Thermodynamic Analysis of Nickel(II) and Zinc(II) Adsorption to Biochar

Md. Samrat Alam,† Drew Gorman-Lewis,‡ Ning Chen,§ Shannon L. Flynn,*† Yong Sik Ok,⊥ Kurt O. Konhauser,† and Daniel S. Alessi†*⊥‡

†Department of Earth & Atmospheric Sciences, 1-26 Earth Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
‡Department of Earth and Space Sciences, University of Washington, Johnson Hall Rm-070, Box 351310, 4000 15th Avenue, NE Seattle, Washington 98195, United States
§Canadian Light Source Inc., University of Saskatchewan, 114 Science Plane, Saskatoon, Saskatchewan S7N 0X4, Canada
‖School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
⊥Korea Biochar Research Center, O-Jeong Eco-Resilience Institute & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea

Supporting Information

ABSTRACT: While numerous studies have investigated metal uptake from solution by biochar, few of these have developed a mechanistic understanding of the adsorption reactions that occur at the biochar surface. In this study, we explore a combined modeling and spectroscopic approach for the first time to describe the molecular level adsorption of Ni(II) and Zn(II) to five types of biochar. Following thorough characterization, potentiometric titrations were carried out to measure the proton (H⁺) reactivity of each biochar, and the data was used to develop protonation models. Surface complexation modeling (SCM) supported by synchrotron-based extended X-ray absorption fine structure (EXAFS) was then used to gain insights into the molecular scale metal–biochar surface reactions. The SCM approach was combined with isothermal titration calorimetry (ITC) data to determine the thermodynamic driving forces of metal adsorption. Our results show that the reactivity of biochar toward Ni(II) and Zn(II) directly relates to the site densities of biochar. EXAFS along with FT-IR analyses, suggest that Ni(II) and Zn(II) adsorption occurred primarily through proton-active carboxyl (−COOH) and hydroxyl (−OH) functional groups on the biochar surface. SCM-ITC analyses revealed that the enthalpies of protonation are exothermic and Ni(II) and Zn(II) complexes with biochar surface are slightly exothermic to slightly endothermic. The results obtained from these combined approaches contribute to the better understanding of molecular scale metal adsorption onto the biochar surface, and will facilitate the further development of thermodynamics-based, predictive approaches to biochar removal of metals from contaminated water.

1. INTRODUCTION

Biochar is a carbon-rich solid produced through the carbonization and/or pyrolysis of biomass derived from a variety of feedstocks, including straw, wood, and organic industrial wastes.1–3 It has proven effective in the removal of organic and metal contaminants from water.4–8 It is considered a prospective alternative to activated carbon (AC) for water treatment and soil amendment purposes due to its lower production cost, and it is thought to act as a global “carbon-sink.”8–10 The efficiency of contaminant removal from water by biochar depends on several factors, including contaminant concentration and the distribution and types of surface functional groups, the latter of which can vary widely depending on the pyrolysis temperature and types of feedstock used during production.11–13 Relatively modest concentrations of Ni and Zn in water (>10 μg/L for Ni and >5 mg/L for Zn) are shown to have toxic effects on human health. Geogenic and anthropogenic inputs, especially from tanneries, smelters, or sewage sludge application, can increase Ni and Zn concentrations in the environment.14,15 Therefore, understanding the mechanisms by which environmentally relevant divalent metals such as Ni and Zn are removed from aqueous solution by biochar is critical to assessing its use as an adsorbent.

Key to developing rigorous geochemical models that can accurately predict the removal of metal cations from solution by biochar is the identification and quantification of surface functional groups (sites), their protonation constants, and the reactivity toward specific metals.16–27 Metal adsorption data can be modeled using two general categories of models: (i)
empirical models such as isotherms such as Freundlich and Langmuir, and (ii) thermodynamic approaches such as surface complexation modeling (SCM). Empirical models normally cannot account for changes in metal concentration, pH, ionic strength, temperature and complexation or for the effect of competing ions for sorbent sites. For this reason, the application of empirical partitioning constants to predict metal distribution in dynamic environmental systems can be problematic. In contrast, the SCM approach has been proven to be an effective method to predict the acid/base and ion/metal binding behaviors of a variety of environmental surfaces, and in systems approaching the complexity of those found in nature. The primary advantage of using a SCM approach over empirical approaches is that the distribution of metals in a system can be predicted using the stability constants determined experimentally for individual sorbent–metal surface complexes, because the surface complexation theory is grounded in balanced chemical reactions, and ultimately, in chemical thermodynamics.16,17

Recent studies which have modeled metal sorption by biochar have primarily relied on empirical metal adsorption models. To our knowledge, few studies have applied a SCM approach to biochar: Zhang and Luo modeled copper (Cu) adsorption to biochar; Vithanage et al. modeled antimony (Sb) adsorption to biochar; and Alam et al. modeled the adsorption of selenium (Se) and cadmium (Cd) to biochar-amended agricultural soils. While these studies proposed SCMs that successfully describe the adsorption of metal ions onto sorbents across variable chemical conditions, they do not provide direct measurements of the surface coordination of adsorbed ions.

