Reproductive physiology, temperature and biogeography: the role of fertilization in determining the distribution of the barnacle Semibalanus balanoides

SAM CRICKENBERGER AND DAVID S. WETHY
Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA

Marine benthic populations are dependent on early life-history stages surviving multiple population bottlenecks. Failure at one or several of these bottlenecks can alter species’ patterns of distribution and abundance. The barnacle Semibalanus balanoides is found along temperate and sub-arctic shorelines of the Atlantic and Pacific Oceans. Over the past century the southern range limits of S. balanoides have shifted hundreds of kilometres poleward on both coasts of the Atlantic. Here we tested if temperature limits fertilization and used these data, along with those from previous studies, to create mechanistic biogeographic models to understand which potential population bottlenecks in the early life-history of S. balanoides influence its distribution and abundance. In the western Atlantic survival of new recruits is probably more important in setting the southern range limit than the effects of temperature on early life-history stages because fertilization, brooding and the probability of larval release matching phytoplankton availability were all predicted to be high near the historical range edge. Phytoplankton mismatch may partially explain the ephemeral nature of S. balanoides in some parts of the English Channel. Further south along the coast of France predicted brooding success was reduced in a pattern consistent with historical range shifts in this region. Within Galicia, Spain fertilization was predicted to be low near the southern limit, and likely plays an important role in setting this range edge. Mismatches between phytoplankton abundance and larval release in Galicia may further limit reproductive success within this region.

Keywords: Semibalanus balanoides, fertilization, range limit, phytoplankton mismatch

Submitted 17 December 2016; accepted 28 February 2017

INTRODUCTION

Warming global temperatures have resulted in numerous shifts in the distributions of marine species (Southward et al., 1995; Hawkins et al., 2008, 2009; Poloczanska et al., 2013). However, predicting these changes can be challenging. Correlative species distribution models are an increasingly common approach to predicting current and future distributions (Elith & Leathwick, 2009; Reiss et al., 2011; Robinson et al., 2011; Singer et al., 2016), but can fail when range limiting mechanisms vary spatially (Alexander & Edwards, 2010), when systems are undergoing rapid change (Brun et al., 2016), or when physical barriers inhibit dispersal (Alexander & Edwards, 2010; Keith et al., 2011). In these cases mechanistic based models may provide more accurate predictions (Kearney & Porter, 2009; Woodin et al., 2013).

In many marine invertebrates early life-history stages are the most physiologically sensitive (Andronikov, 1975). Therefore, warming ocean temperatures may pose a greater risk to early-life history stages than adults, and the effects of temperature on early-life history stages may be important in driving changes in the distribution of many marine species (Hutchins, 1947; Andronikov, 1963; Ushakov, 1964; Wethey et al., 2011). Both the larval pool and successful recruitment are necessary for population persistence, making the fate of early-life history stages very important in determining the potential success or failure of marine populations (Cowen & Sponaugle, 2009; Pineda et al., 2009).

While an increasing number of studies are examining the consequences of warming ocean temperatures on early-life history stages (Walther et al., 2013; Przeslawski et al., 2015), few examples exist in the marine literature that allow contemporary studies to examine long-term changes in population fluctuations as a result of temperature effects on early-life history stages. The barnacle Semibalanus balanoides can serve as a good model species for understanding the effects of warming ocean temperatures on early-life history stages and the consequences for population persistence because of numerous studies on historical distributions (Fischer, 1872; Crisp & Fischer-Piette, 1959; Barnes et al., 1972; Wethey & Woodin, 2008; Wethey et al., 2011; Jones et al., 2012) and the effects of temperature on reproductive success (Barnes, 1963; Tighe-Ford, 1967; Crisp & Patel, 1969; Dréves, 2001; Rognstad & Hibbsh, 2014).

The distribution of S. balanoides includes temperate and boreo-arctic shorelines of the Atlantic and Pacific Oceans (Hutchins, 1947; Stubbings, 1975). Along the coast of the
eastern Pacific

S. balanoides is found as far south as Yellow Point, Vancouver Island, British Columbia, Canada (49.2°N) (Carroll & Wethey, 1990; Wethey, unpublished data), and the southern limits in the western Pacific extend in Russia to at least the mouth of the Amur River (53°N) (Tasarov, 1937). It is not present on Sakhalin Island, Russia, from Alexandrov Sakhalinski (51° N) to Korsakov (46.6° N) or in Hokkaido, Japan (Wethey, unpublished data). Records from the Atlantic provide better temporal resolution of the distribution of S. balanoides, and the southern limits along both sides of the Atlantic have migrated hundreds of kilometres over the past century. In the western Atlantic the southern range limit of Semibalanus occurred near Cape Hatteras, North Carolina, USA (35.5° N) in the 1950s and 1960s (Wells et al., 1960; Jones et al., 2012) with occasional episodes of recruitment further south (Mohammed, 1961). Since the 1960s the southern range limit of S. balanoides has retracted 350 km poleward to Lewes, Delaware, USA (39.5° N) (Jones et al., 2012).

