CytoReason And Summit Pharmaceuticals International Forge Commercial Alliance To Bring CytoReason’s Machine Learning Model Of The Immune System For Drug Discovery & Development To Japanese Drug Makers

March 14, 2019

CytoReason, a leader in machine learning for drug discovery and development, and Summit Pharmaceuticals International Corporation (SPI), a wholly-owned subsidiary of Sumitomo Corporation, announced today the signing of a commercial partnership which will see SPI represent CytoReason’s unique immune focused machine learning platform in the Japanese market, the third largest globally.

Ground Breaking New Methodology Published In Nature Medicine Uncovers The Missing Numbers To The Only Clock That Really Matters In The Body – Your Immune Age.

March 11, 2019

New data, published in Nature Medicine, from scientists at the Technion, Stanford and CytoReason describes for the first time ever a way to reliably quantify a person’s “immune age”. This game changing capability provides a much more reliable predictor for the status of your immune system than any other method and could lead to fundamental changes in drug & vaccine development and medical practice.

CytoReason Signs Collaboration Agreement with Pfizer Inc. To Utilize CytoReason’s Machine Learning Model of the Immune System for Drug Discovery

January 07, 2019

CytoReason, a leader in machine learning for drug discovery and development, announced today that it has entered into a collaboration agreement with Pfizer Inc. (NYSE:PFE) that will leverage CytoReason’s cell-centered models of the immune system. CytoReason will receive from Pfizer payments potentially equaling up to low double-digit millions of US$ for technology access fees, research support and certain success-based payments.

2018 Releases

New CytoReason Machine Learning Model Turns Mice into Men (and Women) to Overcome the Barrier of Cross-Species Differences in Drug Development, Published in Nature Methods

November 26, 2018
Groundbreaking model translates the results of new mouse experiments into the equivalent human condition, outperforming traditional methods of extrapolation by up to 50%. This could lead to reductions in post-mice human trial failures and provides further supporting data for IND submissions. Leveraging existing mouse and human gene expression data, the new approach demonstrates its ability to uncover novel disease-related genes, providing new disease understanding and new targets for drug discovery.

October 16, 2018 09:00 AM Eastern Daylight Time

CytoReason: New Machine-Learning Driven Findings Uncover New Cellular Players in Tumor Microenvironment That Might Point the Way to Improved Immunotherapy for Refractory Melanoma Patients

The results, presented at the American Association for Cancer Research Special AI Conference, identifies the potential involvement of adipocytes in nivolumab (anti-PD1) response in ipilimumab (anti-CTLA4) resistant melanoma patients using a unique machine learning model of the immune system.

June 18, 2018 11:35 AM Eastern Daylight Time

CytoReason’s Unique Immune-Focused AI Model Creates the Largest Library of Inter-Cellular Communications - Uses It to Predict 335 Novel Cell-Cytokine Interactions, New Clues for Drug Development. New Data Published by Nature Biotechnology

Covering 16,000,000 scientific articles, this massive Natural Language Processing (NLP) project quadruples the reference body of organized inter-cellular signaling interactions, plots inter-cellular immune profiles for 188 diseases and creates the first ever immune-centered map of disease similarities and differences.

April 16, 2018 12:20 PM Eastern Daylight Time

CytoReason Cements Proof-of-Concept with Machine-Learning-Facilitated Biomarker Breakthrough in Anti-TNFα Treatment Failure in Inflammatory Bowel Disease. New Data Published in Gut

CytoReason’s proprietary technology demonstrates ability to reconstruct hidden cellular signals, extrapolate one tissue to another and identify immune system relationships capable of revealing new biomarkers and potential new treatment targets for immune-related drugs.