Sabkha and Burrow-Mediated Dolomitization in the Mississippian Debolt Formation, Northwestern Alberta, Canada

Greg M. Baniak, Larry Amskold, Kurt O. Konhauser, Karlis Muehlenbachs, S. George Pemberton, and Murray K. Gingras

Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada

INTRODUCTION

The study of dolomite has a long and extensive history, dating back to the pioneering work of Giovanni Arduino and Dédot Gratet de Dolomieu in the 18th century. Despite being an abundant mineral in the rock record, dolomite distribution is limited in modern sedimentary environments. Kinetic energy barriers such as high hydration energies of the magnesium ion (Mg$^{2+}$) (Markham et al., 2002), low concentration and activities of the carbonate ion (CO_3^{2-}), and the presence of sulfate ions (Morrow, 1982; Budd, 1997) are all major inhibiting factors in abiotic dolomite precipitation. Despite this knowledge, replicating dolomite precipitation under modern physico-chemical conditions in the laboratory has proven futile (McKenzie, 1991; Land, 1998). The formation of dolomite and the nature of the dolomitizing fluids remains controversial and is widely referred to as the “dolomite problem” (Gunatilaka, 1987; Arvidson and Mackenzie, 1999; Machel, 2004). Classic models such as evaporative pumping, hydrothermal circulation, seepage reflux, sabkha, seawater convection, burial diagenesis, and subsurface mixing have been invoked to explain dolomitization within the rock record (Hsü and Siegenthaler, 1969; Morrow, 1982; Machel and Mountjoy, 1999). Modern environments, microbial sulfate reduction (MSR) plays an integral role in the precipitation of dolomite at near-surface temperatures (Vasconcelos et al., 1995; Gunatilaka, 1987; Arvidson and Mackenzie, 1999; Machel, 2004). corrosion of extracellular polysaccharides in burrow walls and contrasts in permeability) associated with biogenic sedimentary structures (Gingras et al., 2004; Rameil, 2008; Corlett and Jones, 2012). Although occurrences of dolomitized burrows within the rock record are common (e.g., Baniak et al., 2013; Beales, 1953; Kendall 1977a; Morrow, 1978; Zenger, 1996; Keswani, 1999), the timing and cause of dolomitization associated with the burrows can be difficult to determine.

Within modern environments, microbial sulfate reduction (MSR) plays an integral role in the precipitation of dolomite at near-surface temperatures (Vasconcelos et al., 1995;
Warthmann et al., 2000; van Lith et al., 2003; Krause et al., 2012). Examples include the hypersaline lagoons of Lagoa Vermelha and Brejo do Espinho, northeastern coast of Brazil (Vasconcelos et al., 1995, 2005; Vasconcelos and Mackenzie, 1997; Warthmann et al., 2005) and the ephemeral lakes of the Coorong Region of South Australia (Von der Borch and Lock, 1979; Wright and Wacey, 2005; Wacey et al., 2007). Such studies are invaluable as they help outline the manner in which microbes influence the physiochemical parameters that can help mediate early dolomitization within modern sediments.

The focus of this study is the Mississippian (Visean) Debolt Formation located in the Dunvegan gas field of northwestern Alberta (Fig. 1). Located at depths greater than 1400 m, the Dunvegan gas field has reserves within a $3.4 \times 10^{10} \text{ m}^3$ to $4.5 \times 10^{10} \text{ m}^3$ (1.2 to 1.6 trillion cubic feet) range (Al-Aasm and Packard, 2000; Packard et al., 2004). These reserves make the Dunvegan gas field the second largest carbonate-hosted non-reefal gas field in the Western Canadian Sedimentary Basin (Al-Aasm and Packard, 2000). Reservoir production occurs primarily from highly porous microsucrosic dolomites occurring within the bioturbated fabrics (Packard et al., 2004). The preferred dolomitization of the burrow fabrics suggests certain parameters (e.g., the presence of MSR, low oxygenation, high salinity) must have existed. The purpose of this article is to document the lithofacies and their paleogeographic distribution within the Dunvegan gas field. From this, an understanding of the environmental settings that helped mediate dolomitization within the burrows will be analyzed by integrating lithologic, petrographic, and isotopic analysis.

![FIG. 1. Location map of the Dunvegan gas field in northwestern Alberta that produces from the Mississippian (Visean) Debolt Formation. In the study area, 15 cored wells (demarcated in blue) were studied. The wells used in the cross-section (A-A’, Fig. 4) are demarcated in red. (See Color Plate I.)](image-url)
IMPACT OF BIOTURBATION ON SUBSTRATE BIOGEOCHEMISTRY

Infaunal invertebrates, such as crustaceans, insects, and earthworms, commonly modify sediment through particle remobilization and grazing (Aller, 1994; Bromley, 1996; Gingras et al., 2007a). A common by-product of bioturbation is the introduction of labile organic matter, such as mucous secretions and fecal material, into the substrate (Steward et al., 1996; Hauck et al., 2008; Pak et al., 2010). Mucous secretions, for instance, represent ideal microenvironments for microbes since many of the burrows are lined with organic materials such as extracellular polysaccharides (i.e., microbial exopolymer secretions) and glycopolymers mucin (Konhauser and Gingras, 2007, 2011; Lalonde et al., 2010; Petrash et al., 2011). For example, Gunnarsson et al. (1999a) observed that elevated concentrations of a tetrachlorobiphenyl commonly occurred in the thin mucous layer covering the burrow linings of the polychaete *Nereis diversicolor* compared to the surrounding bulk sediment. Similar observations were also made by Gunnarsson et al. (1999b) for the linings of disk chamber and arm burrows of the brittle star *Amphipora filiformis*. These microbial exopolymer secretions (EPS) are important, as they are able to bind organic compounds of both high and low molecular weight (Decho, 1990). As a result, EPS comprises a significant portion of organic carbon within sediment (Confer and Logan, 1998) and acts as a reactive interface for the sorption of dissolved matter and secondary mineral precipitation (Mayer et al., 1999; Gunnarsson et al., 1999a, 1999b; Konhauser and Gingras, 2007, 2011).

