Sequence to Sequence Learning for NLP and Speech

Quoc V. Le Google Brain team

"AutoReply"

508 unread emails!!!

• Some emails just require "Yes" / "No" answers

Let's build "AutoReply"

"AutoReply"

- From: Ann
- Subject: Hi
- Content: Are you visiting Vietnam for the new year, Quoc?
- Probable Reply: Yes

Dataset

- Are you visiting Vietnam for the new year, Quoc? -> Yes
- Are you hanging out with us tonight? -> No
- Did you read the cool paper on ResNet? -> Yes

Preprocessing

- Are you visiting Vietnam for the new year, Quoc? -> Yes
- Are you hanging out with us tonight? -> No
- Did you read the cool paper on ResNet? -> Yes

Preprocessing

- Are you visiting Vietnam for the new year, Quoc? -> Yes
- Are you hanging out with us tonight? -> No
- Did you read the cool paper on ResNet? -> Yes

Are you visiting Vietnam for the new year, Quoc?

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,, 0, 0, 1, 0, 0, 0]

Are you visiting Vietnam for the new year, Quoc?

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,, 0, 0, 1, 0, 0, 0]

20,000 dimensions

Are you visiting Vietnam for the new year, Quoc?

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,, 0, 0, 1, 0, 0, 2]

20,000 dimensions

Are you visiting Vietnam for the new year, Quoc?

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, ..., 0, 0, 1, 0, 0, 0, 2]

20,000 dimensions

Are you visiting Vietnam for the new year, Quoc?

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, ..., 0, 0, 1, 0, 0, 2]

Special dimension reserved for out of vocabulary words

```
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, ..., 0, 0, 1, 0, 0, 0, 2] -> 1
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, ..., 1, 0, 0, 0, 0, 0, 0] -> 0
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, ..., 0, 3, 0, 0, 0, 0, 1] -> 1
```

```
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, ..., 0, 0, 1, 0, 0, 2] \rightarrow 1
```

$$[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, ..., 1, 0, 0, 0, 0, 0, 0] \rightarrow 0$$

$$[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, ..., 0, 3, 0, 0, 0, 0, 1] \rightarrow 1$$

- Find W such that Wx approximates y
- Since y is in {"Yes", "No"}, this is a "Logistic Regression" problem

$$exp(w_1^Tx)$$

$$exp(w_1^Tx) + exp(w_2^Tx)$$

$$exp(w_2^Tx)$$

$$exp(w_2^Tx)$$

$$exp(w_1^Tx) + exp(w_2^Tx)$$

- Find W such that Wx approximates y
- Since y is in {"Yes", "No"}, this is a "Logistic Regression" problem

Training with stochastic gradient descent

- For iteration 1, 2, 3, ..., 1000000
 - Sample a random email x and a reply
 - If reply == Yes, update w₁ and w₂ to increase

$$exp(w_1^Tx)$$
 $exp(w_1^Tx) + exp(w_2^Tx)$

• If reply == No, update w₁ and w₂ to increase

$$\exp(w_2^T x)$$

$$\exp(w_1^T x) + \exp(w_2^T x)$$

Training with stochastic gradient descent

- For iteration 1, 2, 3, ..., 1000000
 - Sample a random email x and a reply
 - If reply == Yes, update w₁ and w₂ to increase

• If reply == No, update w₁ and w₂ to increase

$$\exp(w_1^T x)$$

$$\exp(w_1^T x) + \exp(w_2^T x)$$

$$\exp(w_2^T x)$$

$$\exp(w_1^T x) + \exp(w_2^T x)$$

Training with stochastic gradient descent

- For iteration 1, 2, 3, ..., 1000000
 - Sample a random email x and a reply
 - If reply == Yes, update w₁ and w₂

$$w_1 = w_1 + alpha \frac{d log(p_1)}{d w_1}$$
 $w_2 = w_2 + alpha \frac{d log(p_1)}{d w_2}$

If reply == No, update w1 and w2

$$w_1 = w_1 + alpha \frac{d log(p_2)}{d w_1}$$
 $w_2 = w_2 + alpha \frac{d log(p_2)}{d w_2}$

Prediction

For any incoming email x

• Compute
$$\frac{\exp(w_1^T x)}{\exp(w_1^T x) + \exp(w_2^T x)}$$

- If > 0.5 -> reply = Yes
- If <= 0.5 -> reply = No

Information Loss

Are you visiting Vietnam for the new year, Quoc?