On the European coast multiple breaks exist in the distribution of S. balanoides. On the English Channel coast there have been long-term fluctuations with increases during cold decades and near extinction in warm decades (Fischer-Piette, 1936; Southward & Crisp, 1956; Southward, 1967, 1993; Herbert et al., 2007; Wethey et al., 2011; Mieszowska et al., 2014; Rognstad et al., 2014). Historically, the southern limit of the Bay of Biscay extended at least as far as St. Jean de Luz, France (43.4° N) near the border of France and Spain (Fischer, 1872). The French southern limit of the species has fluctuated over a distance of ~400 km since that time, coincident with periods of regional warming and cooling. It retracted to the mouth of the Gironde River by the mid 1950s (Crisp & Fischer-Piette, 1959), expanded again to Arcachon, France (44.6° N) during the extreme cold period of the early 1960s (Barnes & Powell, 1966), retreated to Les Sables d’Olonne, France (46.5° N) by 2006 (Wethey & Woodin, 2008), and was found again in Arcachon (44.6° N) after the extremely cold winter of 2010 (Wethey et al., 2011). The barnacle is absent from the majority of the northern coast of Spain except for Galicia (Fischer-Piette & Prenant, 1956, 1957; Barnes & Barnes, 1966; Wethey & Woodin, 2008; Macho et al., 2010; Wethey et al., 2011). Within Galicia both the southern (41.70–42.78° N) and north-eastern (43.37–43.68° N) range limits fluctuate, probably due to intermittent periods of reproductive failure associated with warmer years (Wethey & Woodin, 2008; Wethey et al., 2011).

Both the number of recruits and the timing of recruitment vary annually in S. balanoides, and this variation is correlated with temperatures during the time of reproduction (Connell, 1961; Hawkins & Hartnoll, 1982; Kendall et al., 1985; Southward, 1991; Drèves, 2001; Mieszowska et al., 2014; Rognstad et al., 2014; Abernott-Le Gac et al., 2016; but see Burrows et al., 2010 for cases with low correlation to temperature). A number of different hypotheses about the effects of temperature on reproductive success in S. balanoides exist to explain the close association between the timing and intensity of settlement with temperature.

(1) Warmer autumn temperatures prevent or reduce fertilization success through either inhibition of the development of ovigerous tissue during the conditioning period or prevention of fertilization through failed insemination of eggs or failed copulation (Barnes, 1963; Tighe-Ford, 1967; Crisp & Patel, 1969). Gonads of S. balanoides mature during the autumn (September and November) (Crisp & Clegg, 1960), and following gonad maturation copulation results in fertilized lamellae that lie in the base of the barnacle by the end of the autumn (November to December) (Barnes, 1965). As a consequence, warm autumn temperatures may delay the onset of fertilization until cooler temperatures prevail and reduce the frequency of fertilized adults.

(2) Following successful fertilization warmer temperatures may negatively affect brooded embryos within the cavities of adult barnacles (Rognstad & Hilbish, 2014). Embryos develop throughout the winter within lamellae until they are ready to be released into the water column with the spring phytoplankton bloom (Crisp, 1959a, 1964). High temperatures may kill embryos or high metabolic rates associated with warmer temperatures could lead to rapid depletion of embryonic energetic reserves (Lucas & Crisp, 1987; Rognstad & Hilbish, 2014).

(3) Delayed onset of fertilization or faster embryonic development during warm winters may result in a mismatch between the phytoplankton bloom and larval release. This mismatch could result in high planktonic larval mortality (Barnes, 1956, 1957, 1962; Connell, 1961; Hawkins & Hartnoll, 1982) or high post-settlement mortality due to settlement of poorly fed, low quality cyprids (Jarrett, 2003; Emlet & Sadro, 2006; Pechenik, 2006; Torres et al., 2016). High post-settlement mortality could also occur in warmer years because warmer spring temperatures that could kill new recruits (Foster, 1969) are likely to follow warm winters (Kendall et al., 1985; Poloczanska et al., 2008).

Here we tested if temperature affects fertilization of S. balanoides eggs. Fertilization may affect reproductive success in a number of ways. First, warm temperatures may inhibit fertilization through either biochemical or mechanical means. Second, warmer temperatures may delay fertilization by either slowing the process of fertilization, or inhibiting the process of fertilization until temperatures cool during the winter months making fertilization possible. We specifically tested the hypotheses that (1) fertilization is inhibited at warm temperatures, (2) fertilization might occur, but be delayed at high temperatures, and (3) fertilization might occur at warmer locations once barnacles are exposed to cooler water temperatures. Additionally, we used predictive models to test the consequences of the effects of temperature on fertilization, brooding, the interaction between fertilization and brooding, and the potential for phytoplankton mismatches for biogeography.

Experimental design

Cobbles with attached adult Semibalanus balanoides were collected from White Horse Beach in Manomet, Massachusetts, USA (41.92°N 70.54°W) on 19 October 2014 and immediately transported to the University of South Carolina at Columbia, USA. Six cobbles were randomly assigned to each of four treatment temperatures including 10, 13, 16 and 19°C, which are representative of the range of sea-surface temperatures found throughout the distribution of S. balanoides during the time period of
fertilization. Light cycles were set to match those of White Horse Beach in each environmental chamber. To simulate a daily tidal cycle matching that of White Horse Beach seawater was pumped from each experimental tank to a head tank at low tide and refilled for high tide at 6 h intervals. Lighting and tidal cycle was readjusted to that of White Horse Beach every 2 weeks. Every 2 days barnacles were fed using Spat Formula (Innovative Aquaculture Products Ltd, Lasqueti Island, BC, Canada) at a concentration of 10^8 cells l⁻¹. Experimental tanks were cleaned weekly and every 2 weeks water was changed during low tide, which allowed the water to come to the appropriate treatment temperature prior to immersion. All seawater used in the experiments was maintained at 35 ppt.