The eventual decomposition of EPS and other organic material within bioturbated environments is critical in driving sedimentary metabolic reactions. In short, any organic carbon present usually becomes paired to a sequence of terminal electron accepting processes, with the more energetically favored reactions proceeding first (Froelich et al., 1979; Canfield et al., 1993; Chapelle et al., 1995). As a result of the decomposition of EPS, idealized biogeochemical reactions within sediments (e.g., Froelich et al., 1979) can become disrupted through activities such as bioturbation (Aller, 1982; Kristensen, 2000; Needham et al., 2004). In any event, these geochemical reactions are commonly microbially mediated and include (after Froelich et al., 1979 and Konhauser, 2007):

1. **Aerobic respiration:**

 $\text{CH}_4(\text{organic carbon}) + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O}$

2. **Nitrification:**

 $2\text{CH}_3\text{O} + \text{NO}_3^- + 2\text{H}^+ \rightarrow 2\text{CO}_2 + 3\text{H}_2\text{O}$

3. **Mn(IV)-oxide reductive dissolution:**

 $\text{CH}_3\text{O} + 2\text{MnO}_2 + 4\text{H}^+ \rightarrow \text{CO}_3^- + 2\text{Mn}^{2+} + 3\text{H}_2\text{O}$

4. **Fe(III)-oxohydroxide reductive dissolution:**

 $\text{CH}_3\text{O} + 4\text{FeO(OH)}_2 + 8\text{H}^+ \rightarrow \text{CO}_3^- + 4\text{Fe}^{2+} + 7\text{H}_2\text{O}$

5. **Sulfate reduction:**

 $2\text{CH}_3\text{O} + \text{SO}_4^{2-} + 8\text{H}^+ \rightarrow \text{HS}^- + 2\text{CO}_2 + 2\text{H}_2\text{O}$

6. **Methanogenesis:**

 $2\text{CH}_3\text{O} \rightarrow \text{CH}_4 + \text{CO}_2$

Notably, the oxidation (or mineralization) of organic carbon leads to an increase in alkalinity (represented as CO$_2$) and an increase in pH (reactions 2 through 5). Studies of pore waters in deep-sea sediments (e.g., Froelich et al., 1979) and anoxic basins (e.g., Reeburgh, 1980) have shown that the most energetically favorable redox reactions occur first and concentrations of electron acceptors such as O$_2$ and NO$_3$ are typically the first to become depleted. Sulfate reduction (reaction 5) and methanogenesis (reaction 6) are therefore later-stage redox reactions. Consequently, high concentrations of organic carbon are required to consume these earlier terminal electron acceptors before the onset of the later reactions can occur. Notably, the contemporaneous bacterial mineralization of organic carbon and increase in pH will also help favor the formation of a carbonate ion due to the hydration of CO$_2$ to carbonic acid (H$_2$CO$_3$) and subsequent deprotonation reactions (i.e., H$_2$CO$_3$ → HCO$_3^-$ + H$^+$ → CO$_3^{2-}$ + 2H$^+$).

Modern studies by Garrison and Luternauer (1971) and Gunatilaka et al. (1987) have shown that organic material present within animal burrows helps promote the precipitation of dolomite. Given the ubiquitous presence of organic material within most burrows environments, development of a reducing microenvironment can occur (Gingras et al., 2004). Within reducing sediment, sulfate-reducing bacteria are present and are able to remove dolomite-inhibiting sulfate anions. As a result, liberation of the Mg$^{2+}$ cation from the SO$_4^{2-}$-Mg$^{2+}$ ion pair occurs, thereby increasing the availability of the free Mg$^{2+}$ cations for early dolomite precipitation (van Leth et al., 2003). Elevated concentrations of sulfide have been measured in modern burrows (Waslenchuk et al., 1983), suggesting that sulfate reduction is indeed occurring within or adjacent to burrow systems.

