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MATHEMATICIANS IN OUR LIVES     

 With the support of  

                   

                                                  

                  

                                                                            11-12 years olds 

 

INTRODUCTION 

As part of the Mathematicians in Our Lives programme, the Irish Mathematical Trust (IMT) has 

developed this package to celebrate the life and legacy of Sir William Rowan Hamilton. The lesson is 

ǎǘǊǳŎǘǳǊŜŘ ƛƴ ŦƻǳǊ ǎŜŎǘƛƻƴǎΥ !ŦǘŜǊ ŀ ǎƘƻǊǘ ǊŜǾƛŜǿ ƻŦ IŀƳƛƭǘƻƴΩǎ ƭƛŦŜ ŀƴŘ ŀŎƘƛŜǾŜƳŜƴǘǎΣ ǿŜ ǿƛƭƭ ŦƻŎǳǎ 

on the main areas of his work, with sections on Geometrical Optics, Graph Theory, and Quaternions. 

Each sectioƴ ŘƛǎŎǳǎǎŜǎ ǘƘŜ ŦǳƴŘŀƳŜƴǘŀƭ ǉǳŜǎǘƛƻƴǎ ƛƴ ǘƘŜ ŀǊŜŀ ŀƴŘ ǎƻƳŜ ƻŦ IŀƳƛƭǘƻƴΩǎ ŎƻƴǘǊƛōǳǘƛƻƴǎΣ 

and includes a set of suggestions for class discussions, games and hands-on exercises.  The lesson 

plan is designed so that you may extract sections to teach or to use the content to build lessons 

around the information provided. We hope that you enjoy this exploration of the brilliant mind that 

ǿŀǎ {ƛǊ ²ƛƭƭƛŀƳ wƻǿŀƴ IŀƳƛƭǘƻƴΩǎΦ 

Objectives:  

¶ To introduce William Rowan Hamilton as a person and as a Mathematician. 

¶ To explain the basics of the Laws of Optics, Graph Theory, Quaternions. 

¶ To illustrate the rich interplay between Algebra and Geometry through examples from 

Optics, Graphs, Complex numbers and Quaternions.  

¶ To solve games, practical tasks and logical exercises on the topics above.   

Required: 

¶ One copy of Hamilton Museum Circuits for each student. 

¶ One Quaternion Ball kit, scissors and stapler or sellotape for group of 2-3 students. 

¶ One copy of the worksheet per student. 

Lesson time: 1-3 lessons of 40 min each.  

 

https://drive.google.com/open?id=0Byaoho6Ly3rRRUNTSWVDbHhTNG8
https://drive.google.com/open?id=0Byaoho6Ly3rRQXR0YzRoeGZWRUE
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WHO IS WILLIAM ROWAN  HAMILTON?  

Sir William Rowan Hamilton (1805-1865)Σ ƻƴŜ ƻŦ LǊŜƭŀƴŘΩǎ Ƴƻǎǘ ŦŀƳƻǳǎ scientists, was a 

distinguished mathematician, physicist and astronomer. He made a large number of important 

contributions to Optics, Mechanics, Graph Theory and Algebra. Many notable concepts in physics 

take their name from him; like the Hamiltonian function and Hamiltonian mechanics, while in 

Algebra, his best-known discovery is of the Quaternion number system. 

HIS LIFE 

¶ The story of a childhood at the same time normal and exceptional. Invite your students for their 

opinions on whether there was a connection between the early training in languages and the later 

proficiency in mathematics?  

¶ {ǘŀǊǘƛƴƎ ŦǊƻƳ IŀƳƛƭǘƻƴΩǎ ǎǘƻǊȅΣ ƛƴǾƛǘŜ ǎǘǳŘŜƴǘǎ ǘƻ ŘƛǎŎǳǎǎ Ƙƻǿ ƛƴƛǘƛŀƭ ŎƘŀƭƭŜƴƎŜ ŀƴŘ ŘŜŦŜŀǘ Ŏŀƴ 

ƛƴŦƭǳŜƴŎŜ ŀ ǇŜǊǎƻƴΩǎ ŦǳǘǳǊŜ ŎŀǊŜŜǊΦ 

¶ Ask your students if they ever visited an observatory. Give a short description of one. What 

connections can be found between a job at an observatory and research in mathematics? 

¶ Propose further historical investigation: Compare the lives of George Boole and William Rowan 

Hamilton. Did they live in Ireland at the same time? Did their lives/work intersect? 

William Rowan Hamilton was born in Dublin on 4th August, 1805. Judging by all his academic exploits 

at an early age, you wouldn't believe that Hamilton was a healthy boy who loved swimming, nature 

and jolly gatherings of friends. By the age of 13, nature walks brought out his enthusiasm in the form 

of poetry in at least 13 languages (Latin, Greek, Persian, Hebrew, Arabic, Sanskrit and others). His 

education was in the hands of his uncle, an accomplished linguist; IŀƳƛƭǘƻƴΩǎ mother and father had 

both died by the time he was 14.  

The young Hamilton's first recorded mathematical adventure was a 

contest that pitted him against another child prodigy, the American 

"calculating boy" Zerah Colburn (unfortunately, Hamilton lost). Once 

Hamilton's curiosity about mathematics was ignited, its fire spread 

rapidly in his imagination. He entered Trinity College Dublin to study 

both classics and mathematics ς achieving the highest honours in 

both - but he was more and more attracted by the later. He started 

blending algebra and geometry to study the laws that explain how 

light moves. He hadn't yet completed his studies when he presented 

Ƙƛǎ ƎǊŜŀǘ ǿƻǊƪ άTheory of Systems of Raysέ ǘƻ ǘƘŜ LǊƛǎƘ !ŎŀŘŜƳȅ ό!ǇǊƛƭΣ мунтύΦ Lƴ ǘƘŜ ǎŀƳŜ ȅŜŀǊΣ 

before he had time to finish the final exams, he was appointed professor of astronomy, ahead of 

some well-established astronomers, and despite the fact that he hadn't even applied for the job!  

Hamilton worked at the Dunsink Observatory till the end of his life. This was a rich and layered life, 

with many friends among poets as well as scientists.   

                                       HIS WORK ï AN OVERVIEW 

¶ hǳǘƭƛƴŜ ǘƘŜ ǘƘǊŜŜ Ƴŀƛƴ ŀǊŜŀǎ ƻŦ IŀƳƛƭǘƻƴΩs work which will be investigated in this lesson: Optics; 

Graph Theory; Quaternions. 

