A Continuum-based Model for Insertional Code-Switching

Japanese Nominal Insertion in English Matrix Language Frames

Kazuhiko Namba

Kyoto Sangyo University

This study explores one of the structural aspects of code-switching (CS) in two typologically distant languages, English and Japanese. Only the ‘insertion’ type of CS is dealt with, since it entails grammatical interaction between the two languages. Data collected from a pair of English-Japanese bilingual siblings’ CS are analyzed using Myers-Scotton’s MLF and 4-M models (2002), which are insertion frameworks. Viewed from the perspective of EL activation, the study identifies a continuum from borrowing to single-item insertion, to multi-item insertion. The study also investigates whether the matrix language (ML) can be identified using the System Morpheme and Morpheme Order Principles. The combination of the two Principles works well when the EL activation level is low. However, the System Morpheme Principle does not work in cases where the EL is fully activated. Based on this study, it is suggested that the MLF model can be subsumed under the continuum-based model.

Introduction

For many people or communities, the use of two or more languages in a conversation, i.e. code-switching (CS hereafter), is not an extraordinary phenomenon but the norm (Baker & Jones, 1998, p. 59). This being the case, linguistic research should not underestimate the importance of understanding the mechanisms that underlie code-switching. In interactions between bilinguals, we need to look at how CS is influenced by the two sets of grammar in use.

In order to explore some of the structural aspects of CS, the present study is based on code-switched data between two typologically distant languages—English and Japanese. Naturalistic conversational data from two English/Japanese bilingual siblings were collected through audio-recordings of unsolicited speech. The focus of the current

© 2009 Kazuhiko Namba

The Japan Journal of Multilingualism and Multiculturalism, 15 (1) 2009.
analysis is limited to the ‘insertion’ type of CS (Muysken, 2000), which will be analyzed within the framework of Myers-Scotton’s MLF model (1997, 2002). Specifically the most frequently observed pattern, the insertion of Japanese nominal items into the English grammatical frame, will form the main focus of this study. One of the controversial issues, the distinction between borrowing and CS, is explored using Treffers-Daller’s (2005) continuum model. This approach using the MLF and 4-M models and continuum models fills a gap left by other Japanese-English grammatical CS studies (Azuma 1993, Fotos 1995, Nishimura 1997), which employed earlier models. Takagi’s study (2000) employs the MLF and 4-M models but it does not focus on the continuum. The use of naturalistic data from bilingual children’s CS fills another gap because, apart from Fotos, the data in the other studies are mainly taken from interviews and elicitation. Since the data were collected from young children who were not as proficiently bilingual as adult speakers, and CS might have occurred due to lexical gaps in one of their languages. Employing young children’s data for CS analysis can be criticized as one of the study’s weaknesses. However, according to Miccio, Hammer, & Rodriguez (2009, p. 247), if children can produce utterances longer than three words, most of their code-switched utterances are grammatically correct. In fact, the use of children’s CS data can also be seen as an advantage (Müller & Cantone, 2009, p. 204) because child speech is less influenced by other external factors such as attitudes toward bilingualism or the relative status of the languages.

Theoretical Background
A Definition of Code-Switching
Of all the language contact phenomena—including transfer, borrowing, convergence, and pidginization—code-switching has perhaps most attracted linguists’ attention. The following example from the author’s corpus exemplifies a switch of language based on the intended primary recipient.

Example 1
(T comes to dinner table and talks to his mother.)
T>M: Mummy, I don’t feel very hungry.
(T turns to his father)
T>F: Daddy, boku wa zettai onakasui-te-nai n da
I TOP absolutely hungry-CONN-NEG SNP COP
{Daddy, I’m not hungry at all.}
(Namba, 2008, p. 184)

While most people can appreciate the necessity for code-switching when the addressee changes, mixing languages at the sentence level is often criticized by monolingual parents, grandparents and teachers. Early bilingualism researchers were critical of intra-sentential switching: Weinreich, (1953, p. 73) argued that “the ideal bilingual switches from one language to another according to appropriate changes in the speech situation (interlocutors, topics, etc.), but not in an unchanged speech situation and certainly not within a single sentence.” However, in contrast to Weinreich’s view, a growing number of studies have shown evidence of proficient bilingual speakers employing CS at different levels (discourse, sentence, word, and morpheme) in an unchanged setting (e.g. Poplack, 1980/2000). Example 2 shows CS at the word level, i.e. the insertion of ‘tongue’ and
‘feel’, and Example 3 shows CS at the phrase level, i.e. the insertion of ‘nihongo de (in Japanese)’.

Example 2
\[\text{T} \rightarrow \text{F} : \text{chotto ha no shita ni tongue de ana ga feel dekiru} \]
\[\text{littke tooth of under at with hole ACC can} \]
\[\{ \text{I can feel a hole a little with my tongue under a tooth.} \} \]
(Namba, 2008, p. 107)

Example 3
\[\text{What do you call it nihongo de Japanese in} \]
\[\{ \text{What do you call it in Japanese?} \} \]
(Nishimura, 1997, p. 123)

Taking into consideration that CS can happen in a variety of forms, the present study will assume a more inclusive view than Weinreich’s ‘ideal code-switcher’. Following Bullock and Toribio (2009, p. xii), it will view code-switching as “the alternating use of two languages in the same stretch of discourse by a bilingual speaker.” This definition allows switching at various levels of linguistic element, e.g. a morpheme or sentences. In addition, it identifies CS as a bilingual speaker’s product.

A Typology of Code-Switching
As shown in Examples 1, 2 and 3, CS can take a variety of forms. Poplack (1980/2000, p. 243) classifies these forms according to whether CS occurs between or within sentences. If a switch occurs between sentences as in Example 1, it is identified as “inter-sentential CS”, whereas if a switch takes place within a sentence as in Examples 2 and 3, it is “intra-sentential CS”. The underlying grammatical constraints that affect intra-sentential CS have been the focus of a variety of research (Disciullo, Muysken, & Singh, 1986; Poplack, 1980/2000; Muysken, 2000; Myers-Scotton, 1997).