REGIONAL GEOLOGICAL SETTING OF THE DEBOLT FORMATION

During the Mississippian and Pennsylvanian Periods in western Canada, the principal tectonic features were (i) Prophet Trough, (ii) Peace River Embayment, (iii) cratonic platform, (iv) Williston Basin, and (v) Yukon Fold Belt (Richards, 1989). The Debolt Formation and its stratigraphic equivalents are deposited primarily within the Prophet Trough and Peace River Embayment in British Columbia and Alberta (Fig. 2). The Prophet Trough is a downfaulted margin (i.e., distal foreland basin) that extends from the northern Yukon and Alaska southward to join the Antler Foreland Basin of the western United States (Richards, 1989; Richards et al., 1993, 1994). The Peace River Embayment (Douglas et al., 1970) can trace its origins to the structural evolution of the Peace River Arch (Cant, 1988; O’Connell et al., 1990). The Peace River Arch was a prominent east-northeast trending topographic high of Precambrian granites that were approximately 800–1,000 m above the regional elevation near the Alberta-British Columbia border during the early Paleozoic (Cant, 1988).
Despite providing expressible topographic relief from the Cambrian to Devonian, a combination of subsidence (compression and extension) and normal faulting (horst and graben structures) to the Peace River Arch during the mid-Devonian to Permian provided locations for sediments to accumulate (Cant, 1988; O'Connell et al., 1990). As a result of subsidence and normal faulting, the Peace River Arch became a negative feature from the Mississippian to Jurassic (Hein, 1999). Isopach maps of northwestern Alberta show the Debolt Formation to be the thickest in areas interpreted to be bounded by extensional faults (Cant, 1988). The Peace River Embayment may have become connected to the Prophet Trough during the early- and middle-Tournaisian due to the faulting and regional subsidence that continued throughout the Mississippian and Pennsylvanian (Durocher and Al-Aasm, 1997). Connection with the Prophet Trough helped facilitate deposition of a thick succession within the embayment and across the western Canadian Cratonic Platform (O’Connell et al., 1990). As a result of these aforementioned events, both stratigraphic (anhydrite, shale accumulations, pinch-outs of dolomitized burrow intervals) and structural (two-way up dip closures) petroleum traps formed within the Dunvegan gas field (Cioppa et al., 2003).
STRATIGRAPHIC SETTING

The Mississippian succession in the Peace River Embayment of northwestern Alberta and interior platform of northeastern British Columbia is subdivided into three main stratigraphic units. In chronological order, these units include (i) lower to middle Tournaisian Banff Formation, (ii) middle Tournaisian to upper Visean Rundle Group, and (iii) upper Visean to Serpukhovian Stoddart Group (O’Connell, 1994) (Fig. 3). The Debolt Formation is Visean in age and belongs to the Rundle Group. Consisting primarily of carbonate and evaporitic facies, the Debolt Formation typically grades into deeper basinal facies towards the west (Richards, 1989; Durocher and Al-Aasm, 1997). Macauley (1958) was the first to subdivide the Debolt Formation into lower and upper members. Law (1981) later subdivided the Debolt Formation into five informal members in northeastern British Columbia. The Debolt Formation is 244 m thick at its type section in west-central Alberta and becomes progressively thinner near its southwestern depositional limit (Richards et al., 1993). Within the Peace River Embayment, the Debolt Formation overlies the Shunda Formation in the east and the Pekisko Shale (Formation F) in the west (Richards et al., 1993). The Golata Formation unconformably overlies the Debolt Formation throughout the embayment. The outcrop nomenclature of the Mount Head and Livingstone formations have been applied to internal zones of the Debolt Formation with varying degrees of success (Packard et al., 2004).

In general, the Debolt Formation records no less than 30 shoaling-upward hemicycles or fourth/fifth order parasequences (Al-Aasm and Packard, 2000; Packard et al., 2004). These numerous packages are a reflection of the ongoing relative sea level oscillation in a shallow-water to littoral setting during the Visean. In Alberta, an early Visean transgression is recorded by the presence of protected-shelf carbonates in the basal part of the Debolt Formation above the restricted-shelf carbonates of the Shunda Formation (Packard et al., 2004). The subsequent regression, recorded by anhydrite and restricted-shelf carbonates preserved in the upper Debolt Formation of west-central Alberta and east-central British Columbia, appears to have coincided with sedimentation of the regressive Wileman and Salter members of the Mount Head Formation (Richards et al., 1993). Towards the east and east-southeast into Alberta, the upper member of the Debolt Formation becomes anhydritic and displays sabkha cycles. Reservoir zones in the Dunvegan gas field are located in the uppermost argillaceous unit (Al-Aasm and Packard, 2000). This argillaceous unit consists of a succession of stacked sabkha cycles of thinly interstratified carbonates, evaporites, and siliclastics, which are individually less than 2 m thick (Al-Aasm and Packard, 2000). A stratigraphic cross-section (Fig. 4) along a transect through the Dunvegan gas field illustrates the cyclical nature of the sabkha cycles.

DATABASE AND METHODS

In this study, 15 drill cores from the Dunvegan gas field were examined (see Fig. 1) along with 30 thin sections. The thin sections from the drill core samples were examined under a polarizing microscope. Sedimentological characterization included identification of carbonate grains (e.g., ooids, pisoids, oncoids, and other allochems), fossils, bedding contacts, layer thicknesses, primary and secondary physical structures, lithologic constituents, and accessory minerals. Ichnological data comprised descriptions of ichnogenera, cross-cutting relationships, and bioturbation intensity.

Isotopic analyses ($\delta^{18}O$ and $\delta^{13}C$) were performed on the burrow fill and surrounding matrices. Samples for isotopic analysis were obtained from representative sections of slabbred core and were mechanically extracted using the engraver tip of a high-speed rotary drill. The samples were selectively obtained from locations where discrete burrows were present or where burrows were absent (i.e., matrix). In each case, 10 to 25 mg samples were excavated from a depth of around 1 to 2 mm. In the case of burrow samples, this occasionally...
necessitated sampling more than one burrow in an interval. Samples for the isotopic analysis of the calcite phase were obtained by reaction with 100% phosphoric acid (H₃PO₄) for one hour at 25°C using the technique outlined by McCrea (1950). Samples for the isotopic analysis of the dolomite phase were obtained after an additional 24 hours in 100% H₃PO₄ at 50°C. Isotopic analyses were performed with a Finnigan-MAT 252 mass spectrometer operated in dual inlet mode. All isotopic values are reported in standard delta notation (δ) relative to PDB standards (Craig, 1957).