¶ Discuss practical ŀǇǇƭƛŎŀǘƛƻƴǎ ƻŦ IŀƳƛƭǘƻƴΩǎ ǿƻǊƪΥ ŎƻƴƛŎŀƭ ǊŜŦǊŀŎǘƛƻƴΤ ǘƘŜ ǘǊŀƴǎƛǘƛƻƴ ŦǊƻƳ ǘƘŜ 

Hamiltonian mechanics to quantum mechanics and its uses in modern life; the use of quaternion in 

describing 3D rotations for airplane/space-ship flights and for computer games. See more resources 

at the end of this document.  
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Hamilton started his scientific work out of curiosity about optics: the laws that explain how light 

travels through different media like air, water and glass, and how it reacts to obstacles or other 

ŎƘŀƴƎŜǎΦ  Lƴ Ƙƛǎ ǿƻǊƪ άTheory of Systems of Raysέ ŀƴŘ ƛǘǎ ǎǳǇǇƭŜƳŜƴǘǎΣ ƘŜ ŘŜǾƛǎŜŘ ǘƘŜ ƛŘŜŀ ƻŦ 

characteristic function: a tool for measuring the time it would take light to travel along various 

paths, in terms of the start and end coordinates. This allowed him to explain the laws of optics based 

on the principle that light always chooses the fastest path (the Minimum Principle).  

¢Ƙƛǎ ōǊƻǳƎƘǘ ƘƛƳ ǘƻ ǎǇŜŎǘŀŎǳƭŀǊ ŀƴŘ ǳƴŜȄǇŜŎǘŜŘ ǇǊŜŘƛŎǘƛƻƴǎ ŀōƻǳǘ ƭƛƎƘǘǎΩ ōŜƘŀǾƛƻǳǊΦ CƻǊ ŜȄŀƳǇƭŜΣ 

people before him had observed one ray splitting into two or three when passing through a crystal, 

but Hamilton discovered that in certain cases there would be an infinite number, a cone of refracted 

rays ς which was confirmed by experiments and won him a Royal Medal in Physics.  

                           

IŀƳƛƭǘƻƴΩǎ ǿƻǊƪ ƛƴ ƎŜƻƳŜǘǊƛŎŀƭ ƻǇǘƛŎǎ Ŧƛǘ ƛƴ ǿŜƭƭ ǿƛǘƘ ǘƘŜ ƴŜǿ ǘǊŜŀǘƳŜƴǘ ƻŦ ƳŜŎƘŀƴƛŎǎ ŘŜǾŜƭƻǇŜŘ ōȅ 

J. L. Lagrange (1736-1813), but Hamilton brought a simplicity and clarity which allowed him to carry 

over all of his methods effortlessly to the most general problems of mechanics.   

Almost one hundred years after Hamilton presented his work to the Royal Irish Academy, his 

methods were found to be just what was needed for the creation of quantum mechanics in 1925-

1926, which has in turn brought us the marvels of the digital world. 

In his later life Hamilton became more and more intrigued by the interplay between algebra and 

geometry. This led him to the discovery of the quaternions, a four-dimensional extension of complex 

numbers determined by the equations Ὥ Ὦ Ὧ ὭὮὯ ρ (which he famously carved into the 

side of Broom Bridge in Dublin). He spent the greater part of the rest of his life studying the 

quaternions and their properties, putting forward applications in the study of rotations that are used 

in aero- and astronautics to this day.  

                                                           

Even though your laser has emitted just one line beam, from the other side of certain crystals you see it as a ring of light: 
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In graph theory he introduced the notions of Hamiltonian paths and circuits while searching for a 

closed path along the edges of a dodecahedron that visits each vertex exactly once. These ideas 

generate theorems to this day. 

 

                                        OPTICS 

¶ A short introduction into Optics through the example of light refraction. 

¶ Encourage your students to get involved in a class discussion on the Minimum Principle:  

§ How does it apply to Refraction in Optics?  

§ Why do they think the principle holds true?  

§ How did Hamilton apply it and how does it relate with the Google Maps 

directions app? 

¶ You may organize the students in teams of 2-3 and let them work on choosing the best paths  

between two points when the medium of propagation changes.  

For millennia, people have been attracted to the night sky and the movement of stars ς the main 

questions of astronomy. This is how Galileo Galilei (1564-1642) had come to invent the telescope in 

1609, by cunningly exploiting a property of light called refraction.  

                                                             

Since then, the best minds of their time tried to find the true explanation for the refraction of light.  

For example, when passing from 

water to air, the light ray bends. This 

is why our minds get tricked into 

perceiving a fish as closer to the 

surface than it is. Indeed, on the way 

from the fish to our eye, the light ray 

had bent, but our minds still thinks 

it's straight. So in our mind we "see" 

the fish in an imaginary position 

along a straight line, instead of its 

real position lower down.  

               REFRACTION AND THE MINIMUM PRINCIPLE 

Class Discussion: So, what causes the light to bend when passing from water to air? 

Answer:  The light travels faster through air than through water.  
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 Class Discussion: Why do you think the light travels faster through air than through water?  

 Answer: LŦ ǿŜ ŎƻǳƭŘ ƭƻƻƪ ŀǘ ŀƛǊ ŀƴŘ ǿŀǘŜǊ ǘƘǊƻǳƎƘ ŀ ǇƻǿŜǊŦǳƭ ƳƛŎǊƻǎŎƻǇŜΣ ǿŜΩŘ ǎŜŜ ǘƘŀǘ ǘƘŜȅ ŀǊŜ ƳŀŘŜ 

of little pieces we call molecules. The air is made of molecules of different gases, which keep apart from 

each other. The water molecules are more crowded. When the light hits a molecule, this shoves the light 

out of its path a little. Imagine getting shoves every other step ς this is bound to slow you down.   

Class Exercise: Plan Your Trip! Normally, 

the fastest path between two points is a 

straight line - but not when you hit 

obstacles, which cause delays. 

(a) In the picture here, count the number 

of dots that touch the path AB to find how 

much the traveller is slowed down. The 

top dots represent gas molecules in the 

air. The lower dots are water molecules.  

(b)  Now try to plan a better trip from A to 

B: Choose a point C on the black 

separating line, connect it to both A and B 

by straight line segments, and count the 

total number of dots you crossed. Is it 

more or less than on the path AB?  

Report your result and explain your strategy.  The student who crossed the fewest dots has found the 

fastest path and wins.  

 

Sample Answer: The red path is an 

example of a faster trip:  

AOB hits 13 dots. 

The red path hits about 8 dots. It is 

chosen so as to make the trip through 

water shorter, without making the trip 

through air too long.  

 

 

 

 

Inspired by the ancient work of Heron of Alexandria (c. 10-70 A.D.), the French mathematician Pierre 

Fermat (1601-1665) came up with a Minimum Principle, which basically states:   

 

 

The light ray always travels along the fastest path.  
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   Class Discussion: How does a light ray plan its journey?  

 LŦ ȅƻǳ ŘƻƴΩǘ ǎǳǇǇƻǎŜ ǘƘŀǘ [ƛƎƘǘ ƛǎ ŀǎ ǘƘƻǳƎƘǘŦǳƭ ŀǎ ŀ ƘǳƳŀƴ ōŜƛƴƎΣ 

you might think there is something funny with the idea that the 

Light knows where it wants to go and plans the whole trajectory in 

advance.  

