
Ernesto Pecoits, Natalie R. Aubet, Murray K. Gingras and Kurt O. Konhauser

Journal of the Geological Society 2010; v. 167; p. 221-222
doi:10.1144/0016-76492009-045
Discussion on ‘The Neoproterozoic glacial record in the Río de la Plata Craton: a critical reappraisal’


ERNESTO PECOITS, NATALIE R. AUBET, MURRAY K. GINGRAS & KURT O. KONHAUSER
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6C 2E3, Canada
*Corresponding author (e-mail: epecoits@ualberta.ca)

In a recent article, Pazos et al. (2008, p. 343) claim that ‘the Zanja del Tigre Formation (Uruguay) represents a glacial influenced succession deposited during the Neoproterozoic, correlative with one of the glaciations described in the Kalahari Craton, prior to Kalahari–Río de la Plata assembly in the proto-western Gondwana margin’. However, we question the two lines of evidence that Pazos et al. (2008) put forth in their paper to constrain the age of this unit and to support a glacial event.

Age of the Zanja del Tigre Formation. Pazos et al. (2008, p. 350, and fig. 4) consider the Zanja del Tigre Formation as part of the Lavalleja Group. This view, however, is incompatible with existing interpretations. According to the latest compilations of the geology of Uruguay (Bossi et al. 1998; Bossi & Ferrando 2001), the Zanja del Tigre Formation is part of the Carapé Group, which is stratigraphically below the Lavalleja Group. In fact, the Carapé and the Lavalleja groups have long been considered independent lithostratigraphic units (e.g. Bossi & Navarro 1991), perhaps even belonging to different ‘terrane’ or ‘blocks’ (Gaucher et al. 2004).

A recent geochronological study (not available to Pazos et al. 2008, at the time of writing) based on detrital zircons (U–Pb sensitive high-resolution ion microprobe (SHRIMP) data) from the Lavalleja Group and Zanja del Tigre Formation supports the assertion that these units are separate (Basei et al. 2008) and, despite considerable attempts to confirm their interpretations, we found no evidence of glacial features or even sedimentary lamination. The outcrop is located in a limestone quarry and the quality of the exposure is fairly good, yet both the lower and upper contacts are poorly visible. A detailed analysis of the quarry has shown an outstanding variety of tectonic structures (Fig. 1). Highly deformed mylonitic limestones and schists with boudinaged dykes and veins that cross-cut the original metamaterials are the most common features in the quarry. The limestones contain a single distinct mylonitic foliation accompanied by the occurrence of shear folds and abundant kinematic indicators. The composition of the dykes and veins parallels that of the ‘outsized clasts’ reported by Pazos et al. (2008, p. 355) and corresponds to granite, gabbro, calcium carbonate and quartz. Both are folded, boudinaged and sometimes rotated, occasionally showing structures that might resemble dropstones. However, their tectonic origin of these ‘clasts’ is evidenced in the field by the intrusive nature of the bodies that progressively deformed in the proximity of the shear zones. Furthermore, re-analysis of the images shown by Pazos et al. (2008, figs. 8e and f) reveals the presence of grain-tail complexes aligned with the foliation, which clearly suggests a strong shearing component.

In summary, the radiometric data do not support a Neoproterozoic age for the outcrop described by Pazos et al. (2008) and the geological interpretation of the ‘glacially influenced diamictite’ is inconsistent with field observations.

The authors acknowledge funding from NSERC to K.O.K. and M.K.G., and Alberta Ingenuity to N.A.

References


221
DISCUSSION

Fig. 1. Structural features of the quarry where Pazos et al. (2008) described limestones containing dropstone levels interpreted as a result of Heinrich events. (a) Undeformed granite dyke with sharp contacts intruding the limestone. (b) Gabbro–dolerite sill intruding the limestone parallel to foliation. Although exceptional, the presence of metre-long fragments of undeformed granite and dolerite dykes suggests that strain localization preferentially took place along shear corridors in a regional regime. (c) Competent quartz vein boudinaged by ductile shear. (d) A boudinaged quartz vein showing long dynamic recrystallized tails parallel to the mylonitic foliation. (e) Narrow granite dyke displaying pinch-and-swell structure as a result of continuous necking caused by layer-parallel extension. (f) Boudinaged dyke. The granite boudins acted as rigid objects during the shearing, generating long recrystallized tails in response to flow in the host rock.Insets show the partial assimilation of the granite by the limestone as a result of the high strain undergone by these rocks. (g) Discrete granite boudins formed after continuous necking of a dyke. Although showing identical mineral composition and texture, the difference in scale compared with photographs (a)–(f) should be noted.

Scale: knife 9 cm; hammer 40 cm; tweezers 3.5 cm.


Received 27 March 2009; revised typescript accepted 12 October 2009.

Scientific editing by Rob Strachan.


Pecoits et al. (2010) question the stratigraphic and glacigenic origins of a tiny section of the Zanja del Tigre Formation that constitutes the least well-constrained of all confirmed and suspected glacial deposits in the Río de La Plata craton (Pazos et al. 2008, 2010).

Age of the Zanja del Tigre Formation. Pecoits et al. assert that in the ‘latest compilations of the geology of Uruguay’ the Zanja del Tigre Formation is part of the Carapé Group and not the Lavalleja Group. However, this disregards the contemporaneous stratigraphic scheme of Sánchez Bettucci (1998), which includes the Zanja del Tigre Formation in the Lavalleja Group. This is the stratigraphic scheme followed by Pazos et al. (2008, 2010), as well as by Mallmann et al. (2007) and Basei et al. (2008). We further point out that the geochronological results presented by Mallmann et al. (2007) and Basei et al. (2008) were not available to us at the time of writing. However, we dispute the suggestion that the absence of detrital zircons younger than 1.8 Ga from the Zanja del Tigre Formation necessarily demonstrates a Mesoproterozoic depositional age, significantly older than that of Lavalleja Group (Basei et al. 2008). Some units within undisputed Neoproterozoic sedimentary successions elsewhere in Uruguay and Argentina similarly lack Neoproterozoic detrital zircons (Gaucher et al. 2008). Detrital zircon data can only be used to place lower limits on sedimentation.

Glacial evidence in the Zanja del Tigre Formation. The second point contested by Pecoits et al. concerns the glacial origin of the interval documented in the Zanja del Tigre Formation. There is no disagreement that these rocks have undergone intense deformation in the vicinity of large-scale shear zones during the late Ediacaran (Gray et al. 2008; see also Pazos et al. 2005, 2008). The illustration of ‘only two’ clasts (quartzite and granite) is a common and accepted number in any other glacigenic paper. However, even if we accept that shearing affected the succession and the presence of deformation tails as correctly pointed out by Pecoits et al., there is no plausible alternative explanation to that of Pazos et al. (2008). We entirely reject the suggestion that the well-rounded quartzite and granite fragments are not clasts but the results of boudinage of intrusions.

References


Received 5 June 2009; revised typescript accepted 12 October 2009.

Scientific editing by Rob Strachan.

PABLO J. PAZOS1 & LEDA SÁNCHEZ BETTUCCI2

1CONICET-UBA, Departamento Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón II (1428), Ciudad Autónoma de Buenos Aires, Argentina
2Departamento de Geología, Facultad de Ciencias, Universidad de la República, Iguá 4225 (11400) Montevideo, Uruguay
*Corresponding author (e-mail: pazos@gl.fcen.uba.ar)