crowded. When the light hits ecoiel this shovethe light

out of its mth a little. Imagine getting shoves every other stgpis is bound to slow you down.

Class ExercisBlan Your TripNormally, A
the fastest path between two pots isa oo © 50 o © 5 o O °© o “ e
straight line- but not when you hit o o ° o o o o
obstacles, which causeelays. © 5 ?} o o o 0 o
(a) In the picture here, count the number o ° o co) o ° N ° 5 ° £ © o o o
of dots that touch the path AB to find how o ° 5 o o 5 © o o o

much the traveller is slowed down. The
top dots represent gas molecules in the ®

. 00 g 00 ..
air. The lower dots are water molecules. ......%..... ....s‘ %......
(b) Now try to plan a better trip from A to .....: @ .‘.. ® b ... @
B: Cloose a point C on the black > ‘... ....
separating line, connect it to both A and E @ .... 0e®g @9 o0
by straight line segments, and count the @ ...:... ... .: .:... ..: ...‘... eo®
total number of dots you crossed. Is it B ® e @
more or less than on the path AB?

Report your result and explain your strategyhe student whaeros®d the fewest dots has found the
fastest pathand wins

Sample AnsweiThe red path is an
example of a faster trip:

AOB hits 13 dots.

The red path hits about 8 dots. Itis
chosen so as to make the trip through
water shorter, without making the trip
through air too long.

Inspired by the ancient ark of Heron of Alexandria (£0-70A.D.), the French mathematician Pierre
Fermat (16011665) came up with Binimum Rinciple which basically states:

The light ray always travels along the fastest path.
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AR "a: o Class DiscussipHow does a light ray plan jsurney?
'y .
LF¥ @2dz R2y Qi &adzJli2asS GKIFIG [AIKG Aa
". » = you might think there isomething funny with the idea that the
=4 — Light knows where it wants to go and plans the whole trajectory in
V; ~ advance.
d Y-

"2 Kl GQ&a F2AYy3I Miiitum PEnsipldRakSsenseP K S

Answer First off, distancesyhen Hamilton and otherapplied the Minimum fihciple, they were

thinking of light travelling extremely small distances, so tfmt might arguéil KS LJ | Yy Ay 3 4 2 dz
require that muchforesight Secondly, & might think of theMinimum Principlenore as an

example obbservereffecty ¢S GKAyYy1l GKFdG GKIFGQa K2g fAIKG o0SKI

one that we can observe. Consider this: a light source usually sends rays in many directions.

However, the light rays that stagit AA Y | G ¢ NR Yy 3¢  Rardl@donore abgtaclesitfatt Y SS i

jolt and deflect thenfurther away from the target. Thus their chances of hitting the target B (where

we patiently await) become so small that we can hardly noticesatai rag reaching the

destination.In fact, our eye is not trairteto notice such small effects.

hy GKS 20KSNJ KIFIyRY FAYSNI YSFAdzZNAY3I AyadNHzySyda
This kind of probabilistic thinking applied at extremely small scales inspired Quantum Mechanics, an

area of Physics to wtth we owe much of our understanding of nature at atomic level, as well as
semiconductotbased electronics, (computers, smartphones), optical cable telecommunication (the

Internet) , and other features of modern life.

Exercise How  find the perfect patlg with numbers.

Inthe Light SuperWorldight rays travel on any pastthey like. Three raysalledMr SimplesMrs
Wisemanand James Bolddecide to go from a poirii, foundp 1 meters above water, to a poirit,
found p Tt meters below vater. They are warned that travelling throughater is slowernamely

1 They can travel at a speed of 300 meters/second through air;
1 But only 225 meters/second through water.

Mr Simplegdecides to take a straight line from A to B, ¢
total distance of 255 meters A

James Boldecides to go as much as possible through
air, so he travels 187 m to point P, found exactly abov
B on the surface of the water, and then from P straigh
down to B.