²ƘŀǘΩǎ ƎƻƛƴƎ ƻƴΚ Iƻǿ ŘƻŜǎ ǘƘŜ Minimum Principle make sense?  

 Answer: First off, distances; when Hamilton and others applied the Minimum Principle, they were 

thinking of light travelling extremely small distances, so that you might argue ǘƘŜ ǇƭŀƴƴƛƴƎ ǿƻǳƭŘƴΩǘ 

require that much foresight.  Secondly, we might think of the Minimum Principle more as an 

example of observer effectΥ ǿŜ ǘƘƛƴƪ ǘƘŀǘ ǘƘŀǘΩǎ Ƙƻǿ ƭƛƎƘǘ ōŜƘŀǾŜǎ ōŜŎŀǳǎŜ ǘƘƛǎ ōŜƘŀǾƛƻǳǊ ƛǎ ǘƘŜ ƻƴƭȅ 

one that we can observe. Consider this: a light source usually sends rays in many directions. 

However, the light rays that start at A ƛƴ ŀ άǿǊƻƴƎέ ŘƛǊŜŎǘƛƻƴ ǿƛƭƭ ƳŜŜǘ more and more obstacles that 

jolt and deflect them further away from the target. Thus their chances of hitting the target B (where 

we patiently await) become so small that we can hardly notice any such rays reaching the 

destination. In fact, our eye is not trained to notice such small effects.   

 hƴ ǘƘŜ ƻǘƘŜǊ ƘŀƴŘΣ ŦƛƴŜǊ ƳŜŀǎǳǊƛƴƎ ƛƴǎǘǊǳƳŜƴǘǎ Ƴŀȅ ŘŜǘŜŎǘ άǎǘǊŀȅέ ǊŀȅǎΣ ǿƛǘƘ ǾŀǊƛƻǳǎ ŦǊŜǉǳŜƴŎƛŜǎΦ 

This kind of probabilistic thinking applied at extremely small scales inspired Quantum Mechanics, an 

area of Physics to which we owe much of our understanding of nature at atomic level, as well as 

semiconductor-based electronics, (computers, smartphones), optical cable telecommunication (the 

Internet) , and other features of modern life.  

Exercise:  How to find the perfect path ς with numbers.  

In the Light SuperWorld, light rays travel on any paths they like. Three rays called Mr Simples, Mrs 

Wiseman and James Bold, decide to go from a point ὃ, found ρππ meters above water, to a point ὄ, 

found ρππ meters below water. They are warned that travelling through water is slower, namely  

¶  They can travel at a speed of 300 meters/second through air; 

¶  But only 225 meters/second through water.  

Mr Simples decides to take a straight line from A to B, a 

total distance of 255 meters.  

James Bold decides to go as much as possible through 

air, so he travels 187 m to point P, found exactly above 

B on the surface of the water, and then from P straight 

down to B.  

Mrs Wiseman Ray makes some calculation and decides 

to go about 141.5 meters through the air, heading 

straight for a point W on the water surface, and then 

travels about 115.5  meters through the water, from W 

to B.  

Which Ray gets to the destination fastest? Can you intuitively explain why? 

Answer:  Using ὸὭάὩὨὭίὸὥὲὧὩȾίὴὩὩὨ separately through air and water, we get:  
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For Mr Simples:        ὸ   ὸ  
Ȣ Ȣ

πȢωως ίȢ 

For James Boldȡ         ὸ   ὸ   ρψχȾσππρππȾςςυ πȢφςσ πȢτττ ρȢπφψ ί.   

For Mrs Wisemanȡ    ὸ   ὸ  ρτρȢυȾσππρρυȢυȾςςυ πȢτχρφχ πȢυρσσσ πȢωψυ ίȢ   

As light is slower through water, it makes sense to try to shorten the distance travelled through 

water, even if this makes the trip through air a little longer, too. This is the strategy that both Mrs 

Wiseman and James Bold took. However, James Bold lengthened the total distance too much. 

Whereas Mrs Wiseman tried to find a balance between the time spent in the air and the time spent 

in the water. 

Play hands-on with refraction angles here: 

  www.physicsclassroom.com/Physics-Interactives/Refraction-and-Lenses/Refraction/Refraction-Interactive 

{hΧ ²I!¢ !.h¦¢ I!aL[TON? 

HamiltƻƴΩs great insight was a smart way to calculate how fast paths are. He designed his calculation 

as a function of the coordinates of both the starting point and the target. In many more complicated 

problems, this viewpoint brought clarity and simplifications.  

¢ƻŘŀȅΣ DƻƻƎƭŜ aŀǇǎ ǿƻǊƪǎ ƳǳŎƘ ƭƛƪŜ IŀƳƛƭǘƻƴΩǎ ŎƘŀǊŀŎǘŜǊƛǎǘƛŎ ŦǳƴŎǘƛƻƴǎΥ 

¶ It can take as inputs your starting points and the desired destination 

¶ It calculates the duration of each possible path 

¶ And it highlights the fastest path for your convenience: 

 

DƻƻƎƭŜ aŀǇǎΩ ƛǎ ŀ simpler set-up than in Optics, because cities have a finite numbers of possible 

paths. A map can be modelled mathematically by a graph whose points are all addresses and edges 

are the streets between them. You might not be surprised to find that Hamilton was also interested 

in graphs and their properties, and he has a special type of graphs named in his honour!  

But wait! Guess what? All the data used by Google Maps in its algorithms was gathered by the 

Global Positioning System, a network of satellites around the Earth. To determine distances, they 

http://www.physicsclassroom.com/Physics-Interactives/Refraction-and-Lenses/Refraction/Refraction-Interactive
http://www.physicsclassroom.com/Physics-Interactives/Refraction-and-Lenses/Refraction/Refraction-Interactive
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use atomic clocks designed using principles of Quantum Mechanics ς which profited much from 

IŀƳƛƭǘƻƴΩǎ ƳŀǘƘŜƳŀǘƛŎŀƭ ŦƻǊƳǳƭŀǘƛƻƴs.  

GRAPH THEORY 

¶ Introduce the area of Graph Theory using a famous puzzle. 

¶ Define the notions of Hamiltonian paths, cycles and graphs. 

¶ Play some games based on identifying Hamiltonian cycles, and work through some applications.  

THE SEVEN BRIDGES OF KÖNIGSBERG 

The oldest and most famous use of graphs to 

describe travel around cities comes from the city of 

Königsberg (now the Russian city Kaliningrad). 

During the time of the Swiss mathematician 

Leonhard Euler (1707 ï 1783), this was a Prussian 

city that lay on the Pregel River. A small island was 

located in the middle of the river at the city centre, 

and the 4 separate land masses were joined by 

seven bridges as shown. 

The story goes that the people of the city invented a 

game, whereby they had to try to find a route 

through the city centre that crossed each of the seven bridges exactly once (without necessarily 

starting and finishing at the same point). Of course, going half-way across a bridge and turning back 

was not allowed, and neither was swimming, jumping the gap or running down the bank to look for 

an eighth bridge or hovercraft. Provided these rules were obeyed, it seemed that no-one could find a 

solution. Can you? Give it a go! 