Muysken (2000) further categorizes intra-sentential CS into three types. The first type is ‘insertion’ in which a single constituent, either a single word or a multi-word item, is inserted into the base or matrix language, as is the case in Examples 2 and 3 above. The second type of intra-sentential CS is ‘alternation’. This occurs when the speaker changes languages in the middle of his or her utterance. Some patterns of inter-sentential CS, such as Example 1 above, can be categorized as this type. Furthermore, alternational CS can also occur halfway through a clause, as in the following example:

Example 4
\[\text{E} \rightarrow \text{F: I want to be goorukiipaa ni nari- tai} \]
\[\text{goal keeper RSL become-DESID/PRES} \]
\[\{ \text{I want to be a goal keeper} \} \]
(Namba, 2008, p. 165)

The third type of intra-sentential CS, according to Muysken, is congruent lexicalization, “where the two languages share a grammatical structure which can be filled lexically with elements from either language” (Muysken, 2000, p. 6). He points out that style shifting and dialect/standard variation are similar to congruent lexicalization. These three types of process are “constrained by different structural conditions, and are operant to a different extent and in different ways in specific bilingual settings” (p. 3).
Borrowing or Code-Switching

One of the issues in the study of code-switching is the status of single-item insertion. Poplack and Meechan (1995) argue that the insertion of “lone other-language items” (p. 200) is ‘borrowing’ and should be distinguished from longer stretches of switches, which they define as code-switching. They propose that if other language items are morphosyntactically integrated into the recipient language, the phenomenon should be identified as lexical borrowing. If these items are not established loanwords in the recipient language, they should be classified as “nonce-borrowings” (Poplack & Meechan, 1998, p. 131), which means ‘one-off’ borrowings.

Other researchers (Myers-Scotton, 1997; Treffers-Daller, 2005) do not distinguish between lexical borrowing and CS as different processes. Myers-Scotton (1997) argues that borrowed forms and singly occurring CS forms go through the same ML morphosyntactic procedures (p. 206). However, “the lexical entries of CS and borrowed forms must be different, since borrowed forms become part of the mental lexicon of the ML, while CS forms do not” (p. 163, original emphasis).

Muysken (2000, p. 60) claims that borrowing, nonce-borrowing and CS of grammatical constituents all fall within the category of insertion. Furthermore, he shows two dimensions from which CS and borrowing can be viewed: 1) whether a particular case occurs at the above-word level or the below-word level; 2) whether a particular element is part of a memorized list or not, i.e. whether it is reproductive or creative. Muysken provides the following table in order to illustrate these dimensions.

Table 1: The distinction between borrowing and code-switching (Muysken, 2000, p. 72)

<table>
<thead>
<tr>
<th></th>
<th>not listed</th>
<th>listed</th>
</tr>
</thead>
<tbody>
<tr>
<td>above-word level</td>
<td>code-switching</td>
<td>conventionalized CS</td>
</tr>
<tr>
<td>below-word level</td>
<td>nonce borrowing</td>
<td>established borrowing</td>
</tr>
</tbody>
</table>

As Table 1 shows, nonce borrowing can be placed somewhere between borrowing and CS, i.e. borrowing and CS cannot be clearly distinguished. Muysken (2000, p. 81) treats noun phrase (NP) insertions as prototypical patterns of insertion and shows a variety of levels, such as a single noun to a full Determiner Phrase (DP). Based on Muysken’s (2000) framework of insertion, Treffers-Daller (2005) proposes that “there is a continuum from borrowing to code-switching” (p. 500). Her study of French nominal items inserted in Brussels Dutch puts forward a continuum of insertion which starts with borrowed single-nouns, and moves through mixed compound nouns and nominal groups without determiners, before ending with full DPs.

Previous Studies of Japanese-English CS

The study of Japanese–English CS, especially from the perspective of grammatical constraints, may offer significant insights because there are typological differences between these two languages (Nishimura, 1997, p. 2); therefore, the role of each language can be easily distinguished. However, many studies on Japanese-English CS have focused on sociolinguistic aspects and, to the best of my knowledge, there have been only a handful of studies on the structural aspects of Japanese–English code-switching (Azuma, 1993, 1996; Fotos, 1995, 2001; Namba 2008; Nishimura 1997; Takagi, 2000, 2006, 2008).

Azuma (1993) conducted a study on second generation Japanese Americans in the United States and proposed his own model called ‘the frame content hypothesis’,
which is an antecedent to Myers-Scotton’s MLF model and can now be viewed as being subsumed by the MLF model.

Nishimura (1997) also focused on second generation Japanese in North America. She employs the government-constraint model (Disciullo, Muysken, & Singh, 1986) which she finds too restrictive to account for her Japanese-English data. Nishimura suggested that the directionality of the head must be maintained, although its complement and adjunct can be inserted from either language (1997, p. 127). For example, an English preposition, the head of a prepositional phrase, should be followed but not preceded by either an English or Japanese NP.

Fotos’ study (1995) employed spontaneous speech data recorded from two sets of participants, balanced English-Japanese bilingual children and EFL learners in Japan. She maintained that both groups show similar patterns of CS. Single items were the most frequently switched, although the balanced bilinguals’ switching was more even than that of the EFL learners (p. 13).

The 4-M model and a newer version of the MLF model are applied in Takagi’s (2000, 2006, 2008) study. Her participants were successive bilinguals who were born in Japan and later moved to England. Takagi asked the participants to tell stories in one language and then in the other language so they had control over the choice of language for narration. One limitation of Takagi’s study is that the participants are in the monolingual language mode (Grosjean, 2001), so it does not cover CS in the bilingual language mode, a form of speech in which more patterns of CS can be found (Treffers-Daller, 1998).

The MLF Model

The author considers Myers-Scotton’s MLF model (1997, 2002) an appropriate framework to account for the insertion type of CS. The unit of analysis is the complementizer projection (CP hereafter), which is an independent or dependent clause, since this is where any structural issues will arise.

In the MLF model, the status of the two participating languages is not equal. Myers-Scotton argues that in any given utterance, one language provides the grammatical frame of the bilingual clause, which is called the matrix language (ML) and the other language, known as the embedded language (EL), is inserted into it (Myers-Scotton, 1997, p. 98). Morphemes in each language can be categorized into content and system morphemes. Content morphemes, such as nouns, verbs, adjectives and some prepositions, express semantic and pragmatic aspects and assign or receive thematic roles such as agent, patient or recipient. On the other hand, system morphemes, e.g. function words and inflections like ‘-ing’, express the relation between content morphemes and do not assign or receive thematic roles.

Myers-Scotton views the ML-EL relationship as psycholinguistically motivated. “[T]he grammars of both languages must be ‘on’ (Myers-Scotton, 2002, p. 156), however “the ML is more activated since it projects the overall frame for the relevant CP” (Myers-Scotton & Jake, 1995, p. 1017). This notion can be accounted for in terms of the activation of what Grosjean (2001, p. 3) calls the bilingual language mode. When a bilingual interacts with another bilingual who shares the same languages, both languages are activated, whereas when the same bilingual interacts with a monolingual who shares one of the languages, s/he is in the monolingual language mode and only one language is activated.