Mrs WisemarRay makes some calculation and decide

to go about 141.5 meters through the air, heading

straight for a point W on the water surface, and then

travels about 115.5 meters through the water, from W B
to B.

Which Ray get® the destinationfastest? Can you intuitively explain why?

Answer Usingd "Qa '@ 'Qi 6 T &) c@¥&Rgarately through air and water, we get:

6l



ForMr Simples 0 0 LA — T Wi
ForJames Bolff © 0 PpURT MITMP T U TP C o TE T T P8 Qi

ForMrs Wisemad, 0 0 PTHIOTITP PRAIC QUL T X P QO X® p OO adYPiB

As light is slower through water, it makes sense to try to shorten the distanceledti®ough
water, even if his makes the trip through air a little longer, too. This is the strategy that liogh
Wisemanand James Boltbok. HoweverJames Boltengthened the total distance too much.
WhereasMirs Wisemartried to find a balance between théme spent in theair and the time spent

in the water.

Playhandson with refraction anglesere:

www.physicsclassroom.com/Physitcgeractives/Refractiorand-Lenses/Refraction/Refractieimteractive

{hX 211 ¢ ! .  hTON? I ! al |
Hamil2 8 @reat insight was smart way to calculate how fapaths are. Helesigred his calculation
as a function of the coordinates of both the starting point and the tarpetnany more complicated
problems, this viewpoint brought clarity and simplificatson
¢2RIFI&> D223fS allld ¢2NJa YdzOK ftA1S IFYAftd2yQa
9 It can take as inputs your starting points and the desired destination

9 It calculates the duration of each possible path
1 And it highlights the fastest path for your convenience:

5 Fitzgerald's ik P
0 ﬁ e w O¢0 ’t‘ 4 Lee Rd = Park R Q ‘:’
Cork University Hospital, Wilton, Cork e
i At it i L £ 28min | "
i i i © City Print Limited 2.3km
Unhrrity ColageCork Collega it Lok ® o By
Curragheen Ay, o~ \\L;;\ Building 8
o/,“. \“University College Co‘rkl‘
fFarraniea Rd Nl g ‘/"i "" .‘
g \ : A |
g z % GLASHEEN/ROAD
s 2

= B
Y
A\

-ﬂ Send directions to your phone Recs] Q00000 p )////
g ¢ s
'ﬁ.* via Wilton Rd/R641 and College Rd 22 min § /// o
V 4 3
DETAILS 7849 ;53
= __
) Glasheen Rd/R849 22 o
Rk vieClsheenRd/ M nGAA Club g
AE \ oSuperValu
Cork University Hospital O ¢ ///’( Toghr-."yar
2849“ % s
o S+
52 Lidl © &? _ R

5]

'n: via Victoria Cross 28 min
i Wilton Shopping Centre & B
satelive | o 2, Google

= 5 2 e Ry
OV 3 Mapdata ©2017 Google Ireland Terms  Send feedback 200m

D223t S asimpésetugitidan ih Optics, because cities have a finite numbers of possible
paths. A map can be modelled mathematically by a graph whose points are all addresses and edges
are the streets between them. You might not be surprisednd that Hamilton was also interested

in graphs and their properties, and he has a specia tfpgraphs named in his hondur

But wait! Guess what? IAthe data used by Google Maps in its algorithms was gathered by the
Global Positioning System, a netwarksatellites around the Edrt To determine distances, they
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http://www.physicsclassroom.com/Physics-Interactives/Refraction-and-Lenses/Refraction/Refraction-Interactive
http://www.physicsclassroom.com/Physics-Interactives/Refraction-and-Lenses/Refraction/Refraction-Interactive

use atomiaclocks designed using principles@uiantum Mechanicg which profited much from
I FYAEG2YyQa YIFIOGKSYFGAOFE F2NXNdzZ | GA2Y

GRAPH THEORY

1 Introduce the area of Graph Theory using a fanuuezle.
1 Define the notions of Hamiltonian paths, cycles and graphs.
1 Play some games based on identifying Hamiltonian cycles, and work through some applications.