ΧΦōǳǘ ŘƻƴΩǘ ǎǇŜƴŘ ǘƻƻ ƭƻƴƎ ŀǘ ƛǘΣ ōŜŎŀǳǎŜ ƛǘΩǎ ŀŎtually impossible. In fact, Leonhard Euler proved 

mathematically that no solution exists, and in doing so kick-started graph theory.  Euler discarded 

most of the beautiful features of the 4 land areas in the city, and represented each area by one node 

(dot). He could then focus on the bridges and represented them as edges (curved lines connecting 

the dots: 

 

 

 

 

 

 

IŜ ŘƛŘƴΩǘ ŎŀǊŜ ŀōƻǳǘ ŎƻǊǊŜŎǘ ǎƛȊŜǎ ŀƴŘ ƭƻŎŀǘƛƻƴǎΣ ŀƭƭ ƘŜ ǿŀǎ ƛƴǘŜǊŜǎǘŜŘ ƛƴ ƛǎ ǿƘŀǘ ŎƻƴƴŜŎǘǎ ǘƻ ǿƘŀǘΦ 

Can you see the connection between the two pictures above? Next, Euler noticed that, except for 

the start and end points of your trip, whenever you enter a node by an edge, you also leave it by an 

edge, i.e. edges are used in pairs, and as a result, there must be an even number of edges connected 

to eŀŎƘ ǾŜǊǘŜȄ ǘƘŀǘ ƛǎƴΩǘ ǘƘŜ ǎǘŀǊǘ ƻǊ ŜƴŘ ǇƻƛƴǘΦ  .ǳǘ ȅƻǳΩƭƭ ƴƻǘƛŎŜ ǘƘŀǘ ŀƭƭ ƻŦ ǘƘŜ ƴƻŘŜǎ ƘŜǊŜ ƘŀǾŜ ŀƴ 

ƻŘŘ ƴǳƳōŜǊ ƻŦ ŜŘƎŜǎΦ .ŜŎŀǳǎŜ ƻŦ ǘƘƛǎΣ 9ǳƭŜǊ ŎƻƴŎƭǳŘŜŘ ǘƘŀǘ ȅƻǳ ŎŀƴΩǘ ǿƛƴ ǘƘŜ ƎŀƳŜΦ  

https://upload.wikimedia.org/wikipedia/commons/5/5d/Konigsberg_bridges.png
https://en.wikipedia.org/wiki/File:K%C3%B6nigsberg_graph.svg
https://en.wikipedia.org/wiki/File:K%C3%B6nigsberg_graph.svg
https://en.wikipedia.org/wiki/File:7_bridges.svg
https://en.wikipedia.org/wiki/File:7_bridges.svg
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As well as being a fun puzzle, this led to the mathematical field of graph theory. For the first time, a 

real-world situation had been replaced by an equivalent graph, the problem had been solved in this 

abstract setting, and the result translated back into the real world. A graph in graph theory is just a 

number of nodes connŜŎǘŜŘ ōȅ ŜŘƎŜǎΦ ²ŜΩǊŜ ƴƻǿ ƎƻƛƴƎ ǘƻ ǎŜŜ Ƙƻǿ IŀƳƛƭǘƻƴ ŎƻƴǘǊƛōǳǘŜŘ ǘƻ ǘƘŜ 

study of graphs. 

HAMILTONIAN PATHS 

What we were looking for in the last section was an Eulerian Path, or a path 

through a graph that visits each edge exactly once. Hamilton was fascinated by 

shapes like the dodecahedron (aka football) and he started searching for a way 

ŀƭƻƴƎ ǘƘŜ ŜŘƎŜǎ ǘƘŀǘ Ǿƛǎƛǘǎ ŜŀŎƘ ǾŜǊǘŜȄ όƴƻŘŜύ ŜȄŀŎǘƭȅ ƻƴŎŜΦ IŜ ŘƛŘƴΩǘ ŎŀǊŜ ŀōƻǳǘ 

using all edges.  

A path that visits each node of a graph once is now called a Hamiltonian Path, 

while a Hamiltonian Cycle is a Hamiltonian path that starts and finishes at 

the same point. The task of finding a Hamiltonian cycle on the edge-graph 

of a regular ŘƻŘŜŎŀƘŜŘǊƻƴ ƛǎ ŎŀƭƭŜŘ IŀƳƛƭǘƻƴΩǎ ƎŀƳŜ ƻǊ ǘƘŜ ƛŎƻǎƛŀƴ ƎŀƳŜΦ 

[ŜǘΩǎ ƎƛǾŜ ƛǘ ŀ ƎƻΗ 

CƛǊǎǘ ƻŦ ŀƭƭΣ ƭŜǘΩǎ ŎƘŀƴƎŜ ƛǘ ǘƻ ŀ н-dimensional problem. Like in the last 

ǎŜŎǘƛƻƴΣ ǿŜ ŘƻƴΩǘ ŎŀǊŜ ŀōƻǳǘ ǘƘŜ ŘƛǎǘŀƴŎŜǎ ōŜǘǿŜŜƴ ƴƻŘŜǎΣ ǇǊƻǾƛŘŜŘ ǘƘŜ 

same things are connected to ŜŀŎƘ ƻǘƘŜǊΦ {ƻΣ ǿŜ Ŏŀƴ άŦƭŀǘǘŜƴ ƻǳǘέ ǘƘŜ 

dodecahedron into a 2-D graph: 

Exercise: Find a Hamiltonian cycle in this graph: 

 Sample solution:  

Hamilton invented a new mathematical method called icosian calculus 

and tried to make this into a commercial product. However this ended 

in failure because the number of solutions people could find was small 

enough and they became bored of it too quickly.  

The notion of Hamiltonian paths and circuits is the most interesting 

aspect of this story, and is an important part of graph theory to this day.  

By Christoph Sommer (Own work) [GFDL, CC-BY-SA-3.0 or CC BY-SA 2.5-2.0-1.0], via Wikimedia Commons 

 

HAMILTONIAN GRAPHS 

A graph is called Hamiltonian if it has at least one Hamiltonian Cycle in it.  

http://www.gnu.org/copyleft/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/2.5-2.0-1.0
https://upload.wikimedia.org/wikipedia/commons/a/ad/Dodecahedron_schlegel_diagram.png
https://upload.wikimedia.org/wikipedia/commons/6/60/Hamiltonian_path.svg
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Exercise:  Museum Circuits 

Part 1:  Suppose you are a security guard in a museum, 

and are locking up for the evening. The diagram given 

here is a plan of the museum, where every square 

represents a room and darkened squares are rooms 

that are closed for renovations. Before closing the 

museum, you have to check each (open) room once 

and only once and finish back where you started (you 

can start wherever you like). You must move from 

room to room and cannot leave the museum. Can you 

trace out your path in each diagram?  