RESULTS

Facies Analysis
In this study, the Dunvegan gas field can be subdivided into six reoccurring facies intervals: nodular and bedded anhydrite (Facies 1), microbially laminated mudstones (Facies 2), massive-patterned mudstone (Facies 3), bioturbated mudstone-wackestone (Facies 4), skeletal packstone-wackestone (Facies 5), and peloidal grainstone-packstone (Facies 6). Within the study area, Al-Aasm and Packard (2000) identified oxidized muds and highly bioturbated sediments as the main intervals with dolomite present. In this context, the bioturbated mudstone-wackestones (Facies 4) represents the primary focus for this study regarding petrographic and isotopic analysis.

Facies 1 (F1): Nodular and Bedded Anhydrite
Description. Facies 1 consists of dense anhydrite and anhydritic-dolomite that is nonbioturbated. The most commonly observed type of anhydrite is nodular, with mottled and cryptocrystalline fabrics and occasional dolostone stringers. Nodules vary from 1 to 6 cm in diameter and are ovoid to irregular in shape (Figs. 5A-B). Facies 1 is typically embedded within dolostone and commonly has thicknesses ranging from 10 to 30 cm. Expressions of anhydrite in subvertically elongated position, with crystals ranging up to 10 cm in length, are also present (Fig. 5C). Examples of more massive nodular anhydrite, reaching up to 2 m in thickness, also occur within F1. This unit contains larger nodules (up to 10 cm) and typically contains little matrix. In areas, the nodules are present within, or juxtaposed to, stylolites or pressure dissolution seams.
Examples of bedded anhydrite containing thin interbeds of dolostone are also present in localized areas. These bedded anhydrites range up to 10 m in thickness and preserve planar to wavy laminations. Where dolomite is present, it is typically expressed as millimeter- to centimeter-thick laminae or thin discontinuous beds.

Interpretation. The combination of different anhydrite morphologies suggests deposition within closely related environments along an arid marine coastline. Given the large range of nodular fabrics, it is likely that the nodular anhydrite is indicative of a sabkha environment. It is important to note, however, that not all nodular anhydrite is formed in a sabkha setting (Warren and Kendall, 1985). The presence of isolated masses of nodular (chicken-wire) anhydrite within other carbonates indicates displacive growth of gypsum and anhydrite in the upper zones of a sabkha (Warren and Kendall, 1985; Kendall, 2010). Similarly, examples of more massive nodular anhydrite indicate that they represent an overprinted subaqueous (salina) gypsum deposit (Kendall, 2010). The subvertical elongated morphology of anhydrite nodules further indicates subaqueous precipitation of gypsum in either shallow (less than 10 m) hypersaline lagoons or brine ponds adjacent to the sabkha (Warren and Kendall, 1985). Additional evidence of subaqueous sedimentation is provided by the bedded anhydrite with interbeds of dolostone. The nature of the anhydrite, with little evidence of subaerial exposure, implies diagenetic alteration of primary gypsum that chemically precipitated under subaqueous conditions (Hardie, 2003). The presence of stylolites and pressure dissolution seams in some examples implies that some nodular anhydrite formed during burial at depths of tens to several hundred meters (Machel and Burton, 1991; Machel, 1993).

Facies 2 (F2): Microbially Laminated Mudstones

Description. Facies 2 consists of tan-colored, cryptocrystalline, microbially laminated carbonate mudstones (Fig. 5E). Present within these laminated mudstones are very fine, dark-brown to black, organic-rich laminae that vary from 5 to 50 cm in thickness. Sedimentary structures include irregular to planar laminations and low-relief domal stromatolites (Fig. 5F). Petrography of F2 shows the presence of silt-sized to fine-grained sandstones within the matrix. These grains are typically sub-rounded to sub-angular and occasionally form...
bedded deposits. Subaerial exposure features include desiccation cracks and some fenestral (birds-eye) porosity. Skeletal bedded deposits. Subaerial exposure features include desiccation cracks and some fenestral (birds-eye) porosity. Skeletal fragments and bioturbation are extremely rare in F2.

Interpretation. Fenestral porosity, formed by a combination of gas bubbles and sediment shrinkage, are common occurrences in tidal-flat carbonates (Choquette and Prey, 1970). Combined with the presence of desiccation cracks, periodic subaerial exposure of the substrate is envisioned in F2. The presence of low-relief domal stromatolites also suggests deposition on high intertidal and supratidal sites and on tidal flats with protected shorelines (Logan, 1961; Davies, 1970; Taylor and Halley, 1974). Due to shoreline isolation, fluctuating salinities were probable, thereby presenting additional ecological stresses to the localized macrofauna. Because most eukaryotic organisms are unable to withstand high salinities or exposure to extreme salinity fluctuations (Franks and Stolz, 2009), the levels of bioturbation and overall fossil content are expectedly limited in F2.

As a result of extreme physico-chemical conditions, flat laminated microbial mats were able to flourish in the intertidal flats and hypersaline lagoons of the carbonate ramp (Nicholson et al., 1987; Stolz, 1990). The presence of organic laminae is attributable to the sharp geochemical interface present beneath the microbial mat (Krumbein and Cohen, 1977). Pore waters below the interface were anoxic and thus had a higher preservation potential for buried organic matter. The presence of siliciclastic material within the microbial mats is likely the result of sticky EPS produced by microorganisms (Krumbein, 1994). As shown in the Mellum Island, southern North Sea and southern coast of Tunisia (Gerdes et al., 2000), microbial mats coated with EPS have the ability to trap and bind sediment introduced into the tidal flats.

