Title
Disordered fronto-limbic interactions during emotion processing in the vulnerable brain: fMRI and Dynamic Causal Modeling applied to the study of adolescents

Authors
Sunali Wadehra
Simon B. Eickhoff
Patrick Pruitt
M. S. Keshavan
Eric Murphy
Vaibhav A. Diwadkar

Affiliations
1Dept of Psychiatry & Behavioral Neuroscience, Wayne State University SOM
2Institut für Neurowissenschaften und Biophysik Medizin, Forschungszentrum Juelich, Juelich, Germany
3Department of Psychiatry and Psychotherapy, School of Medicine, RWTH Aachen University, Aachen, Germany
4Psychiatry, Beth Israel Deaconess Medical Center, Harvard University SOM
5Dept of Psychology, Georgetown University
6Psychiatry, University of Pittsburgh SOM

Abstract
Background: Disordered organization of cortico-limbic circuits in the brain may underlie documented social impairments in schizophrenic offspring (SCZ-Off; Philips and Seidman, 2008). Advanced techniques such as Dynamic Causal Modeling (DCM; Stephan et al., 2007) are ideally suited to understand network interactions in the brain, yet have never been applied to this important developmental question. Here we use a combination of DCM and fMRI to investigate cortico-limbic network interactions during affective appraisal in a group of adolescent (10 ≤ age ≤ 20 yrs) SCZ-Off (n=19) and controls (n=24).

Methods: All subjects provided consent or assent before performing an event-related affective appraisal task (continuously presented faces; Ekman & Oster, 1979). DCM was conducted (SPM8) on fMRI data (4.0T) using time series (p<.05, effects of interest) from five cortico-limbic regions (V1, FG, Amyg, DPFC, VPFC). To comprehensively address model fit, we employed 100 models per subject to explore a combination of intrinsic and modulatory interactions between regions. Finally, Bayesian model selection (Stephan et al., 2009) identified the appropriate models within and across groups.
Results: Results of a conjunction analysis (activation to faces) in Controls and SCZ-Off are depicted in Figure 1 and show activation in both groups in our network of interest. Significant clusters ($p<.05$) are depicted on dorsal (a; bilateral DPFC), ventral (b; visual, fusiform, amygdala, and VPFC) and medial (c; amygdala, fusiform, and visual) views of the brain. Figure 2 shows, (a) Reduced intrinsic DPFC \rightarrow Amygdala and VPFC \rightarrow Amygdala connectivity/coupling (in 1/s) in SCZ-Off, relative to HC and (b) in SCZ-Off, markedly increased modulatory inhibition of activity in these pathways by the valence of the face.

Conclusions: Aberrant cortico-limbic responses appear to characterize the impaired affective response in adolescent SCZ-Off and may reflect a substantive disordering of this important pathway.

References:

Disclosure

This research was supported by grants from the National Institute of Mental Health (MH68680) and the Children’s Research of Michigan (CRCM) to VAD. We thank Jeffrey Stanley and Mary Phillips for helpful discussions and Valentina Gumemyuk, Karthik Sundaresan and Serguei Fedorov for assistance in experimental design and programming. The authors have no conflicts of interest.

Keywords
Emotion processing; Fronto-limbic connectivity; Dynamic Causal Modeling; fMRI; Adolescents