 

 

This part is the same as Part One except that you are racing each other this time. The class will be 

divided into pairs and the first of five museum plans will be placed, upside down, in front of each of 

you. When your teacher says go,  turn over the first plan and start looking for a circuit as quickly as 

possible. The rules for drawing a circuit are the same as in Part One (no leaving the museum, etc.). In 

ŀŘŘƛǘƛƻƴΣ ǿƘŜƴ ŜƛǘƘŜǊ ǇŜǊǎƻƴ ƛƴ ŀƴȅ ǇŀƛǊ ǎŀȅǎ ǘƘŜȅΩǊŜ ŦƛƴƛǎƘŜŘΣ ōƻǘƘ ǎǘǳŘŜƴǘǎ ƛƴ ǘƘŜ ǇŀƛǊ Ƴǳst stop 

immediately, then ōƻǘƘ ŎƘŜŎƪ ǘƘŀǘ ǘƘŜ ǇŜǊǎƻƴ ǿƘƻ ŎƭŀƛƳǎ ǘƘŜȅΩǊŜ ŦƛƴƛǎƘŜŘ ŀŎǘǳŀƭƭȅ Ƙŀǎ ŦƻǳƴŘ ŀ ǾŀƭƛŘ 

circuit. If they have, they win that round. This is continued for the other four museum plans, and the 

person in the pair with the most wins is the winner.  

All templates are here. Solutions can be found in the Primary Maths Circles Booklet here.  

Solution for Template 1.  

 

 

 

 

 

 

 

 

 

https://drive.google.com/open?id=0Byaoho6Ly3rRRUNTSWVDbHhTNG8
http://euclid.ucc.ie/MATHENR/MathCircles_files/Booklet_all.pdf
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Application: Knightôs Tour and the T.S. Problem 

As you can imagine, there are so many different kinds of 

Hamiltonian path problems. A well-ƪƴƻǿƴ ŜȄŀƳǇƭŜ ƛǎ ǘƘŜ YƴƛƎƘǘΩǎ 

Tour in a chessboard: 

aŀƪƛƴƎ ŀ ƪƴƛƎƘǘΩǎ ǘƻǳǊ ƛƴǾƻƭǾŜǎ ƳƻǾƛƴƎ ŀ ƪƴƛƎƘǘ ŀǊƻǳƴŘ ŀ 

chessboard, landing at each square exactly once (no more nor 

ƭŜǎǎ ƻŦǘŜƴύΦ YƴƛƎƘǘǎ Ŏŀƴ ƻƴƭȅ ƳƻǾŜ ƛƴ ά[-shŀǇŜǎέΣ ƛΦŜΦ ƻƴŜ ǎǉǳŀǊŜ 

horizontally and two vertically or two squares horizontally and 

one vertically. 

 

 

 

!ƴ άƻǇŜƴέ ǘƻǳǊ ƛǎ ƻƴŜ ǘƘŀǘ ŘƻŜǎƴΩǘ ǎǘŀǊǘ ǿƘŜǊŜ ƛǘ 

ōŜƎŀƴΤ ŀ άŎƭƻǎŜŘέ ǘƻǳǊ ŘƻŜǎΦ Lǘ ƳƛƎƘǘƴΩǘ ǎŜŜƳ ƭƛƪŜ 

this has anything to do with Hamiltonian paths, 

but think about it: what if we joined each square 

(using lines) to all squares the knight could move 

ǘƻ ƛƴ ƻƴŜ ǘǳǊƴΚ ²ŜΩŘ ƎŜǘ ŀ ƎǊŀǇƘΣ ǿƛǘƘ ǘƘŜ ǎǉǳŀǊŜǎ 

acting as the nodes and the lines as the edges. In 

fact, it would look like this: 

¢ƘŜƴΣ ǘƘŜ YƴƛƎƘǘΩǎ ¢ƻǳr game becomes a matter of 

finding a Hamiltonian path or cycle in this graph. 

As you can imagine, there are loads of different 

tours that can be constructed. It is still a very 

ŘƛŦŦƛŎǳƭǘ ǇǊƻōƭŜƳΣ ƘƻǿŜǾŜǊΦ Lǘ ŎŀƴΩǘ ǊŜŀƭƭȅ ōŜ 

solved by brute force (listing all possible paths in 

the graph and picking out the ones that are Hamiltonian) because there are around τ  ρπ  

Hamiltonian ǇŀǘƘǎ ǘƘŀǘ ŀ ƪƴƛƎƘǘ Ŏŀƴ ǘŀƪŜ όǘƘŀǘΩǎ ŀ ŦŀƛǊƭȅ ōƛƎ ƴǳƳōŜǊΦ Lƴ ŦŀŎǘΣ ƛŦ ƛǘ ǘƻƻƪ ȅƻǳ ŀ ƳƛƴǳǘŜ ǘƻ 

check each path, it would take about 7.5 billion trillion trillion trillion years in total). There are, 

ƘƻǿŜǾŜǊΣ ǎƻƳŜ ŀƭƎƻǊƛǘƘƳǎ ǘƘŀǘ Ŏŀƴ ǇǊƻŘǳŎŜ ǊŜǎǳƭǘǎΦ ! ǳǎŜŦǳƭ ƻƴŜ ƛǎ ²ŀǊƴǎŘƻǊŦŦΩǎ ǊǳƭŜ όŀ άƘŜǳǊƛǎǘƛŎέ 

algorithm), which tells you that, when choosing your next move, you should always take the option 

with the lowest number of possible moves. If you ever find that two or more options share this 

lowest number, you should just pick one of them randomly (there are methods for determining 

ǿƘƛŎƘ ƻƴŜ ǘƻ ŎƘƻƻǎŜΣ ōǳǘ ǘƘŜȅΩǊŜ ǉǳƛǘŜ ŎƻƳǇƭƛŎŀǘŜŘύΦ  

IŜǊŜΩǎ a cool KnƛƎƘǘΩǎ ¢ƻǳǊ ƎŀƳŜ ǿƘƛŎƘ Ŏŀƴ ōŜ ǇƭŀȅŜŘ ƻƴƭƛƴŜΦ LǘΩǎ ŜŀǎƛŜǊ ǘƻ ǳǎŜ ǘƘŀƴ ǘƘŜ ǘǊŀŘƛǘƛƻƴŀƭ 

ŎƘŜǎǎōƻŀǊŘ ōŜŎŀǳǎŜ ƛǘ ƪŜŜǇǎ ǘǊŀŎƪ ƻŦ ǘƘŜ ƳƻǾŜǎ ȅƻǳΩǾŜ ŀƭǊŜŀŘȅ ƳŀŘŜ ŀƴŘ ƻƴƭȅ ǇŜǊƳƛǘǎ ƭŜƎŀƭ ƪƴƛƎƘǘ 

moves.    

