
DL	for	NLP
From	the	Basics	to	Research

Richard	Socher

Research	work	joint	with	the	MetaMind-Salesforce	team
Caiming Xiong,	Stephen	Merity,	James	Bradbury,	

Ankit	Kumar,	Ozan Irsoy and	others

What	is	Natural	Language	Processing?

• Natural	language	processing	is	a	field	at	the	intersection	of	
– computer	science
– artificial	intelligence
– and	linguistics.	

• Goal:	for	computers	to	process	or	“understand”	natural	
language	in	order	to	perform	tasks	that	are	useful,	e.g.
– Question	Answering

• Fully	understanding	and	representing
the	meaning of	language	(or	even	
defining	it)	is	an	illusive	goal.

• Perfect	language	understanding	is	
AI-complete	

9/25/16Richard	Socher Lecture	1,	Slide	2

NLP	Levels

Richard	Socher Lecture	1,	Slide	3

Why	is	NLP	hard?

• Complexity	in	representing,	learning	and	using	
linguistic/situational/world/visual	knowledge

• Jane	hit	June	and	then	she [fell/ran].

• Ambiguity:	“I	made	her	duck”

Richard	Socher Lecture	1,	Slide	4

(A	tiny	sample	of)	NLP	Applications	

• Applications	range	from	simple	to	complex:

• Spell	checking,	keyword	search,	finding	synonyms

• Extracting	information	from	websites	such	as	
– product	price,	dates,	location,	people	or	company	names

• Classifying,	reading	level	of	school	texts,	positive/negative	
sentiment	of	longer	documents

• Machine	translation
• Question	answering	or	automated	email	replies
• Spoken	dialog	systems

Richard	Socher Lecture	1,	Slide	5

Representations	for	Language	Tasks:
Machine	Translation

• Many	levels	of	translation	
have	been	tried	in	the	past:

• Traditional	MT	systems	are	
very	large	complex	systems	

• What	do	you	think	is	the	interlingua	for	the	DL	
approach	to	translation?

• Representation	for	all	levels:	Vectors!
Richard	Socher Lecture	1,	Slide	6

Outline

1. Words
Basics:	Word2vec	and	Glove

2. Sentences	(~)	
Basics:	Recurrent	neural	networks

3. Multiple	sentences
Research:	
Dynamic	memory	networks

Richard	Socher Lecture	1,	Slide	7

Answer module

Question Module

Semantic Memory
Module

Episodic Memory
Module

Input Module

Mary got th
e m

ilk
 th

ere.

Jo
hn m

oved to
 th

e bedroom.

Sandra w
ent b

ack
 to

 th
e kitc

hen.

Mary tra
velle

d to
 th

e hallw
ay.

Jo
hn got th

e fo
otb

all t
here.

Jo
hn w

ent to
 th

e hallw
ay.

Jo
hn put d

own th
e fo

otb
all.

Mary w
ent to

 th
e garden.

s1 s2 s3 s4 s5 s6 s7 s8

Where is
the fo

oball?

q

0.0 0.3 0.0 0.0 0.0 0.9 0.0 0.0

0.3 0.0 0.0 0.0 0.0 0.0 1.0 0.0
e1 e2 e3 e4 e5 e6 e7 e8

1 1 1 1 1 1 1 1

e1 e2 e3 e4 e5 e6 e7 e8
2 2 2 2 2 2 2 2

hallw
ay

<EOS>

m1

m2

(Glove vectors)

w1
wT

Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
q, c

T
W

(b)
m] (3)

G(c,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)

⌘
(4)

To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:

h

i
t = g

i
tGRU(ct, h

i
t�1

) + (1� g

i
t)h

i
t�1

(5)

e

i
= h

i
TC

(6)

Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification

4

How	to	represent	meaning?

Richard	Socher 8

Common	answer:	Use	a	taxonomy	like	WordNet that	has	
hypernyms (is-a)	relationships								and

synonym	sets	(good):

[Synset('procyonid.n.01'),	
Synset('carnivore.n.01'),	
Synset('placental.n.01'),	
Synset('mammal.n.01'),	
Synset('vertebrate.n.01'),	
Synset('chordate.n.01'),	
Synset('animal.n.01'),	
Synset('organism.n.01'),	
Synset('living_thing.n.01'),	
Synset('whole.n.02'),	
Synset('object.n.01'),	
Synset('physical_entity.n.01'),	
Synset('entity.n.01')]

S:	(adj)	full,	good	
S:	(adj)	estimable,	good,	honorable,	respectable	
S:	(adj)	beneficial,	good	
S:	(adj)	good,	just,	upright	
S:	(adj)	adept,	expert,	good,	practiced,	
proficient,	skillful
S:	(adj)	dear,	good,	near	
S:	(adj)	good,	right,	ripe
…
S:	(adv)	well,	good	
S:	(adv)	thoroughly,	soundly,	good	
S:	(n)	good,	goodness	
S:	(n)	commodity,	trade	good,	good	

Problems	with	discrete	representations

Richard	Socher 9

• Great	as	resource	but	missing	nuances,	e.g.	synonyms:	
adept,	expert,	good,	practiced,	proficient,	skillful?