Here we apply two thermodynamic approaches, (i) surface complexation modeling (SCM) and (ii) isothermal titration calorimetry (ITC), supported by synchrotron-based X-ray absorption spectroscopy (XAS) to develop a predictive and mechanistic model of metal binding to biochar. Synchrotron-based extended X-ray absorption fine structure (EXAFS) studies are a powerful tool to identify the atomic metal–surface coordination environment. ITC measurements were further conducted to determine the thermodynamic driving force (e.g., bond formation, dehydration, enthalpy and entropy) of the metal–surface reaction(s). Understanding the thermodynamic driving forces of adsorption provides critical insights into the reasons why spontaneous adsorption reactions occur, as well as the temperature dependence of these reactions. In this study, we aim to (1) determine whether the surface complexion modeling approach can accurately predict Ni(II) and Zn(II) adsorption (as model divalent cations) to five types of biochar, (2) explore the metal–biochar surface reactions at molecular level, and (3) determine the thermodynamic driving forces of metal–biochar surface reactions. Using a varied set of biochar allowed us to investigate the potential effects of production scale, differing sources of biomass, and pyrolysis temperature on the metal adsorption behavior. Our study is the first to develop a predictive model of metal adsorption to biochar underpinned by a mechanistic understanding of the adsorption processes at the surface of biochar. As such, our work opens the door to future studies that use the SCM approach as a flexible, predictive method to determine the removal of metals from water by biochar in variable water chemistries.

2. MATERIALS AND METHODS

2.1. Biochar Preparation. Biochar produced from wheat straw (WS) and wood pin chips (WPC) were obtained from the Alberta Biochar Initiative (ABI; Vegreville, Alberta, Canada). The raw feedstocks of WS and WPC were placed in a prototype 1.0, batch carbonizer (Alberta Innovates Technology Futures, AITF), and in an auger retort carbonizer (ABRI- Tech, 1 Tonne Retort system; ABI, Vegreville, Alberta), respectively, and pyrolyzed under limited oxygen conditions. The residence time in both cases was 30 min at 500–550 °C. The biochar yield was 30–33% on the basis of dry mass. Sewage sludge biochar (SSBC) was produced at the Korea Biochar Research Center, Kangwon National University, at a lab scale as described in Ahmad et al.12 The raw feedstocks were ground to <1 mm, and then dried at 60 °C for 3 days. A muffle furnace (MF 21GS, Jeio Tech, Seoul, Korea) was used to pyrolyze the feedstock as follows: temperature was increased at a rate of 7 °C/min under limited oxygen conditions, and the feedstocks were held for 3 h at 300, 500, and 700 °C, respectively, followed by cooling to room temperature inside the furnace. These biochar are hereafter referred to as SSBC 300 °C, SSBC 500 °C, and SSBC 700 °C.

2.2. Biochar Characterization. The proximate analyses, X-ray powder diffraction (XRD), elemental analysis, Brunauer–Emmett–Teller (BET) surface area analysis, Barret–Joyner–Halender (BJH) pore volume and pore size distribution, surface morphological characterizations using Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS) and Fourier transform infrared spectroscopy (FT-IR) analyses of WS, WPC, SSBC 300 °C, SSBC 500 °C, and SSBC 700 °C were carried out as described in Alam et al. A detailed explanation of the biochar characterization methods is given in the Supporting Information (SI) section.

2.3. Potentiometric Titrations. Potentiometric titrations were conducted to determine the concentrations and protonation constants (K_a) values of proton-active surface functional groups. For each titration, approximately 0.2 g of dry biochar was suspended in 50 mL of 0.01 M NaNO_3 electrolyte solution. The sample containers were then sealed with Parafilm and purged with N_2 gas for 30 min prior to each titration and throughout the titration process to maintain a CO_2-free solution. The forward titrations (pH 3–11) a solution of 0.1 M NaOH was used, and for the reverse titrations (pH 11–3) a 0.1 M HCl solution was used. Detailed titration methods and corresponding data modeling methods are reported in the SI section.

2.4. Ni and Zn Adsorption Experiments. Batch adsorption experiments were carried out using aqueous solutions of Ni(II) and Zn(II). A 8.5 mM stock solution of Ni was prepared from Ni(NO_3)_2.6H_2O, and a 1.7 mM of Zn stock solution from ZnCl_2. In polypropylene test tubes, 10 g/L of biochar was suspended in 0.01 M NaNO_3 electrolyte solution and a volume of Ni and Zn stock solution was added to achieve the target initial metal concentrations of 170 μM and 17 μM, for both Ni and Zn. The final volume of each experiment was approximately 10 mL. The pH of metal adsorption experiments ranged from approximately 2.0–6.5, and was achieved by adding small volumes of concentrated NaOH or HCl. This pH range was selected to avoid the precipitation of Ni and/or Zn-hydroxides and/or carbonates, which were observed in control experiments above pH 6.5 and
were predicted in aqueous Ni and Zn speciation diagrams generated for our experimental conditions (SI Figure S1).