 

https://www.brainbashers.com/knight.asp
https://upload.wikimedia.org/wikipedia/commons/6/64/Knight's_graph_showing_number_of_possible_moves.svg
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An extension of the Hamiltonian circuit problem is the 

Travelling Salesman Problem.  

Puzzle: Imagine you are a salesperson who travels 

around a country selling your product in big cities. Some 

of the cities are ƭƛƴƪŜŘ ōȅ ƘƛƎƘǿŀȅǎΣ ǿƘƛƭŜ ƻǘƘŜǊǎ ŀǊŜƴΩǘΣ 

and every highway-link between two cities has an 

associated distance. You want to visit every city exactly 

once and finish where you started, while at the same 

time ensuring you travel the smallest distance possible. 

Which path do you take? 

 Basically, the cities and highways can just be viewed as 

a graph in which the distance between nodes actually 

counts. The problem is simply to find the Hamiltonian circuit with the shortest length: 

Solution:  

When we calculate thŜ ƭŜƴƎǘƘ ƻŦ ǘƘŜ ŎƛǊŎǳƛǘΣ ƛǘ ŘƻŜǎƴΩǘ ƳŀǘǘŜǊ ǿƘŜǊŜ ǿŜ ǎǘŀǊǘ ŦǊƻƳΦ {ƻ ǿŜΩƭƭ ŀƭǿŀȅǎ 

start at A.  

Hamilton Circuit Length  

ABCEDA 2+4+3+3+8=20 

ABCDEA 2+4+7+3+6=22 

ABDCEA 2+3+7+3+6=21 

ADBCEA 3+3+4+3+6=19 

And the winner is ADBCEA.  

This actually has countless applications in the real world. There are the obvious ones like deciding 

how a postman should most efficiently deliver mail, but other uses include determining how best to 

time online advertisements, place vanes on an aircraft turbine and wire a computer. It is in fact one 

of the most intensely-studied problems in optimisation. 

 

ALGEBRA AND GEOMETRY: FROM REAL NUMBERS TO COMPLEX NUMBERS AND 

QUATERNIONS: 

¶ Look at the Algebra with real numbers as a way to describe movements along a line. 

¶ Introduce Complex Numbers as points in the plane, and operations with complex numbers as 

movements on the plane. 

¶ Introduce Quaternion Algebra with the hands-on Quaternion Ball tool.  

¶ Perform rotations in 3D using Quaternions 

Mathematics is a story spanning thousands of years, with hundreds of characters, both human and 

mathematical. It is a story too long for anyone to hear the whole of, but many people spend their 

lives listening. Today we will give a little bit of this story and our main characters will be an Irish 

mathematician, William Rowan Hamilton, and a new number system called the quaternions. But 

what are the quaternions and more importantly, why should we care about them? Hamilton came 

about the idea of quaternions as a way to represent rotations in a three-dimensional space.  

 

C 

E 

B 

A 

D 

8 
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NUMBERS ON THE REAL LINE 

In order to understand these fully, we need to remember how numbers and operations can be 

thought of in practical (and geometric) terms: 

 

   

 

 

For example,  +3 means we skip three unit steps to the right, starting from wherever we are. 

 

 

 

Here we use the symbol ὼ to describe a number that we might not know from the beginning, and 

whose value we might find out later. If our walk along the number line led us to 5, we write this as 

ὼ σ υȢ  To find ὼȟ  we move back 3 spaces:  ὼ υ σ ςȢ 

 

 

Thus σ means moving 3 steps to the left. This is the type of thinking that the Persian 

mathematician al-YƘǿņǊƛȊƳơ (780 ï 850) described by the Arabic word al-jabr (reunion of 

broken parts), which is the origin of the well-known word Algebra. 

Algebra uses symbols to describe numbers. This allows us to make general statements like this one 

(where ὥ stands for any positive number): 

 

 

 

 

From the picture we see that ὥ  is the result of the reflection of ὥ  across 0. Since  

 ὥ ρ ὥ we can thus give a geometric meaning to the multiplication by  ρȡ 

 

 

ρ   has the effect that every number to the left of 0 gets moved to the right and every number 

to the right of 0 gets moved to the left. 

Exercise: Use reflection to explain why multiplying two negative numbers gives you a positive 

number. 

Solution: As ὦ ὦ ρ and ὧ ὧ ρȟ  it is enough that multiplication by  ρ ρ 

means reflecting twice, which takes any number back where it was originally. So ρ ρ ρȢ 

                                                +3 

0                         ὼ                                        5

ὥ is a move of length ὥ to the right ȟ while ὥ is a move of length ὥ to the left.  

 

                                               +3 

0           1            2            3            4            5 

        Geometrically, multiplication by  ρ  is the reflection across 0. 

 

ὥ                             π                             ὥ             

Real numbers = Points on a line 

Operations with numbers = movements along the line 
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Exercise:   Work out how to reflect around a number other than π. [ŜǘΩǎ ǎŀȅ ǘƘŀǘ ǿŜ ƘŀǾŜ ŀ ƴǳƳōŜǊ 

ὃ on the line and another number ὼ. Write an equation for the reflection of ὼ  through ὃ. It should 

be an expression in ὼ and ὃȢ 

 Solution:  

 

 

 

Geometrically, we can move the whole line to the left by ὃȢ Then ὼ becomes ὼ ὃ and ὃ becomes 

π. Then reflecting through π sends ὼ ὃ to ὼ ὃ ὃ ὼ.  Now we need to move the line back 

to the right by ὃȢ   This makes ὃ ὼ into ςὃ ὼȢ 

 

COMPLEX NUMBERS  

As often happens with stories, we must now skip ahead in time. We come to the second major 
characters in our story, the complex numbers. Armed with all the numbers, operations and symbols 
they could put on a line, mathematicians could now solve so many different equations that they 
even starting looking into impossible ones, like this one:    

ὼ  ρ  π 

which is the same as ὼ ρ or equivalently ὼ  Ѝ ρ or Ѝ ρ.  But taking the square root of a 

negative number seemed totally impossible for a long time. The first person who dared mention it was 

the sixteenth century Italian mathematician Cardano, who called such a number ὼ meaningless, 

fictitious, and imaginary. From here on, this number was denoted by Ὥ from ñimaginaryò. 

  άFor well over two centuries after imaginary numbers broke 
into the domain of mathematics they remained enveloped by a 
veil of mystery and incredibility until finally they were given a 
simple geometrical interpretation by two amateur 
mathematicians: a Norwegian surveyor by the name of Wessel 
and a Parisian bookkeeper, Robert Argandέ. According to their 
interpretation a complex number, as for example σ τὭ,  may be 
represented as in the Figure here in which 3 corresponds to the 
horizontal distance, and 4 to the vertical.  
όDŜƻǊƎŜ DŀƳƻǿΣ άhƴŜΣ ǘǿƻ Σ ǘƘǊŜŜ Χ ƛƴŦƛƴƛǘȅέύΦ 
 
      Looking at this geometrically, we now see 
 
 
 
 
 
 

 ὼ ὃ                            ὼ ὃ 

 

π                 ςὃ ὼ                              ὃ                                     ὼ             

Complex numbers =  Points on the plane 

                            and hence we would expect that 

Operations with complex numbers = movements on the plane. 
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Products:  
 
When we multiply a real number, say 4, representing a point 
on the horizontal axis, by the imaginary unit Ὥ we obtain the 
purely imaginary number τὭ, which must be plotted on the 
vertical axis.  
 