Facies 3 (F3): Massive Patterned Mudstone

Description. Facies 3 is recognizable in core by its distinctive mottled fabric (Fig. 5G). In short, F3 is a cryptocrystalline dolomudstone that contains no visible burrows or fossiliferous material. Facies 3 ranges in thickness from 10 to 30 cm, with some thicker intervals present. The mottled fabric consists of a pattern of light- and dark-colored areas, with the concentration of pyrite crystals seen in the darker regions. Facies 3 is commonly gradational with F1, F2, and F4, and is observable throughout the Dunvegan gas field.

Interpretation. The variable size, irregular shape, and indistinct contacts of the mottles suggest they are not related to burrowing. Instead, the alteration of light- and dark-colored fabrics represents a diagenetic feature wherein microcrystalline pyrite became concentrated in the darker regions (Dixon, 1976; Kendall, 1977b; Kirkham, 2004). Termed “patterned carbonate” by Dixon (1976), the diagenetic origin of this unique fabric is attributable to the destruction of calcium sulfate nodules by sulfate-reducing microorganisms, thereby leading to pyrite formation (Kendall, 1977b). Within reducing subenvironments, the formation of pyrite commonly requires pH values greater than 8.0 and salinities above 200%o (Krumbein and Garrels, 1952). Such extreme conditions suggest sedimentation of F3 within a restricted supratidal to intertidal setting (Dixon, 1976), similar to those observed in the modern Persian Gulf (e.g., Butler, 1969). Furthermore, the cryptocrystalline dolomudstone suggests formation under hypersaline conditions with precipitation likely induced by sulfate-reducing bacteria (Kirkham, 2004).

Facies 4 (F4): Bioturbated Mudstone-Wackestone

Description. Bioturbated dolomudstones-dolowackestones (60 to 100% of total reservoir volume) represent important reservoir strata within the Dunvegan gas field. Common assemblages include monospecific examples Chondrites, Quebecichnus, and Planolites (Figs. 6A-B). Other ichnofossils occasionally dispersed within F4 include moderately abundant Thalassinoides (Fig. 6C), rare Arenicolites, rare Skolithos, and very rare Zoophycos. Although no fossil fragments are visible in core, petrographic sections reveal low to moderate fossil content composed of benthic invertebrates and calcareous algae that have been completely reworked by bioturbation. Gradational with F2 and F3, F4 has thicknesses on the order of decimeter to meter scale.

Interpretation. The predominance of low-diversity ichnological assemblages is typical of ecological stresses, such as high salinity and low oxygenation, commonly present within lagoonal settings (MacEachern et al., 2007). For example, it has been shown that the ghost shrimp Callianassa californiensis, which make Thalassinoides-type burrows, is capable of tolerating fluctuating salinities (Thompson and Pritchard, 1969). Complex feeding traces (i.e., fodinichnia) are also abundant within oxygen-poor environments (Bromley and Ekdale, 1984; Ekdale, 1988; Ekdale and Mason, 1988). Chondrites, for example, is believed to be unique to anoxic conditions (Bromley and Ekdale, 1984). The presence of Zoophycos may reflect the activity of opportunistic organisms habituating poorly oxygenated communities (Ekdale, 1988; Ekdale and Lewis, 1991; Miller, 1991). Increased ichnodiversity present within some intervals in F4 (e.g., Skolithos, Arenicolites) is interpreted to be the result of events such as fresh water influx that helped alleviate earlier stresses imparted on the ecosystem. Collectively, F4 represents a restricted, low-energy lagoon.

Facies 5 (F5): Skeletal Packstone-Wackestone

Description. Facies 5 is a bioclastic packstone-wackestone composed of a diverse assemblage of fauna (Fig. 6D). Identifiable fossils include fragmented brachiopods, crinoïds, bryozoans, and ostracodes. Also present are stylolites, pressure dissolution seams, and peloids. Grain sorting varies between different intervals, ranging from poorly sorted to well sorted. The matrix is composed primarily of carbonate mud within the wackestone successions, and becomes increasing depleted of mud in the more well-sorted packstone-rich intervals. Either gradational or sharp contact with F2, F3, and F4, bed
thicknesses in F5 range from 10 to 25 cm, although thicker intervals are present.

Interpretation. The diversity of fossils suggests a normal-marine origin (James and Kendall, 1992). The well-sorted, fine-grained, bedded nature indicates that the skeletal material underwent earlier wave reworking in a high-energy beach or shoal environment. The fact that F5 is in close contact with multiple facies (F2, F3, F4) suggests possible allochthonous transportation of sediment (e.g., tempestites). As a result, sedimentation of these skeletal packstones-wackestones may have been due to either storm activity or minor sea level transgressions that inundated the restricted intertidal to subtidal regions of the lagoonal environment.

Facies 6 (F6): Peloidal Grainstone-Packstone

Description. Facies 6 consists of a peloidal grainstone-packstone. Allochems include oncoids, ooids, and pisoids. Micritic envelopes (Fig. 6E) have been identified on pisoids and shell fragments. The peloids range in shape from ovoid (Fig. 6F) to nonrounded. Comprising a poor to moderately diverse assemblage of skeletal fragments, bioclasts include ostracodes, crinoids, brachiopods, and bryozoans. The majority of the intervals are massive bedded (Fig. 6G), although low-angle cross-bedding is present in places. Bioturbation is generally preserved locally as indistinct motting. Gradational with F4 and F5, F6 has a thickness ranging from 30 cm to 1 m.
Interpretation. The presence of irregularly shaped peloids suggests micritization of allochems, such as skeletal fragments or ooids (Bathurst, 1966). Peloids that are either elongated or ovoid in shape suggests a fecal origin (Land and Moore, 1980). Preservation of the peloids indicates deposition within a shallow, low-energy, restricted marine environment (Enos, 1983). Due to the presence of low-angle cross bedding and fragmented fossils, F6 is interpreted to have accumulated in either shallow peloidal shoals or low-relief banks in restricted lagoonal environments (Qing and Nimegeers, 2008).