Following pH adjustment, test tubes were then placed on a rotary shaker for 36 h to allow the pH to stabilize and for the adsorption of Ni and/or Zn to biochar surface functional groups to achieve equilibrium. Kinetics experiments were carried out to ensure that equilibrium had been achieved in 36 h (SI Figure S2). The tubes were then centrifuged at 5000 g for 10 min and the resulting supernatant was filtered through 0.45 μm nylon membranes (Millipore). The filtered supernatants were then diluted 1:1 with 4 N HNO₃ before Ni and Zn were analyzed using inductively coupled plasma–mass spectroscopy (ICP-MS/MS; Agilent 8800). Control experiments showed that there was no adsorption of Ni(II) and Zn(II) onto the tubes used for the metal adsorption experiments. Aqueous Ni and Zn standards for ICP-MS/MS calibration were prepared from SPEX CertiPrep Ni and Zn ICP-MS standards and diluted with 0.01 M NaNO₃ to match the experimental matrix. The difference between the initial Ni or Zn concentration in each experiment and the measured remaining Ni or Zn concentration in solution after equilibration was considered to be the amount adsorbed. To test competitive sorption of Ni and Zn to the biochar surface, Ni and Zn were mixed to a total initial concentration of 170 μM (85 μM Ni + 85 μM Zn) and 17 μM (8.5 μM + 8.5 μM Zn). The stock solution, pH adjustment, centrifugation, filtration, and acidification sampling procedures were the same as those described above for the individual-metal experimental systems. The experimental details of the kinetics experiments and details of the SCM approach used to model metal adsorption data are provided in the SI section.

2.5. XAS Data Collection and Analysis. X-ray absorption spectroscopy (XAS) was used to study the coordination environments of Ni(II) and Zn(II) adsorbed to WS biochar, in experiments conducted at pH 6.5 at initial metal concentrations of 17 μM for single-metal systems, and at 170 μM for both single-metal and Zn+Ni systems. EXAFS analyses of Ni- and Zn-sorbed biochar were carried out at the Ni and Zn K-edges (8333 and 9659 eV, respectively) at the Canadian Light Source (CLS) 06ID-1 hard X-ray Micro-Analysis (HXMA) beamline. A Si (220) double crystal monochromator was calibrated to the pre-edge feature of Ni and Zn at 8333 and 9659 eV, respectively, and detuned 40% the monochromator second crystal to reject higher harmonic intensities. Spectra for Ni(OH)₂, Zn(OH)₂, and Ni acetate were recorded in transmission mode. Spectra for the Zn acetate reference material and Ni- and Zn-sorbed biochar samples were recorded in fluorescence mode using a 32-element Ge solid state detector.

IFEATURET and the graphical interface ATHENA were used for background subtraction and X-ray absorption near edge structure (XANES) linear combination fitting. EXAFS data fitting R space curve fitting was carried out using WinXAS (version 2.3). The phase shift and backscattering amplitude function were generated theoretically with the FEFF 7 code from the crystal structure data of the crystal structure of Ni(II) (aq), NiO, β-Ni(OH)₂, ZnO, Zn(OH)₂. The R-space between 0.8 and 4.2 Å was considered for the fits of Fourier transform (FT) k³-weighted EXAFS data to FEFF models, and a k space data range used for the Fourier Transform is of 3–10 Å⁻¹. The amplitude reduction factor (S₀²) was set to 1 for all fits. The shift in the threshold energy (E₀) was allowed to vary for R space fitting.

2.6. Isothermal Titration Calorimetry (ITC). The ITC experiments were carried out as described in Harrold and Gorman-Lewis and Gorman-Lewis et al. Briefly, a TAM III nanocalorimeter was used to measure the heat flux between a reference and reaction vessel as a function of time. The heat flow response by the calorimeter was calibrated by electrical heating, a procedure verified by measuring the heat of protonation of trishydroxymethylaminomethane (TRIS/THAM) at 25 °C. Initially, both cells were filled with 10 g/L biochar suspensions in 0.01 M NaCl and placed in the calorimeter bath. Biochar suspensions for proton adsorption measurements were purged with N₂ for 30 min prior to loading the suspensions into the reaction vessels, which were purged with N₂ and sealed. The reaction vessels were lowered into the calorimeter in 3 steps, pausing with each step to allow the calorimeter to equilibrate. After achieving thermal equilibration and a stable heat flow with the reaction cell stirred at 80 rpm, individual titrant doses were delivered into the reaction cell via cannula by a computer controlled syringe. The experimental details and modeling procedure for the ITC data are provided in the SI section.

3. RESULTS AND DISCUSSION

3.1. Characteristics of Biochar. The WS and WPC yield from the parent biomasses was approximately 30% (SI Table S1). The SSBC yield decreased from 70.1% to 50.3% as the temperature of pyrolysis increased from 300 to 700 °C, with the variation in yield in WS, WPC, and SSBC due to differences in types of feedstock and production conditions. According to Keiluweit et al. and Chen et al., the decomposition of lignin, cellulose, H₂O, CO₂, CO, CH₄, and H₂ from feedstock increases with increasing pyrolysis temperature, indicating mostly the loss of oxygen containing functional groups and contributing to the lower yield. The XRD patterns (SI Figure S3) of WS and WPC show that quartz and calcite are the major detectable mineral phases. In SSBC, other minerals including albite, muscovite, kaolinite, microcline, and pyrite are also detected as minor phases. WS and WPC are mainly composed of C, 70 and 85 wt %, respectively, indicating higher carbonization (SI Table S2). However, SSBC has lower %C as compared to WS and WPC, and %C decreases with increasing pyrolysis temperature. The molar ratios of elements in each biochar were calculated to estimate their aromaticity (H/C) and polarity (O/C). Both WS and WPC have relatively lower H/C and O/C molar ratios compared to the SSBC, except H/C at SSBC 700 °C (SI Table S2); the difference was attributed to the different feedstocks. The molar H/C and O/C ratios in WS and WPC are likewise influenced by the relatively higher C content in their feedstocks as compared to SSBC. Higher pyrolysis temperatures generally lead to the removal of polar functional groups. The surface area of WPC was markedly higher (224 m²/g) than that of WS and SSBC (SI Table S2). In SSBC, a strong correlation between higher pyrolysis temperatures and higher surface area in the resulting biochar was observed (SI Table S2).