Myers-Scotton proposes two principles which are crucial in identifying the ML—the Morpheme Order Principle and the System Morpheme Principle. The Morpheme
Order Principle states that “[i]n ML+EL constituents consisting of singly-occurring EL lexemes and any number of ML morphemes, the surface morpheme order will be that of ML” (Myers-Scotton, 1997, p. 83). The following example of a bilingual clause shows six words in English and five words in Japanese. If we look at the syntactic order, i.e. Subject + Adverbial + Inflected Main Verb + Sentence final particle, we can see that the sentence is grammatically Japanese. Therefore, the morpheme order principle indicates that the matrix language of this bilingual clause is Japanese.

Example 5

This ice cream wa store de Food City de kat-ta no TOP at at bought FP
{(We) bought this ice cream at (the) store, at Food City} (Nishimura, 1997, p. 98)

The System Morpheme Principle, on the other hand, states that “[i]n ML+EL constituents, all system morphemes which have grammatical relations external to their head constituent will come from the ML” (Myers-Scotton, 1997, p. 83). In Example 6, only one English word exists in an otherwise Japanese sentence. At a glance, English does not appear to be the matrix language here. However, the English copula ‘is’ is a system morpheme and its form is decided by the subject (third person singular) which exists outside of the verb phrase. Therefore, according to the System Morpheme Principle, the matrix language of this bilingual clause is English.

Example 6

E >T Uindamu is warui to yasashii
PropN bad and kind
{Uindamu (robot’s name) is bad and kind}

Along with single EL items, multi-word EL items can also be inserted in the ML frame, e.g. nibongo de [in Japanese] in Example 3. Inserted EL items are located in the frame of the ML as a whole but also work together within the grammar of the EL. Insertions of this sort are called EL islands (2002, p. 139) by Myers-Scotton. When EL multi-word items are integrated in an ML phrase, e.g. an ML determiner + an EL N’ (Adj+N) in an ML noun phrase, they are called “internal embedded language islands” (Myers-Scotton, 2002, p. 149).

The 4-M Model

Having found counter-examples, such as the occurrence of system morphemes in the ML (e.g. Nishimura, 1997), Myers-Scotton & Jake (2000) further classify system morphemes into three subcategories in their 4-M model, reflecting the different activation stages in the mental lexicon and the formulator. According to Levelt’s speech production model (1989, p. 11-12), concepts of the speaker’s message are activated in the mental lexicon and are then sent to the formulator where concepts are encoded grammatically into sentences.

If a system morpheme is activated early at the level of the mental lexicon, it is an early system morpheme. Examples of early system morphemes in English are determiners (a, the) and plural-s. If a system morpheme is activated later at the level of formulator, it is a late system morpheme, which can be subcategorized into two types.
Bridge late system morphemes integrate content morphemes into a larger constituent, e.g. ‘of’ and the possessive marker ‘-s’. Outsider late system morphemes appear depending on information outside the immediate phrase (Myers-Scotton & Jake, 2000, p. 100). For example, the third person singular –s is an outsider late system morpheme because ‘s’ is attached to the word according to the grammatical information of the subject, which is located outside the verb phrase. The three types of system morphemes and the content morphemes can be summarized according to the following table.

Table 2: Features of the four types of morphemes (based on Myers-Scotton 2002)

<table>
<thead>
<tr>
<th></th>
<th>content morphemes</th>
<th>early system morphemes</th>
<th>bridge late system morphemes</th>
<th>outsider late system morphemes</th>
</tr>
</thead>
<tbody>
<tr>
<td>thematic role</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>assigner/receiver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conceptually activated</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>refers to information</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>outside the immediate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phrase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In order to show examples of the four morphemes, the made up sentence ‘Simon’s dog likes chasing cats’ is analyzed in Example 7.

Example 7

Simon’s dog likes chasing cats.

CM BLSM CM CM OLSM CM ESM CM ESM

CM = content morpheme
ESM = early system morpheme
BLSM = bridge late system morpheme
OLSM = outsider late system morpheme

The nouns and lexical verbs are content morphemes which receive or assign thematic roles. The gerund suffix ‘-ing’ and the plural suffix ‘-s’ flesh out the meaning of the verb ‘chase’ and the noun ‘cat’ respectively; therefore, they are early system morphemes. The ‘s’ attached to ‘Simon’ is a possessive marker which connects two content morphemes, ‘Simon’ and ‘cat’, making them into an NP. This is a bridge late system morpheme. The other ‘s’ after the verb ‘like’ is the third person singular ‘s’. Its form depends on information outside its immediate phrase, i.e. the subject of the sentence. Therefore, this is an outsider late system morpheme.

Myers-Scotton (2002, p. 302) revises the System Morpheme Principle and proposes that only the outsider late system morphemes must come from the ML. That means occurrences of EL early system morphemes or bridge late system morphemes in an ML frame are allowed.
Research Questions
In order to build on the above studies into the grammatical aspects of code-switching, the following research questions will be explored in this paper.

1) Can instances of single nominal item insertion be reliably classified as lexical borrowing or code-switching?

2) Is there a continuum from borrowing to code-switching and from single noun insertion to full NP insertion?

3) Can the matrix language of nominal insertion patterns be effectively and consistently identified using the System Morpheme Principle and the Morpheme Order Principle?

Methodology
The Participants
The data in this study are taken from a longitudinal case study of two bilingual, bicultural children: T, the first child of a Japanese father and a British mother and E, the family’s second child. T’s and E’s parents decided to raise their children bilingually and adopted the ‘one parent-one language’ strategy (Döpke, 1992), in which each parent always talked to the child in his or her native language, i.e. Japanese and English respectively.

Data
The data consist of two types of material. One is extensive audio-recordings of T’s and E’s spontaneous speech in naturalistic settings. Considering that the participants are children aged three to nine, it would not be appropriate to conduct experiments or interviews to elicit code-switched sentences. Recordings were made at frequent but irregular intervals, usually when the boys were involved in some activity such as playing with toys or discussing what was happening on TV. The other data type is a journal and notebooks (both paper and electronic), kept by both parents since T’s birth. New features or deviant forms were noted in these journals as they appeared in the boys’ speech.