THE SEVEN BRIDGEXORIGSBERG

The oldest and most famous use of graphs to
describe travel Bund citiescomes from the city of
Kdnigsberg (nowhe Russian city Kaliningrad).
During the time of the Swiss mathematician
Leonhard Eulefl707 7 1783), this was d&russian EY g
city that lay on the Pregel River. A small island wa ?&gﬂyy; :
located in the middle of the river at éhcity centre,
and the 4 separatéand masses wer@ined by
seven bridges as shown.

The story goes that the people of the city invented
game, wherebyhey had to try to find a route
through the city centre that crossed each of the seven bridges exactly once (without necessarily
starting and finishing at the same point). Of course, goingwalf across a bridge and turning back
was not allowed, and n#iier was swimming, jumping the gap or running down the bank to look for
an eighth bridge or hovercraft. Provided these rules were obeyed, it seemed thatenoould find a
solution. Can you? Give it a go!

X®odzi R2y Qi &LISYR G 2uallyiingogsBleln fact,LeonHard BufeOproded S A G Qa |
mathematically that no solution exists, and in doing so-kiekted graph theory Euler discarded

most of the beautiful features of the 4 land areas in the city, and represented each area hgpadme

(dot). He could then focus on the bridges and represented theedgges (curved lines connecting

the dots:

'S RARY QG OFNB Fo62dzi O2NNBOG aAal Sa FyR f20FiA2y3
Can you see the connection between the twotpies above? Next, Euler noticed that, except for

the start and end points of your trip, whenever you enter a node by an edge, you also leave it by an

edge, i.e. edges are used in pairs, and as a result, there must be an even number of edges connected

toel OK GSNIUSE GKIFIG A&ayQi GKS &0 NI 2N SyR LRAYGOD
2RR ydzYoSNJ 2F SR3IS&ad . SOFdzaS 2F GKA&aXZ 9dzZ SNI 02y
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https://upload.wikimedia.org/wikipedia/commons/5/5d/Konigsberg_bridges.png
https://en.wikipedia.org/wiki/File:K%C3%B6nigsberg_graph.svg
https://en.wikipedia.org/wiki/File:K%C3%B6nigsberg_graph.svg
https://en.wikipedia.org/wiki/File:7_bridges.svg
https://en.wikipedia.org/wiki/File:7_bridges.svg

As well as being a fun puzzle, this led to the mathematical field phgteeory. For the first time, a
realworld situation had been replaced by an equivalgraph the problem had been solved in this
abstract setting, and the result translated back into the real worlgrajohin graph theory is just a

number of nodesco® Ot SR o6& SR3ISad 2SQONB y2¢g 3I2Ay3 (G2 asSs
study of graphs.

HAMILTONIAN PATHS

What we were looking for in the last section wasEaulerian Pathor a path
through a graph that visits each edge exactly once. Hamilton was fascinated b
shapes like the dodecahedron (aka football) and he started searching for a wa
Ff2y3 GKS SR3ISa GKIG @AraArda SIOK @€
using all edges.

A path that visits each node of a graph once is now callddrailtonian Path
while aHamiltonian Cycles a Hamiltonian path that starts and finishes at
the same point. The task of finding a Hamiltonian cycle on the-gdgeh

ofaregulaR2 RSOF KSRN2Y Aa OFftftSR Il YA 2 NJ
[ SGQa 3IAGS AG | 3I2H

CANRG 27F | ft Z-dirheSsiomabiprofidm: Lykaib thehlast { 2

aS00GA2ys 6S R2y Qi OIFNB Fo62dzi GKSE Si o
same things are connected ®I OK 2 i KSNX {23 4S5 «( 2 dzi

dodecahedron into a-® graph:

ExerciseFind a Hamiltonian cycle in this graph:

Sample solution

Hamilton invented a new mathematical method called icosian calculys
and tried to make this inta commercial prodct. However thignded
in failure becaus¢he number of solutionpeoplecould find was small
enough and theypecame bored of it too quickly.