WS and WPC particles exhibit a flaky and rough surface (SI Figure S4A and S4B), with a size range of 100–1000 μm, while SSBC particles (SI Figure S4C to S4E) are mostly angular and semispherical, and range in diameter between approximately 100–200 μm. There is no visible effect of pyrolysis temperature on the particle morphologies. Semiquantitative elemental compositions estimated from EDS (SI Figure S5 and SI Table S3A and S3E) show that WS, WPC, and SSBC are...
mainly composed of C and O, followed by Si, Al, Fe, P, K, Ca, Mg, and S. The silica nodules observed in WS and WPC likely contain silanol functional groups (\(\text{SiOH}\)) with a weak acidity (\(K_a\) = 6 – 8). The modeling results show that the \(K_a\) values for site 1 (\(K_a = 4.24\) to 4.70) are similar for all five biochar types, and fall in the \(K_a\) range for carboxyl groups. The proton-active site concentrations are highest for site 1 for all biochar types, except SSBC at 700 °C. \(K_a\) values for site 2 and/or site 3 are variable across biochar types; however, they do correspond well to the \(K_a\) values of lactones, phenolic hydroxyl and weak acidic silanol groups. With increasing temperature, the \(K_a\) value of site 3 also increases, which is consistent with previous studies by Ahmad et al.32 and Chen et al.36 that suggested a total acidity decrease with increasing pyrolysis temperature.

Due to the structural diversity of biochar, \(K_a\) values vary widely, and it is, therefore, difficult to designate unequivocal chemical identities to each site based on \(K_a\) values alone.37 Therefore, employing FT-IR is crucial to identify the surface chemistry of biochar. In this regard, the C=O and C=C infrared stretching vibrations at 1700 and 1600 cm\(^{-1}\) intensify, indicating the presence of carboxyl C, and potentially the formation of lactones and esters (SI Figure S7A).46,47,50-52 The prominent peaks at 1440 and 1375 cm\(^{-1}\), representing C=O stretching of ketones and O–H bending of phenols, respectively, are present in all five biochar types. The band at approximately 900 cm\(^{-1}\) could be attributed to Si–OH groups, due to the presence of Si nodules in biochar that identified by SEM-EDS and XRD analyses.52 As the pyrolysis temperature increased for SSBC, the ~OH stretching (3200–3600 cm\(^{-1}\)) attributed to water molecules loses intensity due to diminished hydration. Aliphatic and aromatic C–H stretching from 2850 to 3050 cm\(^{-1}\) also decreases as the pyrolysis temperature increases, which is supported by the proximate analyses. Both FT-IR analyses (SI Figure S7B) and the \(K_a\) values calculated from modeling potentiometric titration data (Table 1) suggest that ~OH groups belong to both organic phenols and inorganic silanol groups.

3.2. Potentiometric Titrations.
All biochar types studied showed significant buffering capacity from pH 4 to 10 (SI Figure S6). Minimal variance was observed between forward and reverse titrations, suggesting reversibility of the protonation and deprotonation reactions on the biochar surface during the time scale of the experiments. Potentiometric titration data were modeled using a nonelectrostatic, discrete site surface complexation model to determine the proton binding constants and site concentrations for the reactive surface sites for each biochar (Table 1). We defined three discrete site functional groups from lowest to highest \(K_a\) (\(\text{log} K_a = 1.7\) – 4.7) are present in all biochar types, and fall in the \(K_a\) range for carboxyl groups. The proton-active site concentrations are highest for site 1 for all biochar types, except SSBC at 700 °C. \(K_a\) values of lactones, phenolic hydroxyl and acidic silanol groups. With increasing temperature, the \(K_a\) value of site 3 also increases, which is consistent with previous studies by Ahmad et al.32 and Chen et al.36 that suggested a total acidity decrease with increasing pyrolysis temperature.