The data selected for the present analysis were obtained when T was 5;9-9;3 and E was 3;3-6;9. There are several reasons for this selection. Firstly, T and E started playing by themselves for extended periods of time around this age. Therefore, it was reasonable to expect that interaction between them would occur. Secondly, prior to this period the family lived in Britain for one year and English was their dominant language of communication, which made observations of CS difficult. Finally, after this period, E entered the same international school as T, where English was the medium of education and once again English became the dominant language in their interaction.

For this period there are approximately 70 hours of recorded data. All the audio data were examined extensively in order to detect utterances that included code-switching. When code-switching was found, the discourse including the code-switched utterance was marked and transcribed. The length of the recording was determined so that contextual information could be obtained. There were 500 bilingual clauses and 291 of them entailed insertional CS. The most frequently observed pattern, insertion of Japanese nominal items (nouns and NPs) into English frames (132 tokens) has been singled out for analysis in this study.
Data Analysis
Japanese Noun Insertion in the English Noun Slot

There are 59 examples of Japanese noun insertion in the English ML, which can be subcategorized into two types (see Table 3). The first is a pattern in which EL (=Japanese) nouns appear in the ML noun slot (33 tokens) and the second is where EL nouns appear in the ML noun phrase slot (26 tokens). The first type will be investigated in this section and the second will be looked at in the next section.

Table 3: Noun insertion in Noun or NP

| Pattern | NEL noun slot | NML NP slot | Total
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EL nouns</td>
<td>33 (55.9%)</td>
<td>26 (44.1%)</td>
<td>59</td>
</tr>
</tbody>
</table>

The Japanese language does not have articles and the determiner is not an essential element of an NP. Therefore if an EL noun occurs with an ML determiner it can be taken as evidence that the EL noun is well integrated into the ML (English) frame. Table 4 shows the patterns of EL nouns following ML determiners in NPs.

Table 4: Patterns of ML Determiner + EL Nouns

<table>
<thead>
<tr>
<th>Pattern</th>
<th>N</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>definite article ‘the’ + EL Noun</td>
<td>13</td>
<td>the taiyo sun</td>
</tr>
<tr>
<td>indefinite article ‘a/an’ + EL Noun</td>
<td>10</td>
<td>an ana hole</td>
</tr>
<tr>
<td>indefinite article ‘some’ + EL Noun</td>
<td>2</td>
<td>some otona adult</td>
</tr>
<tr>
<td>possessive determiner + EL Noun</td>
<td>4</td>
<td>his sensei teacher</td>
</tr>
<tr>
<td>determiner + EL noun + plural suffix ‘s’</td>
<td>4</td>
<td>kaiju-s monster</td>
</tr>
</tbody>
</table>

All the EL nouns that follow these patterns show good morphosyntactic integration into the ML frame. The pattern of ‘indefinite article a/an + EL Noun’ is exemplified in Example 8. In this conversation, the two siblings are talking about the size of doors and speculating about the possible existence of very small doors for ants. T says that a hole could be a door for ants.

Example 8

T >E: But E, everything has an ana (Name) hole {But E, everything has a hole}

If we look at this bilingual clause using the MLF model, the matrix language can be identified through the Morpheme Order and System Morpheme Principles. The morpheme order is English, i.e. subject + verb + object. Both the system morphemes, the indefinite article ‘an’ and the present tense main verb ‘has’, come from the ML. The
only EL item, *ana* (hole) is a content morpheme. According to the Morpheme Order and the System Morpheme Principles, the ML of the clause is English. The speaker uses the indefinite article ‘*an*’ in front of the Japanese vowel sound ‘*a*’/a/, indicating that he recognizes the Japanese vowel. Likewise, in the other examples of ‘*a/an*’ + EL noun where the EL nouns start with a consonant, ‘*a*’ is employed consistently, e.g. a *kaiju* (monster). This shows that the EL item is both morphosyntactically and phonologically well-integrated into the ML. Determiners, such as the indefinite article ‘*an*’, are usually early system morphemes in the 4-M model, which flesh out the meaning of the content morpheme.

Japanese Noun Insertion in the English NP Slot

Japanese nouns and NPs appear in the same form because they do not need a determiner, whereas an English NP generally does. Therefore insertion of a Japanese noun into an English NP slot without English determiners or pluralization can be considered an NP insertion.

Example 9

\[
\text{E} \rightarrow \text{T} : \text{Maybe it’s } \text{bikko-buttai (flying object)}
\]

{Maybe it’s a flying object}

It would be possible for the EL noun *bikko-buttai* (a flying object) to appear as a noun insertion if it had a determiner, for example ‘*a*’. Myers-Scotton accounts for instances like Example 9 by labeling them as ‘bare forms’ because the EL items are “missing the Matrix language system morphemes [which] would make them well-formed elements in such frames” (2002, p. 113). Myers-Scotton and Jake (1995, p. 993) propose that the bare form is a compensatory strategy when there is insufficient congruence between the ML and the EL. Their account is not strongly supported in this corpus because bare forms do not occur consistently. As seen in the previous section, when a single Japanese common noun is inserted in an English NP slot, English system morphemes, such as a determiner or a plural suffix, can appear. One issue here is the question of why NP insertion occurs instead of noun insertion in these cases.

In order to explore the motivation for noun and NP insertion, I will compare the EL noun items. The word *taiyoo* (sun) is one EL noun which appears in both noun and NP slots in this corpus. Example 10 shows its insertion in the noun slot.

Example 10

\[
\text{T} \rightarrow \text{E} : \text{but a } \text{ningen stay quite far from the } (\cdot) \text{ taiyoo right?}
\]

{But a human stays quite far from the sun, right}

Here there are two instances in which an ML determiner is used in combination with an EL noun, i.e. ‘*a*’ + *ningen* (human) and ‘*the*’ + *taiyoo* (sun). On the other hand, the EL noun, *taiyoo* ‘sun’, appears in a different pattern in Example 11.
Example 11

T >E: and then taiyoo is there
sun
{and then the sun is there}

The EL noun taiyoo ‘sun’ occurs without the definite article ‘the’ here. As mentioned above, the insertion of Japanese EL nouns without any determiners can be defined as NP insertion. These two clauses are taken from the same conversation therefore the reason for the difference is unlikely to be a developmental one. One explanation is that ‘the’ in Example 10 is attached to the construction ‘quite far from’, i.e. the ML produces the adverbial phrase including a noun slot, ‘quite far from the [N]’. The pause may be an indication that this construction is formulaic language (Wray, 2002), i.e. it is processed as a whole. The EL noun taiyoo is then added as a noun insertion. Elsewhere I have found that code-switching will not occur within formulaic sequences, but instead occurs at their boundaries (Namba, 2008, p. 258). On the other hand, with Example 11 there is a slot for the subject which should be filled with an NP. The Japanese NP taiyoo is put there.