Three barnacles were randomly sampled from each of the six cobbles at each treatment temperature to determine the per cent fertilized (N = 18 per treatment) on 21 October 2014, 5 November 2014, 18 November 2014 and 30 November 2014. Only barnacles whose shells were touching a neighbouring barnacle were sampled to ensure that they had access to a partner for mating. At each sampling date barnacles were scored as fertilized or unfertilized, and basal diameter, opercular length and shell height were measured using calipers. To determine if fertilization was possible at temperatures that completely inhibited fertilization over a longer period of time or after being transferred to cooler temperatures, three cobbles from the 19°C treatment remained at 19°C and three cobbles were placed and maintained at 10°C on 1 December 2014. Both treatments were sampled as described above on 26 January 2015.

Biogeographic models of fertilization, brooding and total reproductive success

Fertilization success was modelled to determine if coastal sea surface temperatures (SSTs) near the southern range limits of *S. balanoides* in the eastern and western Atlantic could inhibit fertilization. Historical records for *S. balanoides* are much richer along the coasts of the eastern and western Atlantic so we focused on comparing our models to historical records from these regions (Figure 1). The influence of temperature on reproductive success of *S. balanoides* from the eastern and western Atlantic is known to differ (Crisp, 1964); however, previous biogeographic modelling efforts based on the same temperature thresholds for reproductive success have resulted in accurate predictions on both sides of the Atlantic (Wethey & Woodin, 2008; Wethey et al., 2011; Jones et al., 2012). A logistic regression was used to determine the relationship between the experimental temperatures and fertilization proportion on the last sampling date. This relationship was then projected onto average November SSTs between 1870 and 2015 in each region using Hadley SST data (HADISST, Rayner et al., 2003, 2005). We regressed the 33-year *S. balanoides* recruitment data in Abernort-Le Gac et al. (2016) against SST from three different interpolated SST products (HADISST monthly, Rayner et al., 2003, 2005; OI SST v2 daily, Reynolds et al., 2007, OI SST, 2016; OSTIA daily analysis and reanalysis, Donlon et al., 2011, Roberts-Jones et al., 2012; OSTIA, 2016a, b). HADISST provided the best fit to the Abernort-Le Gac et al. (2016) data of all SST products evaluated (HADISST R² = 0.68, P < 0.0001; OI SST R² = 0.56, P < 0.0001; OSTIA SST R² = 0.62, P < 0.0001). Model predictions were restricted to recruitment values less than 2000 per 100 cm² because this density is equivalent to 100% cover. Total reproductive success was modelled by multiplying predicted fertilization success by predicted brooding success. All models were run in R (R 3.1.0, R Core Team, 2014).

Predictive accuracy of the brooding and total reproductive success models was assessed by comparing predicted recruitment success or failure at several thresholds to measurements of recruitment near the southern range limits in the western Atlantic in 2015 and the eastern Atlantic in 2010, 2011 and 2012. Fertilization in *S. balanoides* is dependent on the distance to its nearest neighbour (Barnes & Crisp, 1956; Yuen & Hoch, 2010), and post-settlement survival is probably reduced near southern range limits where temperatures are higher (Jones et al., 2012). The combination of these two effects can interact within years and among consecutive years to reduce larval pool, and therefore larval dispersal, leading to lower values of recruitment than when recruitment is predicted solely by temperatures in a single year. For these reasons we tested the predictive accuracy of our models at three different thresholds greater than zero. At nearest neighbour distances less than 1 cm fertilization is near 100%, at 2.5 cm fertilization is ~50%, and fertilization is zero at 5 cm (Barnes & Crisp, 1956; Yuen & Hoch, 2010). Assuming random settlement nearest neighbour distance can be used to calculate recruitment density (Clark & Evans, 1954), so we calculated recruitment densities for nearest neighbour distances of 1 (25 recruits per 100 cm²), 2.5 (4 recruits per 100 cm²) and 5 cm (1 recruit per 100 cm²). For each threshold (2.5, 4 and 1 recruit per 100 cm²) predicted values of recruitment greater than or equal to the threshold were scored as reproductive success and values less than the threshold were scored as reproductive failure. Measured recruitment was scored as reproductive success if densities were greater than zero and reproductive failure if no recruits were found.

Models of the timing of larval release and the potential for phytoplankton mismatch

A mismatch between larval release and the phytoplankton bloom is dependent on timing of fertilization, rate of
embryonic development, timing of larval release, rate of larval development, and timing of the phytoplankton bloom. We estimated the timing of each of these events between 1997 and 2015 in the western and eastern Atlantic to determine if phytoplankton mismatches were possible. Fertilization typically occurs between the beginning of November and the beginning of December (Crisp, 1959a; Crisp & Clegg, 1960; Barnes, 1963). In our experiments temperature was able to delay the onset of fertilization by some time less than 2 months. We set our start dates for the onset for fertilization at 1 November, 1 December and 1 January. The relationships between the rate of embryonic development and temperature (eastern Atlantic: Crisp 1959b; western Atlantic: Crisp 1964) and the rate of larval development and temperature (larval development: Harms, 1984) were modelled as power functions. Rates of embryonic development are faster for S. balanoides embryos from the USA, so we scaled rates of embryonic development using Q_{10} values calculated from Crisp (1964) for embryonic development in the western Atlantic. Power functions were natural log transformed to create linear models of the relationship between development and temperature:

$$\ln(t) = \ln(a) + b\ln(SST)$$

where t is the length of development, a and b are coefficients for each relationship, and SST is sea surface temperature. We used these power functions (Table 1) and daily SST data at

Table 1. Power function regressions ($\ln(t) = \ln(a) + b\ln(SST)$) examining the relationship between temperature and embryonic development and temperature and larval development for Semibalanus balanoides ($t =$ length of development in days; $a =$ intercept; $b =$ slope; SST = sea surface temperature; $r =$ correlation coefficient; $P =$ P-value).