Due to the structural diversity of biochar, \(K_a\) values vary widely, and it is, therefore, difficult to designate unequivocal chemical identities to each site based on \(K_a\) values alone.37 Therefore, employing FT-IR is crucial to identify the surface chemistry of biochar. In this regard, the C=O and C=C infrared stretching vibrations at 1700 and 1600 cm\(^{-1}\) intensify, indicating the presence of carboxyl C, and potentially the formation of lactones and esters (SI Figure S7A).46,47,50-52 The prominent peaks at 1440 and 1375 cm\(^{-1}\), representing C=O stretching of ketones and O–H bending of phenols, respectively, are present in all five biochar types. The band at approximately 900 cm\(^{-1}\) could be attributed to Si–OH groups, due to the presence of Si nodules in biochar that identified by SEM-EDS and XRD analyses.52 As the pyrolysis temperature increased for SSBC, the ~OH stretching (3200–3600 cm\(^{-1}\)) attributed to water molecules loses intensity due to diminished hydration. Aliphatic and aromatic C–H stretching from 2850 to 3050 cm\(^{-1}\) also decreases as the pyrolysis temperature increases, which is supported by the proximate analyses. Both FT-IR analyses (SI Figure S7B) and the \(K_a\) values calculated from modeling potentiometric titration data (Table 1) suggest that ~OH groups belong to both organic phenols and inorganic silanol groups.
controlled by total site concentration. WPC (production temperature ~500 °C) and SSBC 500 °C have higher Ni adsorption capacities, even though SSBC 300 °C and SSBC 700 °C have higher site concentrations than WPC. In contrast, WPC has higher surface area compared to SSBC 300 °C and SSBC 700 °C, suggesting both physical and chemical adsorption played important roles in Ni adsorption.

Studies have shown the effectiveness of biochar and soil organic matter at removing Zn from aqueous solution than Ni, which is consistent with our adsorption experimental results (Figure 1).58–60 Leaching studies (SI Table S4) showed that WPC and SSBC 300 °C leached a maximum of 3 μM and 2 μM Zn, respectively, which is 10 to 20% of the 17 μM of Zn used in the lower concentration adsorption experiments. However, Zn leaching from WS, SSBC 500 °C and SSBC 700 °C was negligible (a few ppb). Because of the potential interference of Zn leaching on the observed removal of Zn from solution, we did not use WPC and SSBC 300 °C for 17 μM Zn adsorption experiments. Zn leaching from WPC and SSBC at 300 °C in 170 μM experiments only accounted for 1 to 2% of the total initial Zn concentration, and therefore, 170 μM was used for Zn adsorption experiments to these biochar types and subsequent surface complexation modeling. In the 17 μM experiments, SSBC 500 °C and SSBC 700 °C showed a higher adsorption capacity than WS. The higher site concentrations of SSBC 500 °C and SSBC 700 °C than for WS likely correspond to the higher degree of Zn adsorption. WPC also showed highest Zn adsorption capacity of all five biochar types, as was observed for Ni adsorption.

The adsorption capacity was further normalized by the surface area of the five biochar samples. This normalization procedure helped us to understand and compare the performances of each biochar in removing Ni and Zn from solution, independent of the structure (i.e., the surface area and porosity of biochar). The results showed that SSBC 300 °C has the highest metal adsorption densities while WPC has the lowest, for both Ni and Zn (SI Figure S8). The difference in metal adsorption densities of SSBC 300 °C and WPC is consistent with the fact that SSBC 300 °C and WPC also have the highest and lowest proton-active site densities, respectively (Table 1). Metal adsorption densities and reactive site densities decreased with increasing pyrolysis temperature for SSBC.12 The molar H/C and O/C ratios also decreased with increasing pyrolysis temperature for SSBC (SI Table S2), and WS has higher reactive site densities and molar H/C and O/C ratios than does WPC (Table 1 and SI Table S2). Overall, the results suggest that the biochar properties are highly influenced by pyrolysis temperature, and the adsorption densities are directly dependent on the proton-active site densities and molar O/C ratios.

3.4. Ni(II) and Zn(II) Coordination at the Surface of Biochar. Ni EXAFS analyses revealed that the Ni−O shell had a radial distance of 1.97 Å to 2.10 Å, with a coordination number of 6, indicating that Ni is in an octahedral environment (Figure 2; for a summary of fitting parameters see SI Tables S5 and S6). In contrast, the Zn−O distance of 1.97 Å indicates tetrahedral coordination. The first shell metal−oxygen distance could result from either hydration of the metal cations or the acidic functional groups of −OH and −COOH that adsorbed Ni and Zn at the biochar surfaces.27,28 The parameters of the Ni−O and Zn−O first shell are similar to those of the aqueous Ni(II) and Zn(II) cations, suggesting that the primary hydration shell remains intact after sorption. The second Ni−O shell is best represented with 3.5 to 4 oxygen atoms ranging from 2.65 to 2.71 Å. There is no evidence of Ni−Ni and Zn−Zn in the second shell, excluding the possibilities of surface precipitation and polymerization.36 The assignment of the Ni−C shell at approximately 3.3 Å and Zn−C at 2.08 Å to 2.16 Å indicates that Ni and Zn form organo–metallic complexes with the surface of the biochar. This leads to the formation of inner-sphere complexes, and is consistent with acidic ligands (i.e., −COOH and −OH) coordinating with Ni and Zn.31,34 The Ni−Si and Zn−Si distances at 3−3.3 Å indicate that Ni and Zn form inner-sphere complexes, and show that Ni and Zn may also bind to Si−OH groups.

To further investigate Ni and Zn coordination to the biochar surface, FT-IR spectra of biochar before and after Ni(II) and Zn(II) sorption were subsequently compared (SI Figure S7). After Ni(II) and Zn(II) sorption, there is a decrease in the infrared band at approximately 1700 and 3200 cm−1, which correspond to the C≡O stretching mode of the free carboxyl group and −OH groups (SI Figure S7B).51 These changes further support the coordination of carboxyl ions and phenolic hydroxyl groups with Ni(II) and Zn(II). Taken together, it can be concluded that the Ni(II) and Zn(II) are adsorbed to biochar primarily through coordination with both carboxyl and hydroxyl ligands at the surface of the biochar.