• Missing	new	words	(impossible	to	keep	up	to	date):
wicked,	badass,	nifty,	crack,	ace,	wizard,	genius,	ninjia

• Subjective

• Requires	human	labor	to	create	and	adapt

• Hard	to	compute	accurate	word	similarity

Instead:	Use	distributional	similarity
You	can	get	a	lot	of	value	by	representing	a	word	by	
means	of	its	neighbors

“You	shall	know	a	word	by	the	company	it	keeps”

(J.	R.	Firth	1957:	11)

One	of	the	most	successful	ideas	of	modern	statistical	NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

ë These	words	will	represent	banking	ì

10

Window	based	cooccurence matrix

Richard	Socher 11

Simple	example:	For	each	word	define:

• Window	length	1	(more	common:	5	- 10)

• Symmetric	window	around	each	word

• Example	corpus:	

• I	like	deep	learning.	

• I	like	NLP.	

• I	enjoy	flying.

Window	based	cooccurence matrix

12

• Example	corpus:	

• I	like	deep	learning.	
I	like	NLP.	
I	enjoy	flying.

• Could	run	SVD	on	this	matrix

counts I like enjoy deep learning NLP flying .
I 0 2 1 0 0 0 0 0

like 2 0 0 1 0 1 0 0

enjoy 1 0 0 0 0 0 1 0

deep 0 1 0 0 1 0 0 0

learning 0 0 0 1 0 0 0 1

NLP 0 1 0 0 0 0 0 1

flying 0 0 1 0 0 0 0 1

. 0 0 0 0 1 1 1 0

word2vec	(Mikolov et	al	2013)

Richard	Socher 13

• Instead	of	capturing	cooccurrence counts	directly

• Predict	surrounding	words	of	every	word	

• Faster	and	can	easily	incorporate	a	new	
sentence/document	or	add	a	word	to	the	vocabulary

Details	of	Word2Vec

Richard	Socher 14

• Predict	surrounding	words	in	a	window	of	length	m	of	
every	word.

• Objective	function:	Maximize	the	log	probability	of	
any	context	word	given	the	current	center	word:

•

• Where	represents	all	variables	we	optimize

Details	of	Word2Vec

Richard	Socher

• Predict	surrounding	words	in	a	window	of	length	m	of	every	word

• For																										the	simplest	first	formulation	is	

• where	o	is	the	outside	(or	output)	word	id,	c	is	the	center	word	id,	v	
and	u	are	“center”	and	“outside”	vectors	of	indices	c	and	o

• Every	word	has	two	vectors!

• This	is	essentially	“dynamic”	logistic	regression

• For	improved	versions	+	detailed	derivation,	see	cs224d.stanford.edu

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI

)
]

(4)

3

Count	based	vs direct	prediction

Richard	Socher 16

LSA, HAL (Lund & Burgess),
COALS (Rohde et al),
Hellinger-PCA (Lebret & Collobert)

• Fast training
• Efficient usage of statistics

• Primarily used to capture word
similarity

• Disproportionate importance
given to large counts

• NNLM, HLBL, RNN, Skip-
gram/CBOW, (Bengio et al; Collobert
& Weston; Huang et al; Mnih & Hinton;
Mikolov et al; Mnih & Kavukcuoglu)

• Scales with corpus size

• Inefficient usage of statistics

• Can capture complex patterns
beyond word similarity

• Generate improved performance
on other tasks

Combining	the	best	of	both	worlds:	
GloVe (Pennington	et	al.	2014)

Richard	Socher

•Fast	training

•Scalable	to	huge	corpora

•Good	performance	even	with	small	corpus,	and	small	
vectors

Glove	results

Richard	Socher

1.	frogs
2.	toad
3.	litoria
4.	leptodactylidae
5.	rana
6.	lizard
7.	eleutherodactylus

litoria leptodactylidae

rana eleutherodactylus

Nearest	words	to
frog:

Intrinsic	word	vector	evaluation
• Word	Vector	Analogies

• Evaluate	word	vectors	by	how	well	
their	cosine	distance	after	addition	
captures	intuitive	semantic	and	
syntactic	analogy	questions

• Discarding	the	input	words	from	the	
search!