<table>
<thead>
<tr>
<th>Model</th>
<th>a</th>
<th>b</th>
<th>r</th>
<th>P</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of embryonic development in USA</td>
<td>46.2319</td>
<td>-0.1706</td>
<td>0.64</td>
<td>0.001</td>
<td>Crisp (1964)</td>
</tr>
<tr>
<td>Rate of embryonic development in Europe</td>
<td>95.6318</td>
<td>-0.1706</td>
<td>0.64</td>
<td>0.001</td>
<td>Crisp (1959b)</td>
</tr>
<tr>
<td>Rate of larval development</td>
<td>70.837</td>
<td>-0.648</td>
<td>0.99</td>
<td>< 0.001</td>
<td>Harms (1984)</td>
</tr>
</tbody>
</table>
10 km intervals along the coastline in each region (OISST: Reynolds et al., 2007) to calculate the proportion of development completed in each day.

Proportion of development completed in one day

\[
\frac{1}{\exp(\ln(a) + b \ln(\text{SST}))}
\]

when the sum of these proportions equalled one development was complete. Length of larval development based on daily SST was also used to determine the number of days when food was available to support larval development and test for a phytoplankton mismatch using daily cloud-free optimally interpolated 4 km chlorophyll a data (Saulquin et al., 2011). Copernicus chlorophyll a data (Copernicus, 2016) represent the longest running cloud-free dataset available for both the eastern and western Atlantic (Saulquin et al., 2011). Half-saturation points for clearance rates of larval feeding are unknown in S. balanoides. Therefore, we used clearance rate values for B. crenatus, another temperate/sub-arctic, intertidal barnacle, to calculate a half-saturation point of chlorophyll a below which food may be limiting (Turner et al., 2001). We assumed larvae required food levels above the half-saturation point for at least 25% of their development because other crustacean larvae have similar requirements to complete development (Anger & Dawirs, 1981; Qiu et al., 1997). Remotely sensed chlorophyll a data can be representative of food availability for filter feeding marine invertebrates because models of growth based on remotely sensed chlorophyll a data closely mirror field measurements of growth in the mussel Mytilus edulis (Thomas et al., 2011).

Field estimates of the timing of larval release and the timing of peak larval abundance in the water column suggest larval release occurs over no more than a one month period (Kendall et al., 1985; Pineda et al., 2002). To quantify the potential for a phytoplankton mismatch for each of our estimates of larval release we calculated the percentage of days where a phytoplankton mismatch was predicted to occur during a 30 day window beyond our estimates of the completion of embryonic development in each year. Regional differences in the interaction between phytoplankton mismatch and total reproductive success were estimated by multiplying predicted probability of phytoplankton match and predicted total reproductive success, and then calculating the percentage of years where recruitment was greater than or equal to recruitment thresholds of 25, 4 and 1 recruit per 100 cm². Predictive accuracy of the interaction between phytoplankton match and total reproductive success was assessed by comparing predicted recruitment success or failure at 25, 4 and 1 recruit per 100 cm² to measurements of recruitment near the southern range limits in the western Atlantic in 2015 and the eastern Atlantic in 2010, 2011 and 2012.

Statistical analysis

A multinomial logistic regression with Rock nested within temperature treatment was run to determine if rock significantly affected fertilization within each temperature treatment using data from the final sampling date. After finding no effect of rock, a Kruskal–Wallis test was run to determine if temperature treatment significantly affected the fraction of fertilized barnacles on the final sampling date because the data could not be transformed to fit a normal distribution. Steel–Dwass post-hoc tests were used to compare temperature treatments. A Student’s t-test was used to examine the effect of temperature treatment on fertilization for embryos maintained at 19°C and then left at 19°C or transferred to 10°C. Logistic regressions were run to determine the relationship between fertilization and basal diameter, opercular diameter, and shell height using data from the last sampling date for barnacles maintained at 10, 13 and 16°C. Inverse prediction was used to determine the shell height at which half of the barnacles were predicted to be fertilized. All analyses were run in JMP (JMP, Version 11. SAS Institute, 2013).

Predictive accuracy of the brooding, total reproduction and the interaction between phytoplankton mismatch and total reproduction biogeographic models was tested using 2 × 2 contingency tables comparing predicted reproductive success and failure to observed reproductive success and failure for each of the three thresholds in the eastern (2010, 2011, 2012) and western Atlantic (2015). Additionally, we calculated overall accuracy (Finley, 1884; Liu et al., 2011) of each model as the total number of accurately predicted presences and absences divided by the total number of sites. All analyses were run in R (R 3.1.0, R Core Team, 2014).

RESULTS

Effects of temperature on fertilization

Rock nested within treatment temperature did not affect fertilization (multinomial logistic regression, \(P > 0.9 \)).