The notion of Hamiltonian paths and circuits is the most interesting  \ §......
aspect of this story, and is an important part of graph theory to this day.

By Christoph Sommer (Own work)fD| CCBY¥SA3.00r CC B¥A 2.52.0-1.0], via Wikimedia Commons

HAMILTONIAN GRAPHS
A graph is called Hamiltonian if it has at least btaniltonian Cycle in it.

(9
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http://www.gnu.org/copyleft/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/2.5-2.0-1.0
https://upload.wikimedia.org/wikipedia/commons/a/ad/Dodecahedron_schlegel_diagram.png
https://upload.wikimedia.org/wikipedia/commons/6/60/Hamiltonian_path.svg

Exercise Museum Circuits

Part 1: Suppose you are a security guard in a museu
and are locking up fahe evening. The diagram given
hereis a plan of the museum, where every square
represents a room and darkened squares are rooms
that are closed for renovations. Before closing the
museum, you have to check each (open) room once
and only once and finish back where you started (yol
can startwherever you like). You must move from
room to room and cannot leave the museum. Can yc
trace out your path in each diagram?

This part is the same as Part One except that you are racing each other this time. The class will be

divided into pairs and #first of five museum plans will be placed, upside down, in front of each of
you.When your teacher saysay turn over the first plan and start looking for a circuit as quickly as

possible. The rules for drawing a circuit are the same as in Part Oteafnog the museum, etc.). In
FRRAGAZ2Y S gKSY SAGKSNI LISNER2Y Ay |ye L3tgdgd al e&a 0k
immediately, themd 2 § K OKS O]l GKFId GKS LISNR2Yy K2 OflFAya (K
circuit. If they have, thgwin that round. This is continued for the other four museum plans, and the

person in the pair with the most wins is the winner.

All templates arénere. Solutions can be found the Primary Maths Circles Bookletre.

Solutionfor Template 1

i
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https://drive.google.com/open?id=0Byaoho6Ly3rRRUNTSWVDbHhTNG8
http://euclid.ucc.ie/MATHENR/MathCircles_files/Booklet_all.pdf

T. S.

ApplicatonKni ght 6 s Tour and t he Probl em
As you can imagine, there are so many differdnts of |
Hamiltonian path problems. Awdlly 2 6y SEI YLX S

Tour in a chessboard:

al1Ay3a | 1yA3IKGQEa (G2dz2NJ Ay @2t
chessboard, landing at each square exactly once (no more nor
fSaa 2F0iSyo0d YYAIK(IBAaOEY ADF
horizontally and two vertically or two squares horizontally and
one vertically.

Ly G2LSyé¢ (2dz2NJ Aa 2yS KA NG
6S3LyT I alOf2aSR¢ (2 dNS K @ERO @ G @@ X
Ay £X £ A 2%
this has anything to do with Hamiltonian paths, 6%’.‘:’.{:’“".‘:’.’.%6:
but think about it: what if we joined each square @) % “"‘ ’Q".‘ "'.‘ “'.‘ "".‘ V.@
. _ AP RATRARATRNA X
(using lines) to all squares the knight could move ‘.,:4“‘,:4. %‘.;:4“‘.:4’.;:4 A
G2 Ay 2yS8 GdNYyK 2 SQR ‘{‘ ’.:.' ’lﬁzdj‘ ;1.;0' ’.:;' '91% ’}%@
acting as the nodes and the lines as the edges. In ..34“‘.:45 ::4'5 ) ‘-:4‘. ‘b:*‘.‘%x“
fact, it would look like this: Q{‘..Q;,' a}g.a}g‘.gxg"’g}g"’}.'e
¢KSy s {KS rgayebacknieQadmate? af vﬁ‘%’."‘%‘é‘a‘,"“‘é"‘ﬁ@
finding a Hamiltonian path or cycle in this graph. .0»‘«q.yég.g»‘.«y.géq‘yég.,6'
{ ><) > L) { ><) > L)
A ‘l A 4 ‘