Japanese Proper Noun Insertion in the English Noun Slot

Insertion of proper nouns is considered to be similar to NP insertion since names generally do not need a determiner and they fit in NP slots. A variety of proper nouns are observed in the corpus (49 Japanese proper nouns occur in the English ML). Since the data were collected while the two siblings were playing, a variety of names for toys and characters were used. Out of the 49 proper nouns, 37 of them appeared in NP slots but twelve appear in noun slots. In this section we will focus on the latter type, i.e. proper noun insertion in the noun slots.

One such Japanese proper noun the boys used in their video games was Shitappaa The word Shitappaa is observed in two forms in this corpus: (1) after the definite article ‘the’, and (2) between the general determiner ‘some’ and the plural suffix ‘s’. In the boys’ game, Shitappaa could appear either alone as a single character or in a group of “Shitappas”. In that case proper nouns gain the status of common noun and in CS phenomena they are treated in the same way as common noun insertion. According to The Cambridge Grammar of the English Language (Huddleston & Pullum, 2002), when English proper nouns lose inherent definiteness, “determiners are [thus] selected in the ordinary way” (p. 520), e.g. “the Edison of the Internet”. The following clause shows the latter pattern.

Example 12

T >E: Yeah, and I, and I killed some Shitappas -s right?
PropN
{Yeah and I, and I killed some Shitappas, right?}

The EL noun Shitappaa comes from a Japanese common noun shitappa (underling) which the siblings could not use at this age (T was 7;5). Although its original form shitappa is a common noun, the game character’s name Shitappaa must have been learned as a proper noun. In this noun phrase ‘some Shitappaa-s’, we can see that the content morpheme ‘Shitappad’ comes from the EL (Japanese), whereas system morphemes ‘some’ and ‘-s’ come from the ML (English). The two system morphemes are early system...
morphemes which flesh out the meaning of the content morpheme, i.e. ‘Shitappaa’. This example shows that EL is highly integrated into the ML frame.

Japanese Multi-morphemic Noun Insertion in the English noun slot

Having looked at single-item insertion in which EL nouns are well integrated into the ML noun or NP slot, next we will move on to explore a more complex phenomenon, namely multi-item insertion, or EL islands. In this study, we will differentiate between the terms ‘multi-item’ and ‘multi-word’. A single EL word can include EL affixes. We will treat this phenomenon as a multi-item insertion because EL grammar is operating in order to connect the affixes and the word.

First we will examine insertion of EL nouns consisting of multi-items, namely multi-morphemic nouns (hereafter MMN). As Table 5 shows, five tokens of EL MMN occur in the noun slot, i.e. they occur after ML determiners.

Table 5: Patterns of ML determiner + EL MMNs

<table>
<thead>
<tr>
<th>Pattern</th>
<th>N</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>definite article ‘the’ + EL noun</td>
<td>2</td>
<td>the ichi-ban first-place</td>
</tr>
<tr>
<td>numeral ‘one’ + EL noun</td>
<td>1</td>
<td>one o-banashi HON-story</td>
</tr>
<tr>
<td>possessive determinant ‘your’ + EL noun</td>
<td>1</td>
<td>your o-kane HON-money</td>
</tr>
<tr>
<td>quantifier ‘more’ + EL Noun</td>
<td>1</td>
<td>more o-kane HON-money</td>
</tr>
</tbody>
</table>

In the last three examples the Japanese prefix *o* changes the noun into honorific form. The following sentence shows how a Japanese multi-morphemic noun *o-banashi* is inserted into the noun slot of the ML.

Example 13

```plaintext
T>E: in one *o-banashi* dementor is like this
     HON-story
     {in one story the dementor\textsuperscript{10} is like this}
```

The combination of the two morphemes *o* and *banashi* is an EL island11 which is made under an EL morphosyntactic rule. The common noun, *banashi* (story) is given a thematic role; therefore, it is a content morpheme. The honorific prefix *o*12 has a pragmatic meaning which is conceptually activated. Therefore, it is classified as an early system morpheme. Occurrences of EL early system morphemes with EL content morphemes comply with the System Morpheme Principle which denies the occurrence of stand-alone outsider late system morphemes. These findings are in accord with the MFL model.
Japanese Multi-morphemic Noun Insertion in the English NP Slot

Multi-morphemic nouns (MMNs) can occur in the noun phrase slot of the ML as well as the noun slot. There are 17 Japanese MMNs observed in the English NP slot (see Table 6). All the examples observed in the corpus relate to counters. One form is employed to express cardinal numbers and the other is for ordinal numbers. The pattern of numeral + classifier suffix expresses cardinal numbers in general. If the ordinal suffix -me is attached to the classifier suffix, the whole noun can express an ordinal number.

Table 6: Patterns of EL MMNs in the ML NP slot

<table>
<thead>
<tr>
<th>Pattern</th>
<th>N</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>numeral + classifier suffix</td>
<td>9</td>
<td>san-kai ni-ban</td>
</tr>
<tr>
<td></td>
<td></td>
<td>third-floor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>second-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nisensan-nen go-ko</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2003-year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>five-piece</td>
</tr>
<tr>
<td>numeral + classifier suffix + ordinal suffix</td>
<td>8</td>
<td>juu-dai-me yonsen-han-me</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tenth car</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4000th</td>
</tr>
</tbody>
</table>

One example of a numeral + a classifier suffix is shown in Example 14. Here, the classifier suffix ko is employed to count toys.

Example 14

\[E > T:\ \text{it's gonna be up to} \quad \text{go -ko five piece} \]
\[\{ \text{It's gonna be up to five pieces.} \}\]

Normally the combination of a numeral and a classifier is a numeral quantifier (Tsujimura, 1996, p. 192), which can modify a noun. The structure will be a numeral + a classifier + the genitive case particle no + noun, i.e. numeral quantifiers can be placed before or after nouns. See the following made up example.

Example 15 (made-up)

\[\text{go -ko no omocha o kat-ta} \]
\[\text{five piece GEN toy ACC buy PAST} \]
\[\{ \text{I bought five toys} \}\]

The choice of the classifier -ko depends on the modified noun omocha (toy). There are a large number of classifiers in Japanese. For example, the word inu (dog) takes the classifier -hiki while kuruma (car) takes the classifier-dai. In Example 14, the genitive case particle no and the modified noun omocha are not expressed because they are inferable from the context. Thus, in Example 14, the numeral go (five) is a content morpheme and the classifier ko is an early system morpheme since its form depends on the content morpheme.