Treatment temperature significantly affected the percentage of fertilized barnacles (Kruskal–Wallis test, \(\chi^2 = 20.2789, P \leq 0.0001, df = 3 \), Figure 2). No difference was found between barnacles at 10°C and 13°C (\(P = 1 \)), but a larger percentage of barnacles were fertilized at 10°C (78%) and 13°C (78%) than at 16°C (28%) or 19°C (0%) (Steel–Dwass tests, \(P < 0.02 \) in all comparisons). More barnacles were fertilized at 16°C than at 19°C (\(P < 0.05 \)). The percentage of fertilized barnacles did not increase 8 weeks after barnacles from 19°C were moved to 10°C (Student’s \(t \)-test, \(P > 0.2 \), Figure 3). Among the lamellae that were fertilized, those that remained at 19°C did not contain viable embryos. At this temperature small balls that did not resemble embryos

![Fig. 2. Back-transformed mean (±SE) fraction of fertilized Semibalanus balanoides on each sampling date. Letters represent significant differences (\(P < 0.05 \)) in the fraction of fertilized barnacles on the last sampling date.]
were present within the chitinous casing of each egg within the lamellae. In lamellae of barnacles transferred from 19 to 10°C embryos were eyed and normal in appearance. Among barnacle size metrics shell height was, by a slight margin, the best predictor of fertilization (logistic regression: basal diameter $R^2 = 0.52$, $P < 0.0001$; opercular length $R^2 = 0.49$, $P < 0.0001$; shell height $R^2 = 0.57$, $P < 0.0001$). Half of barnacles less than 1.9 mm in shell height were predicted to be unfertilized across all temperatures where fertilization occurred.

Biogeographic models of fertilization, brooding and total reproductive success

Temperature was a good predictor of fertilization on the last sample date in our laboratory experiments (logistic regression, $R^2 = 0.66$, $P < 0.01$), and monthly minimum SST was a good predictor of brooding success in the data of Drevés (2001) and Abernot-Le Gac et al. (2016) (linear regression, $R^2 = 0.68$, $P < 0.0001$). We used these two relationships in our biogeographic models. Historically S. balanoides was found south to Cape Hatteras, North Carolina, USA (35.5° N) along the western Atlantic shoreline (Figure 1). Predicted fertilization (0–14%; Figure 4A), brooding (0.1–14 recruits per 100 cm²; Figure 4B), and total reproductive success (0.0–2 recruits per 100 cm²; Figure 4C) were all low at Cape Hatteras (35.5° N) across all years. Just north of Cape Hatteras in Virginia Beach, Virginia (36.5° N) predicted fertilization (8–89%), brooding (14–1919 recruits per 100 cm²), and total reproduction (1.4–1573 recruits per 100 cm²) were higher and more variable. Predicted fertilization, brooding and total reproduction in Virginia Beach, Virginia (36.5° N) decreased marginally or not at all between 1870 and 2015 (linear regression, fertilization: $R^2 = 0.05$, $P < 0.01$; brooding: $R^2 = 0.00$, $P > 0.2$; total reproduction: $R^2 = 0.02$, $P = 0.05$). Since the 1960s the southern range limit of S. balanoides has retracted to Lewes, Delaware, USA (39.5° N) where all predictions of reproductive success were consistently high in all years (fertilization: 81 and 99%; brooding: 2000 recruits per 100 cm²; total reproduction: 1617 to 1988 recruits per 100 cm²). At the 25 recruits per 100 cm² threshold predictions of brooding success and failure closely matched observed values, while predictions of total reproductive success and failure were less accurate (Table 2; Figure 4B, C). Similar patterns were found at thresholds of 4 recruits per 100 cm² and 1 recruit per 100 cm² (Table 2; Figure 4B, C) due the presence of recruits at all measured sites. Measured range limits closely matched all thresholds for predicted total reproduction in all years except 2006 (Figure 4C).

Along the coastline of Europe fertilization was predicted to be possible at all coastal sites examined, but highly variable between years (Figure 4D). Near the limit of S. balanoides in the 1870s at St Jean de Luz, France (43.4° N) the model predicted fertilization ranged between 42 to 97% (brooding: 6–118 recruits per 100 cm²; Figure 4E) total reproduction: 4–112 recruits per 100 cm² (Figure 4F). At the range edge in the 1960s near Arcachon, France (44.6° N) the model predicted fertilization ranged from 54–98% (brooding: 16–236 recruits per 100 cm²; total reproductive: 10–226 recruits per 100 cm²), and from 59–98% (brooding: 21–302 recruits per 100 cm²; total reproductive: 14–292 recruits per 100 cm²) at Les Sables d’Olonne, France (46.5° N), the documented range limit in 2006. Fertilization, brooding and total reproductive success were predicted to have decreased at all of these locations since 1870 (linear regressions, St Jean de Luz, France, fertilization: $R^2 = 0.29$, $P < 0.0001$, brooding: $R^2 = 0.26$, $P < 0.0001$, total reproduction: $R^2 = 0.35$, $P < 0.0001$; Arcachon, France, fertilization: $R^2 = 0.29$, $P < 0.0001$, brooding: $R^2 = 0.26$, $P < 0.0001$, total reproduction: $R^2 = 0.30$, $P < 0.0001$; Les Sables d’Olonne, France, fertilization: $R^2 = 0.32$, $P < 0.0001$, brooding: $R^2 = 0.21$, $P < 0.0001$, total reproduction: $R^2 = 0.25$, $P < 0.0001$). At the 25 recruits per 100 cm² threshold predictions of brooding success and failure were similar to observed values in some years, while predictions of total reproduction more closely matched observed values across all years (Table 2; Figure 4E, F). Lower thresholds provided less accurate predictions (Table 2; Figure 4E, F). The presence of recruits at all sites where recruitment was measured in 2012 led to high predictive accuracy at all thresholds (Table 2). Measured range limits were all within one degree latitude of the 25 recruits per 100 cm² threshold for predicted brooding and total reproduction in all years (Figure 4F).