As you can imagine, there are loads of different
tours that can be constructed. It is still a very
RAFTFAOMZ 0 LINROE SYSZ K2 gf

o . =@
solved by brute force (listindlaossible paths in
the graph and picking out the ones that are Hamiltonian) because there are atoung 1
HamiltonianLJF 6 Ka GKFG F {yA3aIKG OFry GF1S o0dKFGQ&
check each path, it would take aboti billion trillion trillion trillion years in total). There are,
K26SOSNE &42YS |f32NAGKYA GKFG OFy LINRPRAzOS
algorithm), which tells you that, when choosing your next move, you should always w&ketibn
with the lowest number of possible movel you ever find that two or more options share this
lowest number, you should just pick one of them randomly (there are methods for determining
GKAOK 2yS (2 OK22aS8S> odzi GKS&QNB
| SN&OGlKA I KGQa ¢2dzNJ 3l YS
OKSaaoz2FrNR 06SOIdzasS A
moves.

1568L1a GNI O] 27
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https://www.brainbashers.com/knight.asp
https://upload.wikimedia.org/wikipedia/commons/6/64/Knight's_graph_showing_number_of_possible_moves.svg

An extension of the Hamiltonian circuit problem is the
Travelling Salesmaproblem

Puzzlelmagine you are a salesperson who travels

around a country selling your product in big cities. Sor
ofthecitesard A Y1 SR 06& KAIKgLl &
and every highwajink between two cities has an
associated distance. You want to visit every city exact
once and finish where you started, while at the same
time ensuring you travel the smallest distance possibl 8 '
Which path do you take?

Basically, the cities and highways can just be viewed
a graph in which the distance between nodes actually
counts. The problem is simply to find the Hamiltonian circuit with the shortest length:

Solution

7 A

Whenwe calculateth f Sy3dK 2F (K OANDdzA G Al R2SayQi
start at A.

Hamilton Circuit Length

ABCEDA 2+4+3+3+8=20
ABCDEA 2+4+7+3+6=22
ABDCEA 2+3+7+3+6=21
ADBCEA 3+3+4+3+6=19

And the winner is ADBCEA.

This actually hasountless applications in the real world. There are the obvious ones like deciding
how a postman should most efficiently deliver mail, but other uses include determining how best to
time online advertisements, place vanes on an aircraft turbine and wémvuter. It is in fact one

of the most intenselystudied problems in optimisation.

ALGEBRAND GEOMETRY: FROEKAR NUMBERS TO COERINUMBERS AND

QUATERNIONS:

1 Look at the Algebra with real numbers as a way to describe movements along a line.

1 IntroduceComplex Numbers as points in the plane, and operations with complex numbers as
movements on the plane.

1 Introduce Quaternion Algebra with the hands Quaternion Ball tool.

1 Perform rotations in 3D using Quaternions

Mathematics is a story spanning thousamdgears, with hundreds of characters, both human and
mathematical. It is a story too long for anyone to hear the wholéofmany people spend their

lives listening. Today we will give a little bit of this story and our main characters will be an Irish
mathematician, William Rowan Hamilton, and a new number system called the quaternions. But
what are the quaternions and more importantly, why should we care about them? Hamilton came
about the idea of quaternions as a way to represent rotations in a thieeensional space.