Petrographic Analysis
Petrographic analysis of the bioturbated fabrics (Facies 4) is shown in Figures 7A–D. The dolomite-filled burrows, 0.5 to 2 cm in diameter, commonly contain dolomite crystal sizes ranging from 1 to 35 microns, with an average size of 10 to 15 microns. The dolomite forms microsucrosic (planar-E) fabrics (after Sibley and Gregg, 1987) and is generally euhedral. Dolomitization within the burrows is generally thorough and a sharp contact commonly exists between the burrow-associated dolomite and calcite matrix. Furthermore, it appears that the microcrystalline dolomite within the burrows has been largely preserved and not altered by burial diagenesis. Similarities in textural composition with dolomites from the Holocene Abu Dhabi sabkhas (McKenzie, 1981) help support this observation.

The majority of calcite within the burrows is consistent with cement precipitated in a marine environment (e.g., blocky calcite spar). The lime mudstone-wackestone surrounding the burrows is dominantly fine-matrix sediment that contains minor amounts of disarticulated and fragmented allochems. Dolomite crystals within the matrix are similar to those observed within the burrows, suggesting residual burrow pathways that were dolomitized.

Geochemistry
Isotopic analyses of calcites and dolomites are shown in Figure 8. To represent the relationship between the calcite and dolomite isotopes within the burrows and matrix, a straight line \(y = mx + b \) was employed. From this equation, the coefficient of determination, \(R^2 \), can be deduced. In short, the closer the \(R^2 \) is to +1 or -1, the better the correlation between the isotopes being analyzed. Using \(R^2 \), the calcite and dolomite plotted as linear trends with good correlations (i.e., \(R^2 > 0.62 \)), thereby indicating a strong linear relationship for the calcite and dolomite isotopes regardless of sample location (i.e., burrow or matrix).

FIG. 7. Thin section photomicrographs (A, C) and corresponding schematic diagrams (B, D) of dolomite-filled burrows and their surrounding calcite matrices. Both thin section photomicrographs are from Well 9-18-81-4W6M, depth 1412.15m.
Calcite isotopic ratios

Matrix calcite (n^D_2) has measured $d^{13}C$ values ranging from 1.6 to 5.1\% (mean D 3.2\%) and $d^{18}O$ values of –3.1 to 5.0\% (mean = 1.4\%). A similar range of values is observed for burrow-hosted calcite (n^D_3), where $d^{13}C$ range from 1.7 to 4.0\% (mean = 3.1\%) and $d^{18}O$ range from –2.7 to 2.9\% (mean = 1.1\%). The slope for matrix-hosted calcite (Fig. 8A) differs only slightly from that of burrow-hosted calcite (Fig. 8B), with values of 0.32 and 0.33 calculated for matrix- and burrow-hosted, respectively.

Dolomite isotopic ratios

The $d^{13}C$ for dolomite ranges from 3.1 to 4.6\% (mean = 3.4\%) and 3.2 to 4.3\% (mean = 3.5\%) for samples obtained from the matrix ($n=12$) and burrows ($n=25$), respectively. In comparison to calcite, dolomite tends to be more enriched in $d^{18}O$, with a narrower range of isotopic ratios is observed. For matrix dolomite, $d^{18}O$ ranges from 0.7 to 2.9\% (mean = 2.1\%), and $d^{18}O$ for burrow-hosted dolomite between 2.1 and 2.4\% (mean = 2.4\%). An even smaller difference in calculated slopes is present for the dolomite phases, with values of 0.82 and 0.84 for matrix-hosted (Fig. 8C) and burrow-hosted (Fig. 8D), respectively.

DISCUSSION

Paleoenvironmental Reconstruction

The carbonate facies within the Dunvegan gas field are comparable to the modern intertidal flats and sabkhas of the Persian Gulf (Evans, 1966; Butler, 1969; Behairy et al., 1991; Al-Youssef et al., 2006) and the Upper Cretaceous intertidal facies of Hvar Island, Croatia (Diedrich et al., 2011). The six facies described correspond to the shallow inner and middle portions of the carbonate ramp (Fig. 9). They extend from the peritidal setting to the shallow subtidal zone through a low to moderate energy carbonate shoal facies. Core analysis shows mainly gradational boundaries within the facies, suggesting that they are genetically related and demonstrate a low depositional gradient. For Facies 5 demonstrating an allochthonous origin, tempestites are envisioned as a possible mechanism for sediment transportation along the shallow-gradient ramp.

The lithofacies cycles in the Dunvegan gas field, commonly capped by nodular to nodular mosaic anhydrite, are interpreted as fourth and fifth order transgressive-regressive parasequences that represent the initial flooding and subsequent progradation of a sabkha system (Al-Aasm and Packard, 2000; Packard et al., 2004). The presence of laminated, vertically elongated, and massive nodular anhydrite, as described in F1, suggests numerous other evaporitic sub-environments existed in the backshore adjacent to the sabkha shoreline, such as hypersaline lagoons. The lagoon facies are characterized by massive, highly bioturbated packstone, wackestone, and mudstone lithofacies. The thin packstone/wackestone beds that were occasionally present between more massive wackestones and mudstones may represent possible storm deposits.