Japanese NP Insertion in the English N' Slot: Internal EL Islands

Next we move on to ‘multi-word’ insertion, i.e. insertion of EL noun phrases. There are 44 EL noun phrases occurring in the corpus, 36 of them in the NP slot of the ML and
eight in the N' (NP without the determiner) slot. We will look at examples of EL noun phrases in the ML N' slot first. The patterns in which they are found are shown in Table 7.

Table 7: Patterns of EL noun phrases in the ML frame

<table>
<thead>
<tr>
<th>ML frame</th>
<th>N Constituents of the EL noun phrases</th>
</tr>
</thead>
<tbody>
<tr>
<td>definite article ‘the’ + EL noun phrase</td>
<td>5 ADJ+N (2) N+GEN+N (2) N + particle + verbal noun (1)</td>
</tr>
<tr>
<td>demonstrative determiner + EL noun phrase</td>
<td>1 PropN + GEN + N</td>
</tr>
<tr>
<td>quantifier + EL noun phrase</td>
<td>1 N + ACC</td>
</tr>
<tr>
<td>adjective + EL noun phrase</td>
<td>1 PropN + GEN + N</td>
</tr>
</tbody>
</table>

Here, we will look at an example of an ML determiner ‘the’ + an EL N' item, adjective + noun, in the corpus.

Example 16

T>E: Now all the *yasashii* *kaijuu* did *gattai*?

{Have all the good monsters joined together now?}

The subject NP ‘all the *yasashii* *kaijuu*’ (all the kind monsters) consists of the English determiners ‘all the’ and the Japanese N' item *yasashii* *kaijuu* (kind monster). Both the adjective *yasashii* and the noun *kaijuu* are content morphemes. This construction has characteristics of both single-item insertion and the EL island. The EL items follow ML determiners, which indicates that they are well integrated into the ML frame—a feature of single-item insertion. If it were a single-item insertion, it would look like the following made-up example.

Example 17 (made-up)

Now all the **good** *kaijuu*-s did *gattai*?

{Now all the good monsters joined together?}

The EL noun would be inflected with the ML plural form ‘-s’ and the whole NP would show fuller integration of the EL noun *kaijuu*. On the other hand, another made-up version (Example 18) shows the whole NP consisting of EL only, a clear case of an EL island proper.

Example 18 (made-up)

Now **subete** -**no** *yasashii* *kaijuu* did *gattai*?

{Now all the good monsters joined together?}

With the EL N' item (Example 16), the EL grammar is not operating as fully in the EL island as it is in the subject NP of Example 18. However, the EL grammar is operating
more in an EL N' item than in a single-item insertion such as that shown in Example 17. This EL N' insertion pattern is termed an internal EL island (Myers-Scotton, 2002, p. 149). The examples of EL multi-morphemic nouns occurring after ML determiners that we examined in the last section can also be defined as one type of internal EL island since they also have characteristics of both single insertion and EL islands. The other examples shown in Table 6 are also internal EL islands. Having integrated into the ML frame as a whole, they all comply with the MLF model.

Japanese NP Insertion in the English NP

Having looked at NP insertion in the N’ slot, this section goes on to explore NP insertion in the NP slot—the EL island proper. As can be seen in Table 8, in general the structure of this pattern is either ‘modifier + noun’ or ‘noun+ particle’.

Table 8: Patterns of EL noun phrases in the ML NP frame

<table>
<thead>
<tr>
<th>EL modifiers</th>
<th>N</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>attributive noun + noun</td>
<td>14</td>
<td>kaeru suutsu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>frog suit</td>
</tr>
<tr>
<td>adjective + noun</td>
<td>6</td>
<td>warui yatsu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bad guy</td>
</tr>
<tr>
<td>demonstrative determiner + noun</td>
<td>2</td>
<td>sonna gattai</td>
</tr>
<tr>
<td></td>
<td></td>
<td>such combination</td>
</tr>
<tr>
<td>noun + conjunctive particle toka</td>
<td>1</td>
<td>Eesu robotto toka</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prop N conjunctive particle</td>
</tr>
<tr>
<td>noun/NP+ pronoun</td>
<td>3</td>
<td>ni-ban-me no two-order-OS one</td>
</tr>
<tr>
<td>noun + GEN no + noun</td>
<td>5</td>
<td>ni-goo no yatsu no.2 GEN thing</td>
</tr>
<tr>
<td>noun + CONJ to + noun</td>
<td>3</td>
<td>we to maru up CONJ circle</td>
</tr>
<tr>
<td>NP +VN</td>
<td>1</td>
<td>faito deeta ni maru DAT VN (putting a circle)</td>
</tr>
<tr>
<td>relative clause + noun</td>
<td>1</td>
<td>Gatanozooa o taoshi-ta kasutamu (monster)</td>
</tr>
</tbody>
</table>

The following example shows an adjective modified by a quantifier.

Example 19

E >T: Look, I made (.) motto atarashii Tenrai-senpuujin

more new PropN

{ Look, I made a newer Tenrai-senpujin (robot).}

This is an NP insertion rather than N’ insertion since an ML determiner does not occur. If this was a Japanese monolingual clause, the NP would most likely include the accusative case particle o, i.e. motto (more) + atarashii (new) + Tenraisenpuujin (PropN) + o
Namba: Insertional Code-switching

(ACC). The accusative case o is an outsider late system morpheme. The Japanese part would look like the ML with the accusative marker o and it would be difficult to decide which language is the ML. The current example consists of two types of morphemes: the adjective atarashii and the proper noun Tenraisenpuujinn are content morphemes and the quantifier motto is an early system morpheme which fleshes out the meaning of another content morpheme, ie. atarashii.

An NP can be a long stretch of words, e.g. when it entails a relative clause as a post-modifier (see Example 20).

Example 20

T>E: it's Gatanozooa o taoshi-ta kasutamu PropN ACC beat PAST custom-made weapon { It's the custom-made weapon which beat Gatanozooa (a monster).}

Example 20 shows the Japanese relative clause Gatanozooa o taoshi-ta (which beat Gatanozooa) which premodifies the head noun kasutamu (a custom-made weapon). It is difficult to decide the ML of this bilingual clause through the System Morpheme Principle alone because the relative clause itself contains an outsider late system morpheme, the accusative case particle o. On the other hand there is evidence that English is the ML because of the morpheme order of the whole clause, i.e. the subject + verb + predicate and the presence of the outsider system morpheme ‘-’s’ (copula).

