Novel opsin gene variation in large-bodied, diurnal lemurs

Rachel L. Jacobs¹,²,†, Tammie S. MacFie³, Amanda N. Spriggs¹,⁴, Andrea L. Baden²,⁵, Toni Lyn Morelli²,⁶, Mitchell T. Irwin⁷, Richard R. Lawler⁸, Jennifer Pastorini⁹, Mireya Mayor⁷, Runhua Lei¹⁰, Ryan Culligan¹⁰, Melissa T. R. Hawkins¹⁰, Peter M. Kappeler²,¹¹, Patricia C. Wright²,¹², Edward E. Louis Jr¹⁰, Nicholas I. Mundy³,⁴ and Brenda J. Bradley¹,‡

¹Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA
²Centre ValBio Research Station, Ranomafana, Fianarantsoa, Madagascar
³Department of Zoology, University of Cambridge, Cambridge, UK
⁴Department of Anthropology, University at Albany-SUNY, Albany, NY 12222, USA
⁵Department of Anthropology, Hunter College-CUNY, and The New York Consortium in Evolutionary Primatology (NYCEP), New York, NY 10065, USA
⁶Department of Environmental Conservation, University of Massachusetts, Amherst, MA 01003, USA
⁷Department of Anthropology, Northern Illinois University, DeKalb, IL 60115, USA
⁸Department of Sociology and Anthropology, James Madison University, Harrisonburg, VA 22807, USA
⁹Anthropologisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
¹⁰Conservation Genetics Department, Omaha’s Henry Doorly Zoo and Aquarium, Omaha, NE 68107, USA
¹¹Behavioural Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, Göttingen 37077, Germany
¹²Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA

Some primate populations include both trichromatic and dichromatic (red–green colour blind) individuals due to allelic variation at the X-linked opsin locus. This polymorphic trichromacy is well described in day-active New World monkeys. Less is known about colour vision in Malagasy lemurs, but, unlike New World monkeys, only some day-active lemurs are polymorphic, while others are dichromatic. The evolutionary pressures underlying these differences in lemurs are unknown, but aspects of species ecology, including variation in activity pattern, are hypothesized to play a role. Limited data on X-linked opsin variation in lemurs makes such hypotheses difficult to evaluate. We provide the first detailed examination of X-linked opsin variation across a lemur clade (Indriidae). We sequenced the X-linked opsin in the most strictly diurnal and largest extant lemur, Indri indri, and nine species of smaller, generally diurnal indriids (Propithecus). Although nocturnal Avahi (sister taxon to Propithecus) lacks a polymorphism, at least eight species of diurnal indriids have two or more X-linked opsin alleles. Four rainforest-living taxa—I. indri and the three largest Propithecus species—have alleles not previously documented in lemurs. Moreover, we identified at least three opsin alleles in Indri with peak spectral sensitivities similar to some New World monkeys.

1. Introduction

Many primate species exhibit ‘polymorphic trichromacy’ through allelic variation of a single X-linked (medium-to-long wavelength sensitive) opsin gene [1]. As a result, all males and homozygous females are inferred to be red–green colour-blind (dichromatic), while heterozygous females are inferred...
to be trichromatic [1]. This variation is thought to be maintained, in part, by adaptive advantages conferred to trichromats. Many hypotheses highlight the potential utility of trichromacy for foraging on ‘reddish’ food (fruit, young leaves), particularly during the day when light levels are more conducive to colour vision (reviewed in [2,3]).

Polymorphic trichromacy is both widespread and highly variable (more than two opsin alleles) among most diurnal New World monkeys and is found in some day-active Malagasy lemurs (two alleles) [2–8]. Yet other day-active lemurs appear to have a single opsin allele and are strictly dichromatic [9–11]. There is some behavioural evidence linking differences in opsin gene variation to differences in colour vision phenotypes among lemurs [8,12], and it has been suggested that this variation might be influenced by ecological differences, including the degree of diurnal behaviour [10]. This hypothesis has been difficult to evaluate, however, because X-linked opsin data are only available for a few lemur taxa [6–11]. To help fill this gap, we provide the first comprehensive examination of X-linked opsin variation across members of the lemur family Indriidae. Indriid species share some ecological traits (e.g. folivory), but they vary in body size and activity pattern. The largest extant lemur, *Indri indri*, is the most strictly diurnal lemur species [13,14]. Related to *Indri* are the sister taxa *Avahi* (nocturnal) and *Propithecus* (diurnal, with some activity at dawn/dusk) [13–16].