[12]



NUMBER®N THE REAL LINE

In order to undestand these fully, we need to remember hawmbers andperations can be
thought of inpractical(and geonetric)terms

Real numbers Points on a line

Operations with numbers = movemerdtongthe line

For example,+3 means we skip three unit steps to thight, starting from wherever we are.
+3

0 W 5
Here weuse the symbaodoto describe a number that we might not know from the beginning, and

whose value we might find out later. If our walk ajptihe number line led us 6, we write thisas
® o u8To findchwe move back 3 spacesy v © 3_8

3

0 1 2 5
Thus o meansmoving3 stepsto the left. This is the type of thinking thahé Persian
mathematicianal-Y K ¢ n NJ8d i ¥5®) described by thérabic wordal-jabr (reunion of
broken parts)which is the origin of the weknownword Algebra

Algebra uses symbols describenumbers. This allows us to make general statements like this one
(wheredstands for any positive number):

®is a move of lengtidto the righthwhile  ®is a moveof lengthddto the left.

 ——
®5 i S

From the picture wesee that @ is theresult of thereflectionof & acros<0. Since

@ p  @we can thus give a geometric meaninghe multiplication by pd,

Geometrically, multiplication by p is thereflectionacross O.

p  has the effect thakevery number to the left of O gets moved to the right and evauynber
to the right of O gets moved to the left.

ExerciseUse reflection to explain why multiplying two negative numbers gives you a positive
number.

SolutonAs @ @ p and @ @  p hitis enough that multiplication by p P
means reflecting twiceyhich takes any number back where it was originally. Sm p P8

[13]



Exercise Work out how to reflect around a number otherthan[ SG Qa al & GKIFG ¢S KI
0 on the line andanother numbera Write an equation for the reflectioaf w througho. It should
be an expression imando8
Solution .
w O w O
[ ] .‘ N k
Tt CO 8 w
Geometrically, we can move the whole line to the leftd8henwbecomesw 6 andod becomes
1. Then reflecting throughtsendsw 60to @ 0 0 @ Now we need to move the line back
to the right byd8 This make® winto¢d o8
COMPLEX NUMERS
As often happens with stories, we must now skip ahead in time. We come to the second major
characters in our story, the complex numbers. Armed with all the numbers, operations and symbols
they could put on a line, mathematicians could now solve soynthififierent equations that they
even starting looking into impossible ones, like this one:
w p T
which is the same ab porequivalentho W por W p. Buttaking thesquare root of a
negative numbeseemedotally impossiblefor a long time. The first person who dared mentiomas
the sixteenth century Italian mathematician Caodarho called such a numbemeaningless,
fictitious, and imaginaryFrom here on, this number was denotedbyr om fii magi nar y o.
oFor wellover two centurie after imaginary numbers broke s colo
into the domain of mathematis they remained enveloped by a 44 o4l
veil of mystery and incredibilityntil finally they were given a 3l
simplegeometrical interpretation by two aateur B <o ol
mathemattians: a Norwegian sugyor by the name of Wessel i
and aParsian bookkeeper, Robert Argahd\ccording to their S S S I I 3 realaxis
interpretation a complex numbems forexamples 1 Qmay be g i il - '1_1 | 1 2 ¥4 %
represeried as inthe Figure heren which 3corresponds to the 2l _
horizortal distance, and 4 to the vertit FEE
0DS2NHS DIY2g> ahySs (g2 3 ik iegétoo
_5_ MathBits.com

Looking at this geometrically, we now see

Complexnumbers = Bints on the plane
and hence wevould expect that

Operations withcomplex numbers = movements theplane.

[14]
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Products

Whenwe multiply a real numbeisay 4 representing a point
on the horizontal axis, by the imamiry unit"Qve obtain the
purely imaginary number'Qwhichmust be plotted on the

vertical axis.

494

Multiplication by "Qis the same aa counterclockwise rotatiorby a right angl@roundO.

By the same means

or equivalentlyQ

T

We can see that rotating by 90° twice corresponds
to a rotation by 180°which is the same as the
reflection through the origirO:
p8The equation that had
baffled mathematicians for centuriesow hasa very
nice geometrignterpretation.

(Recall that@ is the rotation byw 1t While p tis
the reflection though Q)

Multiplication by Qs the same aa clockwise rotatiomy a right anglearoundO.

Reflections

Another way to move thingsiithe plane is to reflect
acrosdines. Reflecting a point across the line meal
drawing a segment through which is
perpendicularlybisected by the line.