Near the southern range limit of S. balanoides in Galicia (41.5° N) the model predicted fertilization was between 14 to 89%, 14 to 97% within Galicia, and 52 to 97% near the north-eastern range edge. Brooding (1.5 to 57 recruits per 100 cm², Figure 4E) and total reproduction (0.3 to 53 recruits per 100 cm², Figure 4F) were also predicted to be low within Galicia. Near the southern and north-eastern range edges in Galicia the model predicted fertilization, brooding and total reproductive success have decreased since 1870 (linear regressions, southern limit, fertilization: $R^2 = 0.22$, $P < 0.0001$, brooding: $R^2 = 0.22$, $P < 0.0001$, total reproduction: $R^2 = 0.29$, $P < 0.0001$; north-eastern limit, fertilization: $R^2 = 0.27$, $P < 0.0001$, brooding: $R^2 = 0.26$, $P < 0.0001$, total reproduction: $R^2 = 0.30$, $P < 0.0001$). Predictions from our brooding and total reproduction models underestimated reproductive success at the 25 recruits per 100 cm² threshold (Table 2; Figure 4E, F). At the 1 recruit per 100 cm² threshold our brooding and total reproduction models tended to overpredict the limit of successful reproduction (Table 2; Figure 4E, F). At

Figure 3. Back-transformed mean (± SE) fraction of fertilized Semibalanus balanoides on 26 January 2015 from barnacles maintained at 19°C and then either kept at 19°C or transferred to 10°C on 1 December 2014. The fraction of fertilized barnacles was not significantly different between the two treatments ($P > 0.05$). In the lamellae that were fertilized, those that remained at 19°C did not contain viable embryos. Lamellae from barnacles that were transferred from 19 to 10°C contained embryos that were eyed and regular in appearance.
the 4 recruits per 100 cm2 threshold our brooding and total reproduction model predictions were similar to measured recruitment in 2010 and 2012 (Table 2). Measured range limits were all within two degrees latitude of the 4 recruits per 100 cm2 threshold for predicted brooding and total reproduction in all years (Figure 4E, F).

Models of the timing of larval release and the potential for phytoplankton mismatch

Temperature was a good predictor of the length of embryonic development and length of larval development (Table 1). We used these relationships and remotely sensed chlorophyll a data to predict whether a phytoplankton mismatch was likely between 1997 and 2015 in the western and eastern Atlantic (Figure 5; Supplementary Figures 1 & 2). The half-saturation point for *B. crenatus* was 3 mg chlorophyll a m$^{-3}$ (Turner et al., 2001). In most cases this threshold predicted a phytoplankton mismatch, suggesting this threshold was unrealistically high for *S. balanoides*. The exact half-saturation point for *S. balanoides* is unknown, and may vary with larval size, larval stage and algal type, so we simply used half of 3 mg chlorophyll a m$^{-3}$ (1.5 mg chlorophyll a m$^{-3}$) as the threshold for our predictions of phytoplankton mismatch. In the western Atlantic phytoplankton mismatch was predicted to be unlikely for most sites. Between the historical southern range limit at Cape Hatteras, North Carolina (35.5°N) and the current southern range limit of *S. balanoides* near Lewes, Delaware (39.5°N) phytoplankton mismatch was

Table 2. Overall accuracy as a measure of predictive accuracy for each biogeographic model in each region and year for each recruitment threshold (25, 4 and 1 recruit per 100 cm2). Cases where predictions were not significantly different from measured recruitment are in bold (2×2 contingency table, $P > 0.05$).

<table>
<thead>
<tr>
<th>Region</th>
<th>Year</th>
<th>Brooding</th>
<th>Total reproduction</th>
<th>Phytoplankton mismatch</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>2015</td>
<td>0.87</td>
<td>0.67</td>
<td>0.60</td>
</tr>
<tr>
<td>France</td>
<td>2010</td>
<td>0.84</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0.65</td>
<td>0.61</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>1.00</td>
<td>1.00</td>
<td>0.79</td>
</tr>
<tr>
<td>Galicia</td>
<td>2010</td>
<td>0.58</td>
<td>0.71</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0.00</td>
<td>0.29</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>0.00</td>
<td>0.91</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Fig. 4. Predicted fraction of fertilized *Semibalanus balanoides* in the (A) western Atlantic and (D) eastern Atlantic, predicted brooding success in the (B) western Atlantic and (E) eastern Atlantic, and predicted total reproductive success in the (C) western Atlantic and (F) eastern Atlantic between 1870 and 2015. Fertilization contours at 50% predicted fertilization. Brooding and total reproductive success contours at recruitment levels of 25 (solid line), 4 (short dashes), and 1 (long dashes) recruits per 100 cm2 corresponding to nearest neighbour distances of 1, 2.5 and 5 cm respectively. Historical southern range limits in the western Atlantic (white squares), and in the eastern Atlantic in Galicia (white circles) and France (white triangles). Black lines match predictions to corresponding locations on the coastline at 1 degree latitude intervals.
Fertilization was possible at warmer temperatures once barnacles were exposed to cooler temperatures. When barnacles were transferred from 19°C to 10°C a smaller fraction of barnacles were fertilized than when they remained at 10°C for the duration of the experiment (Figures 2 & 3). There is some support for a delay in fertilization when barnacles are kept at a warmer temperature and then transferred to a cooler temperature. Crisp & Patel (1969) found barnacles kept at 17–22°C from October to March were completely unfertilized. After being transferred to 2–3°C in complete darkness 75% were fertilized and at 6–7°C in ambient daylight 36% were fertilized (Crisp & Patel, 1969). While food availability and light exposure can influence the timing of fertilization, temperature can drive reduced and delayed fertilization (Crisp, 1957, 1959a; Barnes, 1958; Crisp & Clegg, 1966; Crisp & Patel, 1969; Davenport et al., 2005).