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, ..., 0, 0, 1, 0, 0, 2]

This "bag-of-words representation" does not care about the order of the words!

Are you visiting Vietnam for the new year, Quoc?

Training RNN with stochastic gradient descent

- For iteration 1, 2, 3, ..., 1000000
 - Sample a random email x and a reply
 - If reply == Yes, update w₁ and w₂

$$w_1 = w_1 + alpha \frac{d log(p_1)}{d w_1}$$
 $w_2 = w_2 + alpha \frac{d log(p_1)}{d w_2}$

Training (RNN) with stochastic gradient descent

- For iteration 1, 2, 3, ..., 1000000
 - Sample a random email x and a reply
 - If reply == Yes, update w₁ and w₂

$$w_1 = w_1 + alpha \frac{d log(p_1)}{d w_1}$$
 $w_2 = w_2 + alpha \frac{d log(p_1)}{d w_2}$

Update U, and A

$$A = A + alpha \frac{d log(p_1)}{d A}$$
 $U = U + alpha \frac{d log(p_1)}{d U}$
Update all relevant v's $v_i = v_i + alpha \frac{d log(p_1)}{d U}$

d Vi

Training RNN with stochastic gradient descent

- For iteration 1, 2, 3, ..., 1000000
 - Sample a random email x and a reply
 - If reply == Yes, update w₁ and w₂

$$w_1 = w_1 + alpha \frac{d \log(p_1)}{d w_1}$$

$$w_2 = w_2 + alpha \frac{d \log(p_1)}{d w_2}$$

$$Very hard to derive!$$

$$Update U, and A$$

$$Use$$

$$U = U + alpha \frac{d \log(p_1)}{d U}$$

$$Update all relevant v's$$

$$V_1 = V_1 + alpha \frac{d \log(p_1)}{d V_1}$$

Very hard

to derive!

Use

The big picture so far

- Bag-of-word representation
- RNN representation for variable-sized input
- Autodiff to compute the partial derivatives (TensorFlow, Theano, Torch)
- Stochastic gradient descent for training

More friendly "AutoReply"

- Are you visiting Vietnam for the new year, Quoc? -> Yes, see you soon!
- Are you hanging out with us tonight? -> No, I am too busy.
- Did you read the cool paper on ResNet? -> Yes, it's nice!

Better Formulation

Mapping between variable-length input to variable length output

Better Formulation

- Mapping between variable-length input to variable length output
- Applications: AutoReply, Translation, Image Captioning, Summarization, Speech Transcription, Conversation, Q&A, ...

Andrej Karpathy. The Unreasonable Effectiveness of Recurrent Neural Networks

Better Formulation

Better Formulation

Number of choices = number of words in vocabulary

Better Formulation

Better Formulation

Sequence to Sequence Training with SGD

- For iteration 1, 2, 3, ..., 1000000
 - Sample an email x and a reply y
 - Sample a random word y(t) in y
 - Update RNN encoder and decoder parameters to increase the probability of word y(t) given y(t-1), y(t-2) ..., y(0), X(n), X(n-1), ..., X(0) using partial derivative with respect to W, U, A, B, and all v's

Sequence to Sequence Training with SGD

- For iteration 1, 2, 3, ..., 1000000
 - Sample an email x and a reply y
 - Sample a random word y(t) in y

Very hard to derive!

Use autodiff:)

Update RNN encoder and decoder parameters to increase the probability of word y(t) given y(t-1), y(t-2) ..., y(0), X(n), X(n-1), ..., X(n) using partial derivative with respect to W, U, A, B, and all v's

Sequence to Sequence Prediction

- For any incoming email x
 - Given x, find word you with highest probability using RNN
 - Given you and x, find word you with highest probability using RNN
 - •
 - Stop when see <end>

"Greedy Decoding"

Sequence to Sequence Prediction

- For any incoming email x
 - Given x, find k candidates for y₀ with highest probability using RNN
 - Given x, for each candidate y₀, find k candidates for word y₁ with highest probability using RNN
 - •
 - Stop when see <end> on each beam
 - Reply = beam with highest probability

Sequence to Sequence Prediction

Scheduled Sampling

SmartReply feature in lnbox

The big picture so far

- RNN encoder and RNN decoder for sequence to sequence learning
- Use stochastic gradient descent for training
- Beam search decoding

$$b_i = \frac{exp(a_i)}{exp(a_1) + exp(a_2) + ... + exp(a_n)}$$

Implemented in TensorFlow seq2seq

Model Understandability with Attention Mechanism

Model Understandability with Attention Mechanism

Deeper Networks work Better

Sequence to Sequence With Attention

- Currently the state-of-art in many translation tasks
 - Tip 1: Use word segments or word/character hybrid instead of just words
 - Tip 2: Gradient Clipping to prevent explosion
 - Tip 3: Use Long Short Term Memory