—a+1ib

ib

a+ib

For the reflection oft & "Qacrosshe
horizontal and the vertical axis, respectivelg have
Reflection ot & & ‘&rosshe real axis gives
® "QaYhis is called the conjugate of z and is
denoted by ¢. Refletion acrossthe imaginary axis
givesz®  "Q®

—ib

a —ib

[15]



ExerciseSuccessive Reflections

Reflections are important in many ways. For examp
take two linesrand Qmeeting atl and withan angle

| o ftbetween them. Refleca point0 through
dand thenQsuccessively to gét and thend 8

"0 00 ofand” 0 G0 p fifind” O O 8

Solution: reflection means tha¥ 0 0 0k Y 0a2 DandY 0 0 Ok YOadedhenced &5 Dazs
Daddgand” 0 00 ~ Dda@ band” 00 0 ~ ODadded. Hence by suming up :
T 0 W oM T Oo0 q"'f)[')f) c"'f)[')i') ¢ 000 ¢ 8

Two successive reflections across two lines through O amounts to a rotation by tloeilblegle
between the two lines

(clockwise or counteclockwise depending on which line you reflected across first)

THEQUATERNIONS

1 Introduce the Quaternions as a fedimensional system of imaginary numbers.
1 Describe addition and multiplication of Quaternions, with the use of a geometric visualisation.
1 Consider sme applications of the Quaternions.

Just like complex numbers numbebs & @present points in the plane and are made of a pair of

real numbers ¢fto , we can represent a point in thedmensional space by a tripledfuft .

Hamilton was fascinated by the discovery thatltiplication represents rotatioim the complex

plane and he wanted to do the same in3DKS LINRof SY 2F FAYRAY3I |y |38
describe the geometry of vectors in three dimensional)(8@ace haunted him for at least fifteen

years.

G9DBSNE Y2NYy
ONBIF | Flradsz
you multiplyli NJ& LJX S
Oy 2yfteée IR
Hamilton [1].

Ay 3 Ay icke8 mdhth [QEt@ber L843]Jon n® Eomindgddwnltod 2 @ S

82dzNJ 0 UGKSY O fAGGES ONRUGUKSNI 2AffALFY 9F
Gaé¢K 2KSNBG2 L ¢1a +Htftglea 206t A3ISR G2
R YR adzodiN} Ol (GKSY®PE 2 w | YAfTd2Yy Ay

In 1843, Hamibn found an ingeious way around hiproblem
The solution famously came to him as he wasdking along the
Royal Canal in Dublin with his wife ori"XBctober (now called
Hamilton dayj he suddenly realised that the answer lay in
numbers with fair components instead of thredn his
excitement, he promptly used his penknife to carve slodution
equations into the side of nearby Broom bridge:

-Q ’F‘Q ’i’Q "Q ’;‘Q ’F‘Q p

Plaque on Broom bridge. Wikimedia Commons
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This was the birth of the quateions, which weepresent byo in honour of Hamilton] S (i Q &
morecloselyatg K+ i ¢S Q@S 2dzald oNARGOHISYy ®

First, Hamilton decided that he could have not just 1, batB Y | 3 &xéd ebidd with its own unit:

"‘QCand Qare what we call the quaternionnits. Theyform the buiting blocks of theuaternions.
Notice that they all satisfR  Q Q P, S0 in fact we now have 4 axes: three B€andQ
and a fourth one for the real numbers.