 
 
 
 

 
 
We can see that rotating by 90° twice corresponds 
to a rotation by 180°, which is the same as the 
reflection through the origin O: 

ὭẗὭẗτ τ 

or equivalently Ὥ ρȢ  The equation that had 

baffled mathematicians for centuries now has a very 

nice geometric interpretation.  

(Recall that Ὥẗ  is the rotation by ωπЈ  while ρẗ is 

the reflection through 0.) 

 

 
By the same means 

 

Reflections: 

Another way to move things in the plane is to reflect 

across lines.  Reflecting a point across the line means 

drawing a segment through ὖ which is 

perpendicularly bisected by the line.  

For the reflection of ᾀ  ὥ Ὥὦ across the 

horizontal and the vertical axis, respectively we have: 

Reflection of ᾀ ὥ ὦὭ across the real axis gives 

ὥ Ὥὦ. This is called the conjugate of z and is 

denoted by  ᾀӶ. Reflection across the imaginary axis 

gives ɀὥ Ὥὦ. 

 

   Multiplication by  Ὥ  is the same as a counter-clockwise rotation by a right angle around 0. 
 
 

    Multiplication by Ὥ  is the same as a clockwise rotation by a right angle around 0. 
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Plaque on Broom bridge. Wikimedia Commons. 

Exercise: Successive Reflections. 

Reflections are important in many ways. For example, 

take two lines ὰ and Ὧ meeting at ὕ and with an angle 

 σπᶼ  between them. Reflect a point ὖ through 

ὰ and then Ὧ successively to get ὖ and then ὖȢ  

 

If ᷁ ὓὕὔ σπᶼ and ᷁ ὖὕὓ ρπᶼȟ find ᷁  ὖὕὖȢ 

 

 

 

 

Solution:  reflection means that Ў ὖὕὓḳ Ў  ὖᴂὕὓ and Ў ὖὕὔḳ Ў ὖᴂᴂὕὔ hence ȿὖὕȿ ȿὖᴂὕȿ

ȿὖᴂᴂὕȿ and ᷁  ὖὕὓ  ᷁ὖᴂὕὓ and ᷁  ὖὕὔ  ᷁ὖᴂᴂὕὔ. Hence by summing up : 

      ᷁  ὖὕὖ  ᷁ὖὕὖ  ᷁ὖὕὖ ς ᷁ὖὕὓ ς ᷁ὖὕὔ ς ᷁ ὓὕὔ  ς Ȣ  

 

THE QUATERNIONS 

¶ Introduce the Quaternions as a four-dimensional system of imaginary numbers. 

¶ Describe addition and multiplication of Quaternions, with the use of a geometric visualisation. 

¶ Consider some applications of the Quaternions. 

Just like complex numbers numbers ὥ ὦὭ represent points in the plane and are made of a pair of 

real numbers ὥȟὦ, we can represent a point in the 3-dimensional space by a triplet ὼȟώȟᾀ. 

Hamilton was fascinated by the discovery that multiplication represents rotation in the complex 

plane, and he wanted to do the same in 3D. ¢ƘŜ ǇǊƻōƭŜƳ ƻŦ ŦƛƴŘƛƴƎ ŀƴ ŀƭƎŜōǊŀ ƻŦ ǘǊƛǇƭŜǎ όʰΣ ʲΣ ʴύ ǘƻ 

describe the geometry of vectors in three dimensional (3D) space haunted him for at least fifteen 

years. 

ά9ǾŜǊȅ ƳƻǊƴƛƴƎ ƛƴ ǘƘŜ ŜŀǊƭȅ ǇŀǊǘ ƻŦ ǘƘŜ ŀōƻǾŜ-cited month [October 1843], on my coming down to 

ōǊŜŀƪŦŀǎǘΣ ȅƻǳǊ όǘƘŜƴύ ƭƛǘǘƭŜ ōǊƻǘƘŜǊ ²ƛƭƭƛŀƳ 9ŘǿƛƴΣ ŀƴŘ ȅƻǳǊǎŜƭŦΣ ǳǎŜŘ ǘƻ ŀǎƪ ƳŜΣ ά²ŜƭƭΣ tŀǇŀΣ Ŏŀƴ 

you multiply ǘǊƛǇƭŜǘǎέΚ ²ƘŜǊŜǘƻ L ǿŀǎ ŀƭǿŀȅǎ ƻōƭƛƎŜŘ ǘƻ ǊŜǇƭȅΣ ǿƛǘƘ ŀ ǎŀŘ ǎƘŀƪŜ ƻŦ ǘƘŜ ƘŜŀŘΥ άbƻΣ L 

Ŏŀƴ ƻƴƭȅ ŀŘŘ ŀƴŘ ǎǳōǘǊŀŎǘ ǘƘŜƳΦέ ² w IŀƳƛƭǘƻƴ ƛƴ ŀ ƭŜǘǘŜǊ ŘŀǘŜŘ !ǳƎǳǎǘ рΣ муср ǘƻ Ƙƛǎ ǎƻƴ ! I 

Hamilton [1]. 

In 1843, Hamilton found an ingenious way around his problem. 

The solution famously came to him as he was walking along the 

Royal Canal in Dublin with his wife on 16th October (now called 

Hamilton day)- he suddenly realised that the answer lay in 

numbers with four components instead of three. In his 

excitement, he promptly used his penknife to carve the solution 

equations into the side of nearby Broom bridge: 

Ὥ Ὦ Ὧ ὭὮὯ ρ 

Two successive reflections across two lines through O amounts to a rotation by double the angle 

between the two lines  

(clockwise or counter-clockwise depending on which line you reflected across first)  
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This was the birth of the quaternions, which we represent by ᴏ in honour of Hamilton. [ŜǘΩǎ ƭƻƻƪ 

more closely at ǿƘŀǘ ǿŜΩǾŜ Ƨǳǎǘ ǿǊƛǘǘŜƴΦ 

First, Hamilton decided that he could have not just 1, but 3 άƛƳŀƎƛƴŀǊȅέ axes, each with its own unit: 

Ὥ, Ὦ and Ὧ are what we call the quaternion units. They form the building blocks of the quaternions. 

Notice that they all satisfy Ὥ Ὦ Ὧ ρ, so in fact we now have 4 axes: three for ὭȟὮ and Ὧ, 

and a fourth one for the real numbers. 