Monospecific assemblages of ichnofossils, formation of patterned carbonate, and lack of tidal structures, among other features, supports the interpretation that the lagoon was restricted. Isolating the lagoon from the open marine water was peloidal shoals/low-relief banks composed of fecal material and skeletal fragments. As the geochemical results shows,
an abundance of organic carbon (burrows, biolaminated mudstones, EPS), coupled with periods of anoxia within the restricted lagoon, provided favorable conditions for the development of dolomitization.

Dolomitization Models

The $\delta^{13}C$ (3.4‰ matrix, 3.5‰ burrows) and $\delta^{18}O$ (2.1‰ matrix, 2.4‰ burrows) values for the early matrix dolomite in this study are consistent with precipitation from hypersaline marine fluids, as observed elsewhere by Al-Aasm (2000), Al-Aasm and Packard (2000), and Cioppa et al. (2003) within the Dunvegan gas field. The Mg-rich brines, likely derived from Mississippian seawater (Bruckschen et al., 1999; Cioppa et al., 2003), resulted in the replacement of carbonate mud by the early matrix dolomite and precipitation of primary evaporites. Correlation of isotopic values in this study with Holocene dolomites from the Abu Dhabi sabkhas (McKenzie, 1981) support this assertion (Fig. 10). Because of the evidence supporting sabkha dolomitization, it is likely that other models of dolomitization have been overlooked within the Dunvegan gas field.

In this context, it must also be noted that recrystallization, due to burial diagenesis, does not appear to have had any significant impact on the texture or geochemical values of the microcrystalline dolomites preserved within the burrow fabrics. This is unique, given that the Debolt Formation within the Dunvegan gas field has undergone over 300 million years of burial history to depths of roughly 4 km and temperatures in excess of 100°C (Al-Aasm, 2000; Al-Aasm and Packard, 2000). It has been postulated by Al-Aasm (2000), Al-Aasm and Packard (2000), and Packard et al. (2004) that hydrodynamic isolation, geochemically closed diagenetic systems, and hydrocarbon charging each played a significant role in helping preserve the microcrystalline dolomite. The exact mechanism, however, remains up for debate.

Given the data presented above, burrow-mediated dolomitization is being asserted in this study as an *additional* dolomite-promoting mechanism. This is because we ascribe the compositional differences observed in the isotopic distributions to reflect the different biogeochemical processes occurring within and adjacent to the burrows (Gingras et al., 2004; Konhauser and Gingras, 2007, 2011; Rameil, 2008; Lalonde et al., 2010; Petrash et al., 2011; Corlett and Jones, 2012).

Parameters Influencing Dolomitization

When the isotopic values for calcite and dolomite are plotted together (Fig. 10), the linear trend observed for calcite is maintained and the dolomite values fall into two general groups either above or below the calcite linear trend. These two fields likely represent dolomite that has precipitated in different spatial environments within the carbonate ramp. The scale of these spatial differences is currently unclear.

The zone of relative enrichment of $\delta^{13}C$ in dolomite (i.e., values occurring above the calcite linear trend) is consistent with a biogenically mediated phase. $\delta^{13}C$ enrichment has been interpreted as being associated with methanogenesis (Roberts et al., 2004) and with conditions of anaerobic fermentation (Reitsema, 1980; Dimitrakopoulos and Muehlenbachs, 1987).

An overall enrichment of $\delta^{18}O$ in dolomite relative to calcite suggests that the pore-water associated with dolomitization may have been enriched in $\delta^{18}O$ due to evaporitic and sabkha conditions or due to the dolomite undergoing a greater fractionation factor relative to calcite. Low-temperature experiments of modern dolomite precipitating in equilibrium with calcite under conditions of MSR indicate that dolomite should be enriched in $\delta^{18}O$ by approximately 2.6‰ (Vasconcelos et al., 2005). Mean $\delta^{18}O$ values for dolomite in this study are enriched by 0.8‰ relative to mean calcite values (1.2‰). This fractionation is closer to values measured in a lab than

FIG. 9. A schematic drawing of a low-angle carbonate ramp reflective of sedimentation during the Visean within the Dunvegan gas field. Superimposed on the carbonate ramp is the location of the six facies identified during core logging. Facies 4 (bioturbated mudstone-wackestone) occurs primarily within the lagoonal portions of the inner ramp and represents the primary reservoir intervals.
values extrapolated to low-temperature conditions from high-temperature experiments (e.g., Epstein et al., 1964; Northrop and Clayton, 1966; O’Neill and Epstein, 1966). The similarity in approximated fractionation values calculated between calcite and dolomite in this study with those calculated by Vasconcelos et al. (2005) for dolomite and calcite precipitating from the same parent solution suggests that protodolomite precipitated in equilibrium with calcite rather than by replacement of pre-existing calcite.

There are examples of dolomitized burrows in the rock record, however, wherein $\delta^{18}O$ dolomite is depleted relative to calcite (e.g., Corlett and Jones, 2012). Within their study of burrow dolomites in the Middle Devonian Lonely Bay Formation in Northwest Territories, Canada, Corlett and Jones (2012) showed that a requisite for dolomitization, among others, was a high concentration of marine-dissolved organic matter. On the other hand, the burrows within the Debolt Formation lack marine-derived organic matter due to a sabkha based depositional setting.

As a result, a significant portion of the organic content within the Debolt Formation is most likely derived in part from the organisms and their by-products (i.e., fecal material, burrow wall linings) occurring within a lagoonal setting. Consequently, the distribution of $\delta^{18}O$ in dolomite relative to calcite within burrows, at present, appears to be influenced the source of organic matter and depositional setting. Clearly, further work needs to be completed to better define these boundaries throughout the geological rock record.