3.5. Surface Complexation Modeling. A nonelectrostatic surface complexion modeling (NEM) approach was used to model the adsorption behavior of Ni and Zn onto each biochar, an approach previously confirmed to be effective in low ionic strength solutions (e.g., 0.01 M NaNO3).61–63 It was assumed that proton, Ni and Zn adsorption were due to proton and metal cation interactions with discrete negatively charged organic acid functional groups on the biochar, similar to that demonstrated for various sorbents including, bacteria, clay, ferric hydroxides, and silica.16–22 The NEM approach considers the protonation or deprotonation of each type of surface
Numerous studies report that the stability of Zn complexed to the corresponding site concentrations from the 3-site protonation model were used. Considering Ni and Zn aqueous hydrolysis reactions (stoichiometry shown in reaction (2)), the model also considered Ni(II) and Zn(II) aqueous hydrolysis reactions presented in SI Table S7. The model that invokes Ni and Zn adsorption to first two sites of the 3-site protonation model showed the best fit to the experimental data (Figure 1). A 3-site adsorption model that uses three pKa values and corresponding site concentrations from the protonation model was unable to fit the experimental data, and a 1-site adsorption model poorly fit the experimental data (SI Figure S9 and SI Table S8). In 2-site adsorption models, the first two pKa values and corresponding site concentrations from the 3-site protonation model were used.

In the 2-site adsorption models, the Zn adsorption stability constant (K_{Zn}) is marginally higher than that of Ni (K_{Ni}) in the 17 μM experiments for all types of biochar; however, WS, WPC, and SSBC 300 °C showed slightly lower K_{Ni} values for Zn binding than for Ni in 170 μM experiments (Table 2). Numerous studies report that the stability of Zn complexed with carboxylic acids is higher than for −COO−−Ni^2+ complexes. The presence of −OH functional groups in the biochar could play a role in the higher K_{Ni} values for Ni−ligand complexes than for analogous Zn−ligand complexes. It is expected that carboxyl and hydroxyl groups (−OH groups belong both to organic phenols, and to inorganic silanol groups) would be the predominant binding sites of WS, WPC, SSBC 300 °C, SSBC 500 °C, and SSBC 700 °C since FTIR, EXAFS and Ni and Zn speciation diagram (SI Figure S10) revealed that Ni and Zn coordinate at these biochar surface sites.

Using the binding constant (K) values for individual metals (Ni and Zn) determined in biochar−metal adsorption experiments, and the pK_{Ni} values and site concentrations determined from potentiometric titrations, we predicted the adsorption of Ni(II) and Zn(II) to WS when both metals were present in solution (competitive adsorption). This exercise tests the robustness of the SCM approach in predicting metal adsorption to biochar in more complex or environmentally relevant systems. After making the predictions, we performed the corresponding two-metal adsorption experiments to determine the accuracy of the model predictions (Figure 3A and B; SI Figure S11). In the 17 μM (8.5 μM Ni + 8.5 μM Zn) system, the model slightly over predicts Ni(II) adsorption from pH 4 to 5.5 and under predicts at pH 6.5. Zn(II) adsorption is under predicted across the entire pH range. The two-site model to predict metal adsorption in 170 μM (85 μM Ni + 85 μM Zn) experiments yielded better results. Overall, the predictive models reasonably reproduced experimental results. The observed adsorption of Ni(II) and Zn(II) are quite similar to the 17 μM mixture predictions, but Zn(II) adsorption is higher than Ni(II) at the 170 μM mixture concentration, showing similar trends as those observed in the single metal experiments (Figure 1).

Table 2. Stability Constants Obtained from 2-Site Best-Fit Adsorption Models of Ni and Zn Adsorption to WS, WPC, SSBC 300 °C, SSBC 500 °C, and SSBC 700 °C

<table>
<thead>
<tr>
<th>Biochar</th>
<th>Ni 17 μM</th>
<th>Ni 170 μM</th>
<th>Zn 17 μM</th>
<th>Zn 170 μM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log K_{Ni}</td>
<td>log K_{Zn}</td>
<td>V(Y)</td>
<td>log K_{Ni}</td>
</tr>
<tr>
<td>WS</td>
<td>2.74</td>
<td>0.40</td>
<td>3.7</td>
<td>2.24</td>
</tr>
<tr>
<td>WPC</td>
<td>2.83</td>
<td>4.68</td>
<td>0.4</td>
<td>2.53</td>
</tr>
<tr>
<td>SSBC 300 °C</td>
<td>2.50</td>
<td>3.5</td>
<td>0.2</td>
<td>1.90</td>
</tr>
<tr>
<td>SSBC 500 °C</td>
<td>2.74</td>
<td>4.61</td>
<td>0.5</td>
<td>2.24</td>
</tr>
<tr>
<td>SSBC 700 °C</td>
<td>2.70</td>
<td>3.76</td>
<td>1</td>
<td>2.20</td>
</tr>
</tbody>
</table>

NA = Not available. "R-A_{Ni}− + M^{2+} ⇌ R-A_{Ni}(M)". "R-A_{Zn}− + M^{2+} ⇌ R-A_{Zn}(M)".