Myers-Scotten (2002, p. 54) proposes that the unit of analysis should be the sort of dependent clause she terms the Complementizer Projection, meaning the principles can apply only to phenomena inside the CP. Here the relative clause itself, Gatanozooa o taoshi-ta is a Japanese monolingual CP. Therefore, the ML of this CP is Japanese and it is natural that an outsider late system morpheme from the ML should occur there. One explanation is that the ML switches between the English copula ‘-’s’ and the Japanese proper noun Gatanozooa, which suggests that this code-switching should be accounted for within the framework of alternational CS.

On the other hand, this CP plays the role of the pre-modifier of the head noun kasutamu in the NP. The NP Gatanozooa o taoshi-ta kasutamu fits in the predicative slot of the English ML frame, i.e. it’s [] . Therefore, I would argue that the ML of Example 20 is English because the morpheme order as a whole follows English syntax and the main verb of the whole clause, the copula ‘-’s’ is, an outsider late system morpheme. The Japanese part is an EL island where the EL grammar is fully operating, so that even an outsider late system morpheme can occur. However, the island itself, the NP, is integrated in the English clause as the predicative.

This example can be a counter-example to the MLF model because it doesn’t comply with the System Morpheme Principle.

Discussion

In this section, we will look at the data from a different perspective. Insertion of nominal items will be analyzed from the perspective of EL activation, i.e. how much each inserted item is constrained by the EL grammar. The purpose of these discussions is to try to answer the question of whether activation is best conceptualized as an absolute, or whether it consists of gradations located on a continuum, in a way similar to that proposed by Treffers-Daller (2005). According to the continuum model, lexical
borrowing and single-item insertion can be explained as being the same process, but subject to different activation levels. Similarly, it would allow one process to explain single and multi-item insertion. Since these issues are central to answering our research questions, some attention will be paid to the plausibility of the continuum model for these data.

In order to grasp the big picture, some examples already analyzed in the previous sections have been selected (see Table 9).

Table 9: Japanese EL nominal items in English ML noun phrases by EL activation level

<table>
<thead>
<tr>
<th>Example [NP]</th>
<th>Grammatical structure of NP</th>
<th>activation ML</th>
<th>EL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(21) MU: I killed [some pokémon -s] right?</td>
<td>ML. DET + EL noun + ML plural</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>{I killed some pokemons right?}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12) T>E: I killed [some Shitappaa -s] right?</td>
<td>ML. DET + EL noun + ML plural</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>PropN {I killed some shitappa-s (underlinks) right?}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10) T>E: but a ningen stay quite far from [the taiyoo] right? human sun</td>
<td>ML DET + EL noun</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>{but a human stays quite far from the sun, right}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(13) T>E: in [one o- banashi] dementor is like this HON-Story</td>
<td>ML DET + EL MMN</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>{in one story dementor is like this}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11) T>E: and then [taiyoo] sun (and then the sun is there)</td>
<td>EL noun without ML DET</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(14) E>T: it’s gonna be up to five piece</td>
<td>EL MMN without ML DET</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>{It’s gonna be up to five pieces?}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(16) T>E: Now [all the yasashii kaiju] did gattai?</td>
<td>ML DET + EL N’ (ADJ+ N)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>{Now all the good monsters combined?}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(19) E>T: Look, I made more new Tenraisenspujin</td>
<td>EL NP (QF + ADJ+ N)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>{Look, I made a newer Tenraisenspujin (robot).}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(20) T>E: it’s [Gatanozoo a taishi -ta kasutamn]</td>
<td>EL NP (CP + N)</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PropN ACC beat PAST custom {It’s the custom-made weapon which beat Gatanozoo (a monster).}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(22) MU: it’s [Gatanozoo o taishi -ta kasutamn da]</td>
<td>EL VP</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>PropN ACC beat PAST custom COP {It’s the custom-made weapon which beat Gatanozoo (a monster).}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

They have been placed according to the balance of activation in ML and EL so that one can identify whether there is a continuum in the activation level. In order to contrast
them with items which are not identified as products of insertional CS, Example 21 and 22 were made up by the author. The entries in the table are ordered according to the activation levels of the ML and EL. Myers-Scotton (2005) suggests that the ML has a higher level of activation than the EL and that the activation level of EL islands is higher than that of singly occurring forms (p. 329).

There is no tool to measure actual activation in one's mental lexicon. A subjective, impressionistic judgment has been made by the author. Here activation means how much an item is constrained by the ML or EL grammar. When an EL item is well integrated into the ML frame, the ML activation is high and the EL activation is low. On the other hand, when EL items show EL grammar operation such as EL islands, ML activation is low and EL activation is high. The judgment was made based on a five point scale and when there did not seem to be any activation, a score of 0 was assigned.

Example 12 ‘the Shiitappaa-s’ can be identified as one of the most integrated EL nouns into the ML noun phrase frame because it not only occurs with the ML determiner ‘some’ but is also pluralized with the ML suffix. For that reason it is placed above (10) ‘the taiyoo’ which also features an ML determiner but, of course, is not pluralized because it is singular. From a morphosyntactic point of view, it is difficult to decide whether this example is a product of borrowing or code-switching since it is fully integrated into the ML morphosyntactic frame. The phonology does not give an indication either way in this case. Diachronic distinction, i.e. whether or not it is already established in the recipient language, can be the key feature here. If the proper noun Shiitappaa is an established loanword (Poplak & Meechan, 1995, p. 200) in English such as pokémon (see made up example), it would be counted as borrowing. However, it is not established therefore the example has been identified as CS. From the point of view of morphosyntactic activation, the borrowing and CS forms appear to be the same here.

Example 13 ‘one o-hanashi’ has a similar structure to (10) ‘the taiyoo’, i.e. a ML determiner + EL noun. However, due to its honorific prefix, o-hanashi is multi-morphemic, which shows some activation of EL, thus (13) has been placed below (10).

Examples 11 and 14 represent ‘bare forms’ which do not show an ML determiner, probably because a Japanese noun phrase normally does not take a determiner. These bare forms show less activation of the ML frame than the examples above: compare, for instance, (10) ‘the taiyoo’ and (11) taiyoo. Example 14 go-ko is multi-morphemic; therefore, EL activation is higher than in (11). In addition, it is a bare form, thus more activated than (13) which is multi-morphemic but occurs with the ML determiner. Multi-morphemic nouns, e.g. (13) or (14), show EL activation at the morphological level.