Less depleted $\delta^{13}C$ values within the burrow dolomites in the Dunvegan gas field are thought to result from dolomite formed either: (i) in association with early sulfate reduction (i.e., before pores become saturated with $\delta^{13}C$) or (ii) in sediments with little organic matter, where much of the CO_3^{2-} is derived from seawater (Compton, 1988; Mazzullo, 2000). It has been noted that $\delta^{13}C$ for dolomite precipitated in association with sulfate reduction in modern settings is initially very similar to $\delta^{13}C$ of calcite, but becomes progressively more depleted as sulfate-reducing conditions persist (Vasconcelos et al., 1995; Mazzullo, 2000). Studies of dolomite found associated with MSR in a modern lagoonal environment (e.g., Lagoa Vermelha, Brazil) suggest that dolomite is initially slightly $\delta^{13}C$ enriched relative to organic carbon, and becomes progressively depleted by as much as 5% upon shallow recrystallization (Vasconcelos and McKenzie, 1997). For this study, the majority of $\delta^{13}C$ values fall within 1% of seawater, although a few samples are as much as 2%
lighter. The similarity of $\delta^{13}C$ values measured in the present study with those measured in modern field and laboratory dolomite associated with MSR suggest that the zone of isotopically light dolomite (i.e., values occurring below the linear calcite trend) most likely formed under early sulfate reducing conditions.

The high degree of similarity of burrow and matrix dolomite $\delta^{13}C$ to seawater values suggests that dolomite formed near the sediment-water interface, under conditions of early sulfate reduction. This is envisaged as occurring potentially within a burrow environment, where sulfate reduction can occur adjacent to or within a burrow (Waslenchuk et al., 1983). We therefore advocate that heterogeneities within the substrate, such as those made by bioturbation, helped promote dolomitization within the Dunvegan gas field.

The presence of anoxia within the lagoonal portions of the carbonate ramp is supported the presence of monospecific assemblages of burrows such as *Chondrites* and *Zoophycos* (Facies 4) (Bromley and Ekdale, 1984; Ekdale and Mason, 1988; Miller, 1991). High concentrations of pyrite (Facies 3) and organic matter preserved within the microbial mats (Facies 2) also confirm anoxic conditions. Given these geochemical conditions, it can be suggested that bottom seawater and uppermost sediment pore waters (i.e., burrowed zone) fluctuated from oxic to anoxic. The margins of the burrows walls, due to high organic carbon content, are also believed to have formed a localized reducing zone that allowed for MSR and localized dolomite precipitation.

From a reservoir viewpoint, early dolomitization was critical in preserving the micro-intercrystalline porosity within the burrow fabrics (Al-Aasm and Packard, 2000). Moreover, these dolomitized burrow fabrics commonly provide localized enhancement of permeabilities relative to the impermeable lime mud matrix. As shown by Gingras et al. (2007b, 2012) and Baniak et al. (2013), dolomitized bioturbated media commonly develop anisotropic permeability networks. Given the lateral extensiveness of these bioturbated intervals across the Dunvegan gas field (Fig. 4), proper identification of the dolomitized burrow fabrics is crucial to drilling success and optimal recovery.

CONCLUSIONS

In the Dunvegan gas field of northwestern Alberta, the Mississippian (Viscian) Debolt Formation contains numerous indicators of sedimentation within a carbonate ramp setting. Among others, these include reoccurring intervals of patterned carbonate, monospecific assemblages of ichnofossils (e.g., *Chondrites, Planolites*), nodular anhydrite, biolaminated mudstones, and peloidal grainstones. The reduction of both fossils and burrows within the lagoonal settings indicates that physico-chemical stresses, such as reduced oxygen and fluctuating salinities, were prevalent during the Visean. These parasequence surfaces are laterally extensive and correlatable across the Dunvegan gas field.

Isotopically, the Dunvegan gas field provides an excellent example of early dolomitization within a sabkha setting. However, evidence for burrow-mediated dolomitization was also established when comparing calcite and dolomite isotope data from the burrows and adjacent matrix. The isotopic values for calcite follow a linear trend on a $\delta^{13}C$ versus $\delta^{18}O$ plot, while dolomite plots into two distinct zones either above or below the calcite linear trend. Dolomite that is $\delta^{13}C$ enriched relative to calcite is interpreted to be dolomite that formed in a zone of methanogenesis. The majority of dolomite measured, however, was depleted in $\delta^{13}C$ relative to average calcite values. This amount of isotopic depletion is similar to samples that are measured in laboratory and field-based studies where dolomite has been found in association with bacterial sulfate reduction coupled to the oxidation of organic carbon. High organic content, an essential component for MSR and subsequent near-surface dolomitization, is believed to have been derived in part from the organisms and their by-products (i.e., fecal material, burrow wall linings).

ACKNOWLEDGMENTS

We would like to thank Ichnos editor Luis Buatois, along with reviewers Hilary Corlett and Adrian Immenhauser, for their helpful comments and suggestions that improved the final version of this paper. Jennis Scott and David Morrow are acknowledged for their editorial input and helpful suggestions during earlier versions of this draft. We would like to thank Mark Labbe and David Pirie for their help regarding thin section preparation. The staff at the ERCB in Calgary, Alberta, is also recognized for their support and help during our stay at the core lab in summer 2010.

FUNDING

We are grateful for the financial support offered by ConocoPhillips, Devon Energy, and Statoil.

REFERENCES