Figure 3. Competitive adsorption of Ni and Zn (A and B) onto WS A. 8.5 μM Ni + 8.5 μM Zn with the 2-site predictive adsorption model; B. 85 μM Ni + 85 μM Zn with 2-site predictive adsorption model. The open symbols represent experimental data, and solid lines and dashed lines represent predictive models.
Exothermic for both WS and WPC, with WS being slightly more exothermic (Figure 4A and B). The site-specific enthalpies of protonation show that as pH decreases, corrected heats become less exothermic which is a result of a combination of less sites available to protonate and the low pK_a sites being less exothermic (Table 3). The enthalpies of protonation are mildly exothermic to mildly endothermic. Site 1 on both WS and WPC have entropies of protonation of about 80 J/(mol K), which are indicative of anionic oxygen ligands that participate in hydrogen bonding with other nearby functional groups. These results indicate the potential for bidentate coordination on the surface, which is consistent with the XAS results. Entropies >80 J/(mol K) like those for sites 2 and 3 for both WS and WPC, are consistent with anionic oxygen ligands that behave more independently without direct interactions with other surface functional groups. The combination of enthalpies, entropies, and log K values are consistent with protonation of monofunctional carboxylic acids, some of which may be close enough together to behave more like multifunctional carboxylic acids. Typical heat flow curves of acid titration and Zn(II) and Ni(II) adsorption titration are presented in SI Figure S12 and S15.

Table 3. Site-Specific Thermodynamic Parameters for the Reaction of H^+ Derived from Calorimetric Titrations, And 3-Site Models from Potentiometric Titrations

<table>
<thead>
<tr>
<th></th>
<th>LogK</th>
<th>ΔG°_r (kJ/mol)</th>
<th>ΔH°_r (kJ/mol)</th>
<th>ΔS°_r (kJ/mol)</th>
<th>ΔS°_r (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HL1</td>
<td>4.24(0.05)</td>
<td>−24.20(0.29)</td>
<td>−0.18(0.02)</td>
<td>−24.02(0.29)</td>
<td>80 (1)</td>
</tr>
<tr>
<td>HL2</td>
<td>5.82(0.17)</td>
<td>−33.22(0.97)</td>
<td>−3.88(0.20)</td>
<td>−29.34(0.99)</td>
<td>98 (3)</td>
</tr>
<tr>
<td>HL3</td>
<td>7.87(0.09)</td>
<td>−44.92(0.51)</td>
<td>−2.93(0.15)</td>
<td>−41.99(0.53)</td>
<td>141 (2)</td>
</tr>
<tr>
<td>WPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HL1</td>
<td>4.23(0.02)</td>
<td>−24.15(0.11)</td>
<td>−0.09(0.01)</td>
<td>−24.06(0.11)</td>
<td>81 (1)</td>
</tr>
<tr>
<td>HL2</td>
<td>6.18(0.15)</td>
<td>−35.28(0.86)</td>
<td>−2.97(0.10)</td>
<td>−32.31(0.86)</td>
<td>108 (3)</td>
</tr>
<tr>
<td>HL3</td>
<td>7.94(0.07)</td>
<td>−45.32(0.40)</td>
<td>1.54(0.12)</td>
<td>−46.86(0.42)</td>
<td>157 (1)</td>
</tr>
</tbody>
</table>

Figure 4. Corrected heat generated from proton, and Ni and Zn adsorption titrations of WS and WPC. A. Proton adsorption on WS; B. Proton adsorption on WPC; C. Ni adsorption on WS; D. Zn adsorption on WS; E. Ni adsorption on WPC; F. Zn adsorption on WPC. The open symbols and solid lines represent the experimental data and the fit, respectively. The open symbols and solid lines in blue and green colors in proton adsorption model (A,B) represents replicates. The Ni and Zn adsorption titration experimental data (open symbol) also have replicates.
complexation can provide information on coordination environments based on the disruption or stability of the hydration spheres of ligands and ions. Negative entropies of the L_2Ni^+ complex suggest an outer sphere complexation with minimal disruption of hydration spheres and possible complex stabilization through hydrogen bonding. The positive entropies of the L_2Ni^+ complex are consistent with inner sphere complexation, which dehydrates the ligand and metal ion. Positive entropies of Zn complexation indicate dehydration as binding occurs and inner sphere complexation.

Site specific ITC results are dependent on the surface complexation models to derive the enthalpies and entropies of complexation; therefore, consistencies and differences between the ITC and XAS results also have implications for the surface complexation models. Both ITC and XAS indicated the presence of inner sphere surface complexes with anionic oxygen ligands. ITC, which is more sensitive than the XAS measurements, also indicated the presence of some outer sphere complexation. Surface site 2 of WS and WPC produced outer sphere complexes for Ni according to entropies of complexation. The stability constants for these site 2 complexes were also lower than for the site 1 complexes. These two lines of evidence indicate a lower affinity for metal adsorption onto site 2 for WS and WPC. This would result in lower portions of Ni at these sites, which increases the difficulty of detecting these outer sphere complexes with spectroscopic techniques.