Delayed onset of fertilization due to warm autumn temperatures may have three different consequences. First, a smaller proportion of adults were fertilized when transferred from 19 to 10°C (22% fertilized) compared with adults maintained at 10°C (78% fertilized). Therefore, delayed fertilization would lower the number of propagules and reduce subsequent levels of recruitment. Second, a late start to development could result in a phytoplankton mismatch (Barnes, 1956, 1957, 1962). Embryos are fully developed and remain in the mantle cavity of adult S. balanoides until the spring phytoplankton bloom (Crisp, 1956, 1959a, 1964); however, there is some evidence American barnacles release their nauplii as early as December (Barnes & Barnes, 1959, 1976; J. Pineda, personal communication). In the western Atlantic our predictions of phytoplankton mismatch found no release dates when a temperature-induced delay in fertilization could result in phytoplankton mismatch near the southern range limit. In the eastern Atlantic phytoplankton mismatches were predicted to occur near southern range limits in France and Galicia (Figure 5). In both cases limited availability of food during the larval period may interact with temperature limits to successful reproduction to further reinforce these range limits, and explain the presence of ephemeral populations on either side of the western English Channel (Figure 5). Third, increased energetic demand of adults at higher temperatures could result in resorption of gametic tissue prior to fertilization (Barnes & Achituv, 1976), and reduce the number of embryos or the energetic content of each embryo. Embryos with low energy reserves would be particularly vulnerable to starvation in the water column if larval release and the phytoplankton bloom were mismatched, and larvae with limited energetic reserves could result in low quality settlers that have reduced survival (Jarrett, 2003; Emlet & Sadro, 2006; Pechenik, 2006; Torres et al., 2016).

To better understand the role of fertilization success in influencing the distribution of S. balanoides, we used the relationship between fertilization and temperature (Figure 2) to create a predictive model, and projected it onto historical SSTs in the eastern and western Atlantic. As mentioned above, fertilization is not the only reproductive process influenced by temperature, so we also modelled the relationship between brooding success and temperature using over 30 years of recruitment records (Abernot-Le Gac et al., 2016) from a site in the English Channel where fertilization was predicted to be at or near 100%, and projected it onto SSTs in the same regions. Total reproductive success, the product of fertilization and brooding, was also predicted for both regions and
multiplied by the probability of phytoplankton match. At the southern limits of *Semibalanus* in both the eastern and western Atlantic low levels of fertilization were predicted in some cases. In the 1950s and 1960s the southern range limit of *Semibalanus* occurred near Cape Hatteras, North Carolina, USA (35.5°N) (Wells et al., 1960; Jones et al., 2012). Fertilization success was predicted to be high just north of Cape Hatteras (35.5°N) at Virginia Beach (36.5°N) in the majority of years between 1870 and 2015. Since the 1960s the southern range limit of *S. balanoides* has retracted 350 km to Lewes, Delaware (39.5°N) (Jones et al., 2012).

Interestingly, fertilization, brooding, and total reproductive success were predicted to be high as far south as Virginia Beach (36.5°N) in most years with very low predicted probability for phytoplankton mismatch (Figure 4A–C; Figure 5), which is consistent with occasional sightings and transplant experiments of *S. balanoides* south of Lewes, Delaware (39.5°N) (Jones et al., 2012). Since the late 1800s the southern range limit of *S. balanoides* along the coast of France has retracted from the border of France and Spain (43.4°N) (Fischer, 1872) to Les Sables d’Olonne, France (46.5°N) with scattered individuals present further south at Châtelaillon Plage (46°N) and the mouth of the Gironde River (45.5°N) (Wethey & Woodin, 2008; Macho et al., 2010; Wethey et al., 2011). Since the late 1800s the southern range limit of *S. balanoides* along the coast of France has retracted to Lewes, Delaware (39.5°N).

Fig. 5. Predicted per cent success of early life-history stages of *Semibalanus balanoides* between 1998 and 2015 in the western and eastern Atlantic at recruitment levels of 1, 4 and 25 recruits per 100 cm², corresponding to nearest neighbour distances of 5, 2.5 and 1 cm respectively. Predicted per cent success was calculated by multiplying total reproductive success by the probability of phytoplankton mismatch each year, and then finding the fraction of years between 1998 and 2015 greater than or equal to each recruitment threshold. Predicted per cent success at (A) 1, (B) 4 and (C) 25 recruits per 100 cm² in the western Atlantic, and predicted per cent success at (D) 1, (E) 4 and (F) 25 recruits per 100 cm² in the eastern Atlantic.