Another multi-item insertion (16) yasashii kaijuu shows EL activation at the syntactic level. Example 19, motto atasashii Tenрасaenpuujin, also shows multi-item insertion at the syntactic level. Example 16 shows the ML determiners ‘all the’ before the EL N’, i.e. an internal EL island. On the other hand, Example 19 does not show any ML items in the NP. Therefore, the ML is more activated in (16) than (19), and as a result the EL is more activated in (19).

Example 20 might be one of those in which the EL is activated to the highest level. It contains a Japanese relative clause, i.e. CP, which has the accusative case ə, an outsider late system morpheme. EL grammar is fully operating. As the made up Example 22 shows, if the Japanese copula da occurred at the end making it a Japanese VP, the entire Japanese insertion would lose the status of an EL and gain that of a ML. Therefore, it would not be explained in the framework of insertional CS but would be explained as a case of altenarial CS. Examples 20 and 22 show the continuum between insertion and alternation.
We can see that there is a continuum from the minimum activation end to the full activation end of the EL, i.e. the continuum starts with established borrowing forms in English, followed by the single-item insertion well integrated into the ML frame and then come the bare forms which lack ML determiners, followed by the internal EL island and then the EL island with a CP and finishing with alternational CS (see Figure 1).

Figure 1: The Continuum of EL activation (based on Treffers-Daller, 2005)

The order shown here is based on a subjective judgment, not an absolute order. Nevertheless it appears that borrowing, single-item insertion, multi-item insertion and alternation can be seen as a continuum. This approach is useful in explaining why CS does not always take the same form: essentially, the model proposed here is that there is a finite amount of activation that must be shared between the two languages, and the form will depend on that balance. The MLF model can account for only part of the continuum. It works well when the activation level of the EL is low; however, when the EL activation is at its maximum the System Morpheme Principle does not apply. This can be seen as a challenge to the MLF and the 4-M model. The current data analysis is done on the specific part of the insertional CS patterns which are expected to comply with the MLF model.

Conclusion

This study has considered the insertion of Japanese nominal items in English ML frames in two siblings’ code-switching data within the framework of Myers-Scotton’s MLF model. With regard to research questions 1 and 2, if the data are viewed from the perspective of EL activation, a continuum can be identified: from borrowing to single-item insertion, and from single-item insertion to multi-item insertion. In addition, we have found that this continuum extends to alternational CS. Therefore, in contrast to Poplack and Meechan (1995), no formal distinction has been made here between borrowing and insertion: there is no need to draw a line between them, if they are on a continuum. Regarding research question 3, single-item insertion can be explained using the MLF model and the 4-M model. The combination of the System Morpheme and the Morpheme Order Principles works well when the EL activation level is low. However, the System Morpheme Principle does not work in cases where the EL is fully activated. Based on this evidence I believe that the MLF model can be subsumed under the continuum model.

This study only dealt with a specific area of the corpus and cannot be used as a generalization for the whole data set. The areas that need further exploration are the insertion of English nominal items in the Japanese ML, and the insertion of other grammatical items, e.g. verbs, and patterns which cannot be explained within the
framework of insertion. In addition, the data refer to children’s CS which may not be the same as that of adults.

Acknowledgements
This project has been completed with the assistance of Kyoto Sangyo University Research Grants. I would like to express my gratitude to Professor Alison Wray at Cardiff University who steered me in the right direction in my PhD study, Professor Jeanine Treffers-Daller at University of the West of England who gave insightful comments on an earlier version of this paper. I would also like to thank the editor, Dr. Tim Greer, and two anonymous reviewers for their comments, suggestions and support.

References

Appendix

Transcription Key

ACC: accusative case particle
ADJ: adjective
CONJ: conjunctive
CONN: connective particle
DAT: dative case particle
DET: determiner
FP: sentence final particle
GEN: genitive case particle
HON: honorific marker
MMN: multi-morphemic noun
N: noun (in text)
N: number of examples (in tables)
N': NP without a determiner
NEG: negation
NP: noun phrase
OS: ordinal suffix
PAST: past tense marker
PropN: proper noun
QF: quantifier
SNP: sentence nominalizing particle
TOP: Topic marker
VN: Verbal noun
(A)>(B): (A) is talking to (B)

Italics: Japanese, to distinguish it from English
Line 2: English translation (word level)
Line 3: (text in curly brackets): English translation (text level)

Notes

1 Myers-Scotton argues that the use of the term ‘morpheme’ is better because “it is a surface realization supported by a lemma entry in the mental lexicon” (2002, p. 71).
2 The mental lexicon is the place in which content morphemes occur.
3 This paper only deals with the insertional type of CS. The other patterns are analyzed (Namba, 2008) and identified as alternation (Muysken, 2000) and composite CS (Myers-Scotton, 2002).
4 The article does not exist in the Japanese language. However, the possessive determiner and the demonstrative determiner do exist.
5 The third person singular form is an outsider late system morpheme because its form is decided depending on the information outside its maximal projection.
6 The word shitappa (下っ端) literally means “underling”. However, here the boys are referring to a character from a video game, or in fact a group of characters, who are known collectively as Shitappaa.
Note that the final vowel sound is extended, which makes it possible to determine that this is the name of the character rather than the common noun.

7 Park (2006, p. 32) argues that proper nouns, which are generally assumed to be the most typical borrowings in the code-switching literature, undergo the same (or at least related) morphosyntactic processes and that they are not different from code-switching.

8 One significant feature of the difference between the proper noun and the common noun is its prosodic pattern. The common noun shitappa has a level pattern "_ _ _"(the line shows relative height of each syllable and the blank in the middle indicates the glottal stop). Whereas the proper noun Shitappaa can be depicted as "– _ _ _" which has a prominence at "ta" and the final vowel part is prolonged.

9 Treffers-Daller (2005) shows that in Dutch-French CS there are a few examples in which a Dutch plural-s is attached to a French inserted noun.

10 A dementor is a creature appearing in the fantasy novel ‘Harry Potter and the Prisoner of Azkaban’.

11 This is termed an ‘Internal Embedded Language Island’. The combination of the two EL items is part of a larger constituent in which “they constitute a sister to Matrix Language element under N-bar (in X-bar theory) with the entire constituent projected under NP” (Myers-Scotton, 2002, p. 150).

12 Shibatani (1990, p. 356) defines this usage of ‘o’ as beautification, which adds politeness and a feminine feeling. It is frequently observed in mother talk, which is why small children tend to use it.

13 There is another structure, i.e. a noun + the accusative case particle o + a numeral + a classifier which is the product of ‘Quantifier Floating’ (Tsujimura, 1996, p. 193).

14 Japanese does not have relative pronouns (Tsujimura, 1996).