2. Methods

Amino acid changes at three sites (180: exon 3; 277, 285: exon 5) in the X-linked opsin gene(s) are primarily responsible for spectral differentiation of medium/long wavelength sensitive opsins in primates [17,18], and at least in some primate opsin alleles (found in New World atelines), changes at site 294 can also have an effect [19]. Although all three primary sites (180, 277, 285) are variable in polymorphic New World monkeys, variation in lemurs has only been documented in site 285 leading to two alleles: alanine 180, tyrosine 277, alanine 285 (AYA), and alanine 180, tyrosine 277, threonine 285 (AYT), which encode opsins with peak spectral sensitivities (λ_{max}) approximately 543 nm (‘M’) and approximately 558 nm (‘L’), respectively [2–8]. We sequenced exons 3 and 5 to capture the three key functional sites in the X-linked opsin gene of indriids (electronic supplementary material).

We genotyped the X-linked opsin for 151 wild individuals representing all nine species of *Propithecus* and the single species of *Indri* (*I. indri*) across 15 sites in Madagascar (figures 1 and 2; electronic supplementary material). We pooled populations to characterize opsin allele variation for each species (for *P. perrieri* and *P. candidus* we had data for a single individual). Data for wild *Avahi* (nine species) were previously published [20].

3. Results

We identified substantial variation in the amino acid composition of opsin alleles (figure 2; see [22] for sequence
Eight species of diurnal indriids had two or more alleles, and heterozygotes were only found among females, indicating they have polymorphic trichromacy. For five Propithecus species (P. coquereli, P. coronatus, P. deckenii, P. verreauxi, and P. tattersalli), we identified the two alleles previously found in lemurs [6] based on variation at site 285 (figure 2): AYA ($\lambda_{\text{max}} \approx 543\text{ nm}$) and AYT ($\lambda_{\text{max}} \approx 558\text{ nm}$). All spectral sensitivities are based on the estimated effects of differences in the three spectral tuning sites [5,6]. The AYT allele was also found in the single P. perrieri individual.

Two Propithecus species—P. diadema and P. edwardsi—have variation at functional sites 277 and 285 in exon 5. In both species, an allele with three-site composition AFA is found, with $\lambda_{\text{max}} \approx 535\text{ nm}$ [5]. The other X-linked opsin is shared with other Propithecus (AYT, $\lambda_{\text{max}} \approx 558\text{ nm}$). We also identified the AFA allele in the single P. candidus individual.

Indri exhibits the most allelic variation observed to date in strepsirrhine primates. Unlike previous studies, we identified amino acid variation at all three functional sites and verified at least three alleles. We confirmed two novel opsins in lemurs. One allele has a three-site composition of serine, phenylalanine and threonine (SFT): AYA (AYT, $\lambda_{\text{max}} \approx 558\text{ nm}$).

Three females were heterozygous at all three functional sites 277 and 285 in exon 5. In other cases, haplotypes could be inferred from homo/ hemizygotes. Given the presence of the SYT allele in Indri, and AFA allele in three species of Propithecus, AFA/SYT is the most likely allelic combination, but we cannot rule out the potential presence of SFA and AYT alleles. Accordingly, we identified at least three and up to five alleles in Indri.

Figure 2. X-linked opsin amino acid variants at three key functional sites for each genotype. Peak spectral sensitivities estimated based on spectral tuning sites following [5,6]. The number of females (F) and males (M) exhibiting each genotype is provided. Phylogeny from [21]. Body size data from [16]. Lemur illustrations

data from published material based on exon 5 only [20].

Table: X-linked opsin amino acid variants

<table>
<thead>
<tr>
<th>Body size (kg)</th>
<th>Activity cycle</th>
<th>180°</th>
<th>277</th>
<th>285</th>
<th>Estimated λ_{max} (nm)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0 – 6.0</td>
<td>F</td>
<td>A</td>
<td>A</td>
<td>535b</td>
<td>1 F</td>
<td></td>
</tr>
<tr>
<td>3.5 – 4.3</td>
<td>Y</td>
<td>A</td>
<td>T</td>
<td>543</td>
<td>2 F, 4 M</td>
<td></td>
</tr>
<tr>
<td>3.0 – 4.5</td>
<td>Y</td>
<td>A</td>
<td>T</td>
<td>558</td>
<td>2 F, 1 M</td>
<td></td>
</tr>
<tr>
<td>3.0 – 3.5</td>
<td>Y</td>
<td>A</td>
<td>T</td>
<td>543</td>
<td>26 F, 11 M, 1Uc</td>
<td></td>
</tr>
<tr>
<td>3.7 – 4.3</td>
<td>Y</td>
<td>A</td>
<td>T</td>
<td>558</td>
<td>2 M</td>
<td></td>
</tr>
<tr>
<td>3.4 – 3.6</td>
<td>Y</td>
<td>A</td>
<td>T</td>
<td>558</td>
<td>8 F</td>
<td></td>
</tr>
<tr>
<td>6.0 – 8.5</td>
<td>F</td>
<td>A</td>
<td>535</td>
<td>1 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0 – 6.5</td>
<td>Y</td>
<td>T</td>
<td>558</td>
<td>1 M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3 – 5.0</td>
<td>Y</td>
<td>T</td>
<td>558</td>
<td>1 M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9 – 1.4</td>
<td>?</td>
<td>Y</td>
<td>T</td>
<td>555</td>
<td>50 F, 10 Md</td>
<td></td>
</tr>
<tr>
<td>6.0 – 9.5</td>
<td>F</td>
<td>T</td>
<td>555</td>
<td>1 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>F</td>
<td>T</td>
<td>562</td>
<td>4 F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>F/Y</td>
<td>T</td>
<td>555/562</td>
<td>2 F, 4 M, 5Uc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/S</td>
<td>F/Y</td>
<td>T</td>
<td>535/562</td>
<td>3 F</td>
<td></td>
</tr>
</tbody>
</table>