To help us better grasp the
consequences of the rules
above, we need to play with the
symbols®@and ‘Qand in
particular, to understand their
products. Luckily, we have a
handy toy available to help us
with this task. It is based on the
following ball in the 3D
quaternion space. As you can
see, the axes are marked by the
units"®’@ "Qon one sideand

" '@ "Qon the other side. On
each of the three coordinate
planes marked by circles,
multiplication t "t tht
"(represents a rotation. Indeed,
each circle lies on a plane very

f229

AAYAEIFNI G2 GKS O2YLXSE LIXFYyS 6SONB YSG SI NIASND

L¥ &2dz KI Sy Qi I|piimiditaRe R4
assemble the QaternionBalllearning tool by clicking
here. We will use it to play with quaternion right

multiplication.Asyou can see, the Ball is made of three
discs that intersect at right angles, withd circles on each
disc. We find that tracing a finger along these circles w
carrying out this exercise is helpful. Tracing out a quarte
circle in the same direction dke arrow on it corresponds
to right the quaternionunit (Qr 'Q printed next to the circld ¢ NI OAy 3 2 LILI2 &4 A

S a2

directioncorresponds to the negative of the unit. Tracing out a number of quarter arcs in sequence

corresponds to each dahe units traced out written down nexb each other in the same ordeio
the right, for example, | trace o@nd then Qwhich matclesthe multiplicationQ Q@  "Q@ny
other path that takes you from the same starting point to the same figighs a equal answer:
here, | could also have takenQto get to the same point, so | know now thatQQ Qor'QQQ
Leteveryone in the class pleagopy the table just belownto a sheet of paper, and using the
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https://drive.google.com/open?id=0Byaoho6Ly3rRQXR0YzRoeGZWRUE

vdzl G SNY A2y . It ffil buliall theSn@sgirky ertrigdote NVulBipicatidn by 1 does not
figure on the Quaternion Ball because it represents staying in place: no change.

Exercise

Fill in the table with the corredtdamilton products. For
each box, its row represents the first number in the

0 product, while its column is the second number.
C2 NJ SEI Y L} GrrowlGa@cSlunikbécauSe
"Q’?‘Q'F'Q

Solution

hyOS @2dz2Q@0S FAttSR Ay (KS 02EX @2dz 6Aff y2GA0S8 3
i NEGSNEAY3I GKS 2NRSNI 2F | RRAGA?Z

they?
1 Q|9 Q o T X T 0o, right?
0 P Ko "Q | Similarly for multiplicationg U pmMT U (.
| 26 SOSNE ¢S Q@D @R BwhkR G KL G
0 0 P o | F NBYy Qi S| dibesnibittef vihen it oh@s Solide
quaternions:i K 6 Qa 2dza il K2g (KS@& | NB«
Q Q Q p | towatch out for when dealing with them
Note, however, that when you multiply just an imaginary
FYR F NBFfX 2NRSNI RASEYy Glp.YI GGSN® C2NJ SEF YLX S=

USING THE QUATERNSBZNROTATIOS IN 3D

(x; y; 2) Aside from being a fascinating area of study in pure maths, the
guaternions havet leastone major application in the real word
mathematically representing rotations in three dimensions. There
are other ways (like using rotation matrices) to do this, but the
algebra is muckimple when using quaternions and certain
problems that can arise ith matrices are avoided. As a result,

z X rotations are described by quaternions in multiple areas,
including video game and movie animation, aircraft and spacecraft attitude control and robotics.

Quaternions in Spaaace!

As we explained before, quaternionsNE dza SR F2NJ O2y i NRft Ay3 aLl OSONI
to look at an example of how this worlBy the way, attitude is just a terms used in astronautics and
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other areas that means orientationin®® b2¢> f S0 Q

& O KA yopbitdbéve dzi I & LI ¢
earth:

Examplelimagine the astronautare having a tanning competition droard and want to turn the
shuttle byw 11t its left so that it faces the sutike this:

How does the shuttle carry out this commant® be mathematical, we sayahwe want to rotate
the shuttle byw Talound a vertical axis:

Answer Recall that multiplication bf2epresents a counteclockwise rotation by fton the
horizontal plane. This rotation is simple though; other rotations do not have formulas as simple.

Remember that Hamilton discovered quaternions on the way to explaining how to use multiplication
to rotate objects in 3D. We will woik the 3D space whose 3 axes have uindQ
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