On the European coast multiple breaks exist in the distribution of *S. balanoides* with range limits along the Atlantic coast of France, with occasional localized extinctions along the western English Channel (e.g. Southward, 1967; Wethey et al., 2011; Rognstad et al., 2014) and Galicia, Spain (Fischer-Piette & Prenant, 1957; Wethey & Woodin, 2008; Macho et al., 2010; Wethey et al., 2011). Since the late 1800s the southern range limit of *S. balanoides* along the coast of France has retracted from the border of France and Spain (43.4°N) (Fischer, 1872) to Les Sables d’Olonne, France (46.5°N) with scattered individuals present further south at Châtelaillon Plage (46°N) and the mouth of the Gironde River (45.5°N) (Wethey & Woodin, 2008; Wethey et al., 2011; Wethey, unpublished data). Fertilization was predicted to be high (59–98%) throughout this region in all years (Figure 4D). However, brooding was predicted to be lower (3.7–7.2 recruits per 100 cm²), and decreased in a pattern matching historical range shifts, suggesting brooding success plays a more important role in determining the distribution of *S. balanoides* in this region than fertilization (Figure 4E).

In the western English Channel both fertilization and brooding were predicted to be high in all years. However, phytoplankton mismatch was
predicted to be likely. Mismatch between the timing of larval release and phytoplankton availability may limit *S. balanoides* from colonizing this region in some years (Figure 5). Phytoplankton mismatch within this region was driven by both intrinsic factors influencing the timing of larval release and extrinsic factors influencing the onset of the phytoplankton bloom (Figure 5; Supplementary Figures 1 & 2). Similarly, delayed onset of the phytoplankton bloom or low availability of suitable phytoplankton species may have driven patterns of low settlement in some years in the Firth of Clyde and Isle of Man (Barnes, 1956, 1957, 1962; Crisp & Spencer, 1958; Connell, 1961; Hawkins & Hartinoll, 1982).

Along the northern coast of the Iberian Peninsula *S. balanoides* is absent, but an isolated metapopulation exists within Galicia in NW Spain (Fischer-Piette & Prenant, 1956; Fischer-Piette, 1963; Barnes & Barnes, 1966; Wethey & Woodin, 2008; Macho et al., 2010; Wethey et al., 2011). Near the north-eastern range limit in Galicia (43.37–43.68°N) fertilization was predicted to be high (52 and 97%) in most years. However, fertilization was predicted to be lower, and more variable (14 and 89%) near the southern range limit (41.70–42.76°N) (Figure 4D). The southern range limit in Galicia was at or below 50% predicted fertilization in seven out of the eight years of historical records (Figure 4D), and at the 4 recruits per 100 cm² threshold total reproduction closely matched historical range limits in all but the most recent records (Figure 4F) suggesting fertilization is an important driver of this border. Both brooding and total reproductive success were predicted to be lower than at any of the documented range limits in France, which suggests a different temperature threshold for brooding may exist for barnacles in this region (M. Herrera, personal communication). Phytoplankton mismatch was likely within Galicia and improved the predictive accuracy of our models in some cases. However, it is difficult to determine the relative importance of phytoplankton mismatch without better estimates of the relationship between temperature and brooding in barnacles from Galicia.

Near the southern limits of *S. balanoides* along the US east coast and in the European populations found in Galicia, Spain low levels of fertilization were predicted in a large number of years. Interactions between low levels of fertilization and low adult densities may influence population dynamics near these range edges. Allele effects are known to be particularly strong in cross-fertilizing barnacles, such as *S. balanoides*, because they are unable to move to find mates (Crisp, 1958; Kent et al., 2003; Yuen & Hoch, 2010). Lower levels of fertilization at low population density would result in fewer propagules, which would continue to maintain low adult densities in combination with the effects of reduced brooding success and low adult survival delaying or potentially inhibiting increases in adult density (Svensson et al., 2005). Additionally, fewer propagules would reduce dispersal potential, and interact with other local recruitment processes responsible for larval delivery (Pineda et al., 2009) further contracting the range (Bennell, 1981; Kendall et al., 1985; Hyder et al., 1998; Jenkins et al., 2000, 2001, 2008; Svensson et al., 2004, 2005). Thus biogeographic range edges are likely to be strongly influenced by the effects of temperature on multiple steps in the reproductive process, namely fertilization, embryonic and larval development. These results highlight the important role of physiology in biogeography and the need for mechanistic species distribution models that model physiological performance.

Supplementary Material

The supplementary material for this article can be found at https://doi.org/10.1017/S0025315417000364

Acknowledgements

Supported by grants from NSF (OCE 1129401) and NASA (NNX11AP77G) to DSW. We thank Cristian Monaco for help with feeding and Rhiannon Rognstad for advice on the husbandry of *Semibalanus balanoides*. Sarah Woodin and Jerry Hilbish provided helpful suggestions, and access to facilities. Contribution number 90 in Ecological Forecasting from the University of South Carolina.

References

- Barnes H. and Barnes M. (1966) Ecological and zoogeographical observations on some of the common intertidal cirripedes of the coasts of the western European mainland in June–September, 1963. In Barnes H.,

Crisp D.J. (1959a) Factors influencing the time of breeding of Balanus balanoides. Oikos 10, 275–289.

Darwin C. (1854) A monograph on the sub-class Cirripedia, with figures of all the species. Volume 2. The Balanideæ (or sessile cirripedes); the Verrucidae, etc. London: Ray Society, no. 25, 684 pp.

and

Correspondence should be addressed to:

S. Crickenberger
Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
email: scricke@gmail.com