*Single sun = diurnal with some activity at dawn/dusk [13,15,16] (note: detailed data are lacking for many species), moon = nocturnal [16], double sun = highly diurnal [13,14].

*Data for site 180 are from genotypes obtained representing 70% of individuals from the total sample size (4–44 individuals per species with N > 1).

Data for exon 3 are available for all alleles for each diurnal species.

Spectral sensitivities in bold are based on three-site compositions that have not been previously identified in lemurs.

*Genotype identified in individuals of unknown (U) sex.

aData from published material based on exon 5 only [20].
4. Discussion

Our results reveal that the X-linked opsin gene in lemurs is more variable than previously thought. Prior studies identified two opsins alleles based on spectral-shifting variation at a single site (285) [6–10]; we uncovered variation at additional sites (180, 277), leading to the identification of at least three alleles not previously described in lemurs. We documented polymorphic trichromacy in eight species of diurnal indriids, including six species for which opsin allele variation was previously unknown [6,8]. Propithecus perrieri and P. candiatus might also prove polymorphic with the genotyping of additional individuals. By contrast, the closely related nocturnal genus Avahi is dichromatic with a single X-linked opsin [20]. Notably, the largest-bodied, most strictly diurnal lemur, Indri indri, exhibits the most variation. It is the only lemur currently identified to have variation at site 180, and the only species with three alleles confirmed.

The three ‘novel’ alleles we identified in Indri and some species of Propithecus (AFA, SFT and SYT) have not been described among strepsirrhines, but they have been identified in diurnal haplorhines [2–5,23,24]. AFA and SYT occur among routinely trichromatic catarhines and platyrrhine howling monkeys as two separate X-linked opsin gene variants, and are common allelic variants among polymorphic platyrrhines [2–5,23,24]. SFT is more rare, having only been documented in New World atelids, Cacajao and Cebus [5,23,24]. Studies modelling the colour vision of haplorhines suggest that their photopigments are optimized for detecting food items in a rainforest environment [25,26], and interestingly, the ‘novel’ spectral sensitivities we observed in lemurs are limited to the largest-bodied, diurnal species living in the eastern rainforests of Madagascar. All other diurnal species that exhibit the two alleles previously described in lemurs occur in dry forest habitats [16]. Thus, although not explicitly tested in this study, opsin gene variation in lemurs might be influenced by various ecological factors, including activity pattern, diet, habitat and predation pressure [8,10,27,28].

Overall, our study has revealed greater variation in lemur opsin genes, and the novel variation we identified is so far limited to the largest-bodied, diurnal indriids. Given that most large-bodied, diurnal lemurs have recently gone extinct (last 2000 years) [29], the opsin variation observed today could underrepresent the full range of variation in lemurs. New palaeogenomic techniques may reveal additional variation in recently extinct subfossil lemurs [30], further expanding our understanding of opsin gene diversity in this lineage.

Ethics. All procedures were approved by and adhered to institutional and national guidelines. Procedures were approved by the Institutional Animal Care and Use Committees (IACUC) of Stony Brook University (IACUC no. 2003-1169, 2005-2008-1449) and Omahe's Henry Doorly Zoo and Aquarium (IACUC no. 97-100, 12-101).

Data accessibility. Sequence data are available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.q1d1s [22].

Competing interests. We have no competing interests.

Funding. This research was funded by the UK Natural Environment Research Council, Yale University and George Washington University.

Acknowledgements. We thank Gary Aronsen for laboratory support and multiple researchers/assistants at our field sites without whom this research would not be possible.

References

18. Himatsu C, Radlwimmer FB, Yokoyama S, Kawamura S. 2004 Mutagenesis and reconstitution of

rsbl.royalsocietypublishing.org
Biol. Lett. 13, 20170590
Downloaded from http://rsbl.royalsocietypublishing.org/ on March 9, 2017