 

To help us better grasp the 

consequences of the rules 

above, we need to play with the 

symbols ὭȟὮ and Ὧ and in 

particular, to understand their 

products. Luckily, we have a 

handy toy available to help us 

with this task. It is based on the 

following ball in the 3D 

quaternion space. As you can 

see, the axes are marked by the 

units ὭȟὮȟὯ on one side, and 

ὭȟὮȟὯ on the other side. On 

each of the three coordinate 

planes marked by circles, 

multiplication  ẗὭ ȟẗὮ ȟẗ

Ὧ represents a rotation. Indeed, 

each circle lies on a plane very 

ǎƛƳƛƭŀǊ ǘƻ ǘƘŜ ŎƻƳǇƭŜȄ ǇƭŀƴŜ ǿŜΩǊŜ ƳŜǘ ŜŀǊƭƛŜǊΦ  

 

 LŦ ȅƻǳ ƘŀǾŜƴΩǘ ŀƭǊŜŀŘȅ ŘƻƴŜ ǎƻΣ ǇƭŜŀǎŜ print out and 

assemble the Quaternion Ball learning tool by clicking 

here. We will use it to play with quaternion right 

multiplication. As you can see, the Ball is made of three 

discs that intersect at right angles, with red circles on each 

disc. We find that tracing a finger along these circles while 

carrying out this exercise is helpful. Tracing out a quarter 

circle in the same direction as the arrow on it corresponds 

to right the quaternion unit (Ὥ, Ὦ or Ὧ) printed next to the circleΦ ¢ǊŀŎƛƴƎ ƻǇǇƻǎƛǘŜ ǘƻ ǘƘŜ ŀǊǊƻǿΩǎ 

direction corresponds to the negative of the unit. Tracing out a number of quarter arcs in sequence 

corresponds to each of the units traced out written down next to each other in the same order: to 

the right, for example, I trace out Ὥ and then Ὦ, which matches the multiplication Ὥ Ὦ ὭὮ. Any 

other path that takes you from the same starting point to the same finish gives an equal answer: 

here, I could also have taken Ὧ to get to the same point, so I know now that ὭὮ Ὧ, or ὭὮὯ. 

Let everyone in the class please copy the table just below onto a sheet of paper, and using the 

https://drive.google.com/open?id=0Byaoho6Ly3rRQXR0YzRoeGZWRUE
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vǳŀǘŜǊƴƛƻƴ .ŀƭƭ ŀǎ ǿŜΩǾŜ ŘŜǎŎǊƛōŜŘΣ fill out all the missing entries. Note: Multiplication by 1 does not 

figure on the Quaternion Ball because it represents staying in place: no change. 

 

 

 Exercise: 

Fill in the table with the correct Hamilton products. For 

each box, its row represents the first number in the 

product, while its column is the second number. 

CƻǊ ŜȄŀƳǇƭŜΣ LΩǾŜ ǇƭŀŎŜ Ὧ in row Ὥ and column Ὦ because 

ὭὮὯ. 

 

 

Solution:  

hƴŎŜ ȅƻǳΩǾŜ ŦƛƭƭŜŘ ƛƴ ǘƘŜ ōƻȄΣ ȅƻǳ ǿƛƭƭ ƴƻǘƛŎŜ ǎƻƳŜǘƘƛƴƎ ƪƛƴŘŀ ǿŜƛǊŘ ŀōƻǳǘ ƛǘΦ 9ǾŜǊȅōƻŘȅ ƪƴƻǿǎ ǘƘŀǘ 

ǊŜǾŜǊǎƛƴƎ ǘƘŜ ƻǊŘŜǊ ƻŦ ŀŘŘƛǘƛƻƴ ŘƻŜǎƴΩǘ ƳŀǘǘŜǊΣ ŘƻƴΩǘ 

they?  

                           σ τ χ τ σ,    right?  

Similarly for multiplication: ς  υ ρπ υ  ς. 

IƻǿŜǾŜǊΣ ǿŜΩǾŜ Ƨǳǎǘ ǎŀƛŘ ǘƘŀǘ ὮὯὭ and ὯὮ Ὥ, which 

ŀǊŜƴΩǘ ŜǉǳŀƭΦ {ƻΣ ƻǊŘŜǊ does matter when it comes to the 

quaternions: ǘƘŀǘΩǎ Ƨǳǎǘ Ƙƻǿ ǘƘŜȅ ŀǊŜΦ ¢ƘŀǘΩǎ ǎƻƳŜǘƘƛƴƎ 

to watch out for when dealing with them.  

Note, however, that when you multiply just an imaginary 

ŀƴŘ ŀ ǊŜŀƭΣ ƻǊŘŜǊ ŘƻŜǎƴΩǘ ƳŀǘǘŜǊΦ CƻǊ ŜȄŀƳǇƭŜΣ ψ ▒ ▒ψ.   

USING THE QUATERNIONS ς ROTATIONS IN 3D 

Aside from being a fascinating area of study in pure maths, the 

quaternions have at least one major application in the real world- 

mathematically representing rotations in three dimensions. There 

are other ways (like using rotation matrices) to do this, but the 

algebra is much simpler when using quaternions and certain 

problems that can arise with matrices are avoided. As a result, 

rotations are described by quaternions in multiple areas, 

including video game and movie animation, aircraft and spacecraft attitude control and robotics. 

 

Quaternions in Spaaace! 

As we explained before, quaternions ŀǊŜ ǳǎŜŘ ŦƻǊ ŎƻƴǘǊƻƭƭƛƴƎ ǎǇŀŎŜŎǊŀŦǘ ŀǘǘƛǘǳŘŜΣ ǎƻ ǿŜΩǊŜ ƴƻǿ ƎƻƛƴƎ 

to look at an example of how this works. By the way, attitude is just a terms used in astronautics and 

  ░ ▒ ▓ 

     

░   Ὧ  

▒     

▓     

 
 

 ░ ▒ ▓ 

     1    Ὥ   Ὦ Ὧ 

░ Ὥ ρ Ὧ Ὦ 

▒ Ὦ Ὧ ρ Ὥ 

▓ Ὧ Ὦ Ὥ ρ 
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other areas that means orientation in 3-5Φ bƻǿΣ ƭŜǘΩǎ ǘƘƛƴƪ ŀōƻǳǘ ŀ ǎǇŀŎŜ ǎƘǳǘǘƭŜ ƛƴ orbit above 

earth: 

 

Example: Imagine the astronauts are having a tanning competition on board and want to turn the 

shuttle by ωπЈ to its left so that it faces the sun, like this: 

 

How does the shuttle carry out this command? To be mathematical, we say that we want to rotate 

the shuttle by ωπЈ around a vertical axis: 

 

 

 

 

 

 

 

 

Answer: Recall that multiplication by Ὥ represents a counter-clockwise rotation by ωπᶼ on the 

horizontal plane. This rotation is simple though; other rotations do not have formulas as simple.  

Remember that Hamilton discovered quaternions on the way to explaining how to use multiplication 

to rotate objects in 3D. We will work in the 3D space whose 3 axes have units ὭȟὮ and Ὧ.  

ωπЈ 

Vertical Axis 