LSTMCell vs. RNNCell

RNNCell:

```
h = tanh(theta * [inputs, h])
```

LSTMCell:

```
Z = theta * [inputs, h]
i, j, f, o = split(1, 4, Z) # split to four blocks
new_c = c * sigmoid(f) + sigmoid(i) * tanh(j) # integral of c
new_h = tanh(new_c) * sigmoid(o)
```

Applications

- Other applications:
 - Summarization, Image Captioning,
 - Speech Transcription, Q&A

Applications

- Other applications:
 - Summarization, Image Captioning,
 - Speech Transcription, Q&A

seq2seq for Speech Character output Hi it? how's <end> h_1 MFCC Hi how's <90> it?

Sequence to Sequence With Attention for Speech

- Implicit language model
- "Offline" beam search decoding
- Not as good as
 - CTC (Adam Coates' talk)
 - HMM-DNN hybrid (most widely-used speech systems)

The Big Picture

- Sequence to sequence is an "End-to-end Deep Learning" algorithm
- It's very general, so it should work with most NLP-related tasks when you have a
 lot of data
- If you don't have enough data:
 - Consider dividing your problem into smaller problems, and train seq2seq on each of them.
 - Train jointly with many other tasks
- What I present next is an active area of research

Automatic Q&A

- Reading a book and answer a question
- Seq2seq with attention: Read the book, then read the question, then revisit all pages in the book.
- —> Augmented RNNs with memory (Memory Networks, Neural Turing Machines, Dynamic Memory Networks, Stack-augmented RNNs etc.)

Revisit Attention Mechanism

Encoder

Revisit Attention Mechanism

Decoder

Differentiable Memory (Neural Turing Machines, Memory Networks, Stack-Augmented RNNs)

Differentiable Memory

Differentiable Memory

Differentiable Memory

RNN with augmented memory

RNN with augmented operations

- Context: The building was constructed in 2000 It was destroyed in 2010
- Question: How long did the building survive?
- Answer: 10 years.

Neural Programmers

The Big Picture

- Sequence to sequence is an "End-to-end Deep Learning" algorithm
- It's very general, so it should work with most NLP-related tasks when you have a
 lot of data
- If you don't have enough data:
 - Consider dividing your problem into smaller problems, and train seq2seq on each of them.
 - Train jointly with many other tasks
- RNN with memory, or operation augmentation are exciting work in progress

Additional Reading

- Chris Olah's blog: Attention and Augmented Recurrent Neural Networks
- My own tutorials: http://ai.stanford.edu/~quocle/tutorial2.pdf
- Seq2seq in TensorFlow: https://www.tensorflow.org/versions/r0.10/
 tutorials/seq2seq/index.html

References

Modeling

- Sequence to Sequence with Neural Networks by Sutskever, Vinyals, Le. NIPS, 2014
- Neural machine translation by jointly learning to align and translate by Bahdanau, Cho, Bengio. ICLR, 2015
- Neural Turing Machines, by Graves, Wayne, Danihelka. arXiv, 2014
- End-to-End Memory Networks by Sukhbaatar, Weston, Fergus. NIPS, 2015
- Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks, by Bengio, Vinyals, Jaitly, Shazeer. NIPS, 2015
- Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets by Joulin and Mikolov. NIPS, 2015.

Applications

- Show and Tell: A Neural Image Caption Generator, by Vinyals, Toshev, Bengio, Erhan. CVPR, 2015
- Grammar as Foreign Language by Vinyals, Kaiser, Koo, Petrov, Sutskever, Hinton. NIPS, 2015
- Neural Conversational Model, by Vinyl and Le. ICML Workshop, 2015
- A neural network approach to context-sensitive generation of conversational responses, by Sordoni, Galley, Auli, Brockett, Ji, Mitchell, Gao, Dolan, Nie. NAACL, 2015.
- Neural responding machine for short-text conversation by Shang, Lu, Li. ACL, 2015.
- Attention-Based Models for Speech Recognition. Chorowski, Bahdanau, Serdyuk, Cho, Bengio. NIPS, 2015
- Listen, Attend and Spell. Chan, Jaitly, Le, Vinyals. ICASSP, 2016