Using the thermodynamic parameters derived in this work with the Van’t Hoff equation allows us to make predictions about the temperature dependence of proton, Ni, and Zn adsorption onto WS and WPC. These predictions assume that the relative heat capacities of the products and of the reactants (ΔC_p) are zero for the reaction. The magnitude of the enthalpies of protonation are not large enough to impart much temperature dependence on the protonation of the biochar surface. The maximum change in the log K value for protonation of the biochar surface from 25 °C is approximately 0.2 over the temperature range of 5–75 °C. The temperature dependence of metal adsorption is predicted to be more substantial given that the enthalpies of Ni and Zn adsorption onto site 2 are approximately an order of magnitude more endothermic or exothermic than protonation enthalpies. For example, the change in log K for Ni adsorption onto WPC site 2 is predicted to increase by approximately 2 at 75 °C. The log K for Zn adsorption onto WS site 2 is predicted increase by approximately 2.5 at 75 °C. These predictions illustrate the utility of calorimetric investigations and the potential temperature dependence of Ni and Zn adsorption onto the biochar investigated.

4. ENVIRONMENTAL IMPLICATIONS

Biochar is a promising material for the adsorptive removal of metals and organics from water. This is the first study combining spectroscopic data (EXAFS and FT-IR) with thermodynamic data (SCM and ITC) to explore molecular scale metal adsorption at biochar surface functional groups. The study demonstrates that feedstock type and pyrolysis temperature during biochar production profoundly influence biochar characteristics, including chemical properties, structure, and metal binding mechanisms. Higher reactive site densities/functional group concentrations for metal removal are obtained from biochar produced at lower pyrolysis temperature (~300 °C), and Ni(II) and Zn(II) adsorption densities are directly related to the reactive site densities and molar O/C ratios of biochar. Thus, to improve the performance of metal removal and soil amendment, biochar selection should be made on a case-by-case basis based on the biochar physical and chemical properties.

EXAFS characterization combined with FT-IR analysis further suggest that Ni(II) and Zn(II) adsorption to biochar primarily occurred through the coordination of carboxyl anions (–COOH) and hydroxyl (–OH) with Ni(II) and Zn(II). The SCM approach applied in this study accurately predicts the metal adsorption behavior to the surface of the biochar for single (Ni or Zn) and multimetal (Ni + Zn) systems. By using a combined SCM-ITC approach, the thermodynamic parameters of the metal–biochar surface complexation reactions were determined. Enthalpies of Ni- and Zn-ligand reactions were consistent with the presence of anionic oxygen ligand corresponding to −COOH and −OH functional groups. The development of predictive SCMs is a key step toward optimized design and operation of biochar-based water treatment systems, which have promise to replace more costly technologies such as activated carbon. These combined approaches will help to identify the reaction pathways of metals with biochar, and provide new tools to remove metals from water using biochar in variable water chemistries.

ASSOCIATED CONTENT

5 Supporting information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.7b06261.

Includes a detailed discussion for materials, biochar characterization, potentiometric titrations, adsorption and ITC data modeling. Ni and Zn aqueous speciation diagram (Figure S1), Ni and Zn adsorption kinetics (Figure S2), XRD patterns (Figure S3), SEM images (Figure S4), EDS spectra (Figure S5), potentiometric titration (Figure S6), FT-IR spectra (Figure S7), surface area normalized adsorption densities of Ni and Zn (Figure S8), 1-site adsorption model of Ni and Zn (Figure S9), 1-site competitive adsorption model (Figure S10), Ni and Zn speciation distribution after adsorption (Figure S11), heat flow curve for acid titration (Figure S12), heat flow curves of WS titrations with Ni(II) and Zn(II) (Figure S13), heat flow curves of WPC titrations with Ni(II) and Zn(II) (Figure S14), heat flow curves of background heats for Ni(II) and Zn(II) (Figure S15), percent moisture contents, mobile matter, ash content and fixed matter (Table S1), pH, elemental composition, molar ratio, BET surface area, and pore volume (Table S2), elemental composition estimated from SEM-EDS analysis (Table S3), leaching data (Table S4), EXAFS fit results for Ni adsorption (Table S5), EXAFS fit results for Zn adsorption (Table S6), aqueous Ni (II) and Zn (II) hydrolysis reactions (Table S7), stability constant obtained from 1-site best-fit models (Table S8), site-specific thermodynamic parameters for the adsorption of Ni (Table S9), and site-specific thermodynamic parameters for the adsorption of Zn (Table S10) (PDF)

AUTHOR INFORMATION

Corresponding Author

*Phone: +1-780-492-8019; fax: 780-492-2030; e-mail: alessi@ualberta.ca.
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by NSERC Discovery Grants to D.S.A. and K.O.K. XAS analyses were performed at the Hard X-ray MicroAnalysis (HXMA) beamline in the Canadian Light Sources (CLS). The CLS is funded by the Canadian Foundation of Innovation (CFI), the National Science and Engineering Research Council (NSERC), the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan. We appreciate three anonymous reviewers whose comments and suggestions helped us to improve the manuscript.

REFERENCES

(20) Beveridge, T.; Murray, R. Sites of metal deposition in the cell wall of *Bacteriologii*. *1980*, 141 (2), 876e887.