• Problem:	What	if	the	information	is	
there	but	not	linear?

Richard	Socher Lecture	1,	Slide	19

man:woman ::	king:?

a:b	::	c:?

king

man
woman

Glove	Visualizations

Richard	Socher 20

Glove	Visualizations:	Superlatives

9/25/16Richard	Socher 21

Analogy	evaluation	and	
hyperparameters

• More	data	is	better

Richard	Socher Lecture	1,	Slide	22

The total number of words in the corpus is pro-
portional to the sum over all elements of the co-
occurrence matrix X ,

|C | ⇠
X

i j

X
i j

=

|X |X

r=1

k
r↵
= kH|X |,↵ , (18)

where we have rewritten the last sum in terms of
the generalized harmonic number H

n,m . The up-
per limit of the sum, |X |, is the maximum fre-
quency rank, which coincides with the number of
nonzero elements in the matrix X . This number is
also equal to the maximum value of r in Eqn. (17)
such that X

i j

� 1, i.e., |X | = k1/↵ . Therefore we
can write Eqn. (18) as,

|C | ⇠ |X |↵ H|X |,↵ . (19)

We are interested in how |X | is related to |C | when
both numbers are large; therefore we are free to
expand the right hand side of the equation for large
|X |. For this purpose we use the expansion of gen-
eralized harmonic numbers (Apostol, 1976),

H
x,s =

x1�s

1 � s
+ ⇣ (s) + O(x�s) if s > 0, s , 1 ,

(20)
giving,

|C | ⇠ |X |
1 � ↵ + ⇣ (↵) |X |↵ + O(1) , (21)

where ⇣ (s) is the Riemann zeta function. In the
limit that X is large, only one of the two terms on
the right hand side of Eqn. (21) will be relevant,
and which term that is depends on whether ↵ > 1,

|X | =
(O(|C |) if ↵ < 1,
O(|C |1/↵) if ↵ > 1. (22)

For the corpora studied in this article, we observe
that X

i j

is well-modeled by Eqn. (17) with ↵ =
1.25. In this case we have that |X | = O(|C |0.8).
Therefore we conclude that the complexity of the
model is much better than the worst case O(V 2),
and in fact it does somewhat better than the on-line
window-based methods which scale like O(|C |).
4 Experiments

4.1 Evaluation methods
We conduct experiments on the word analogy
task of Mikolov et al. (2013a), a variety of word
similarity tasks, as described in (Luong et al.,
2013), and on the CoNLL-2003 shared benchmark

Table 2: Results on the word analogy task, given
as percent accuracy. Underlined scores are best
within groups of similarly-sized models; bold
scores are best overall. HPCA vectors are publicly
available2; (i)vLBL results are from (Mnih et al.,
2013); skip-gram (SG) and CBOW results are
from (Mikolov et al., 2013a,b); we trained SG†

and CBOW† using the word2vec tool3. See text
for details and a description of the SVD models.

Model Dim. Size Sem. Syn. Tot.
ivLBL 100 1.5B 55.9 50.1 53.2
HPCA 100 1.6B 4.2 16.4 10.8
GloVe 100 1.6B 67.5 54.3 60.3

SG 300 1B 61 61 61
CBOW 300 1.6B 16.1 52.6 36.1
vLBL 300 1.5B 54.2 64.8 60.0
ivLBL 300 1.5B 65.2 63.0 64.0
GloVe 300 1.6B 80.8 61.5 70.3
SVD 300 6B 6.3 8.1 7.3

SVD-S 300 6B 36.7 46.6 42.1
SVD-L 300 6B 56.6 63.0 60.1
CBOW† 300 6B 63.6 67.4 65.7

SG† 300 6B 73.0 66.0 69.1
GloVe 300 6B 77.4 67.0 71.7
CBOW 1000 6B 57.3 68.9 63.7

SG 1000 6B 66.1 65.1 65.6
SVD-L 300 42B 38.4 58.2 49.2
GloVe 300 42B 81.9 69.3 75.0

dataset for NER (Tjong Kim Sang and De Meul-
der, 2003).

Word analogies. The word analogy task con-
sists of questions like, “a is to b as c is to ?”
The dataset contains 19,544 such questions, di-
vided into a semantic subset and a syntactic sub-
set. The semantic questions are typically analogies
about people or places, like “Athens is to Greece
as Berlin is to ?”. The syntactic questions are
typically analogies about verb tenses or forms of
adjectives, for example “dance is to dancing as fly
is to ?”. To correctly answer the question, the
model should uniquely identify the missing term,
with only an exact correspondence counted as a
correct match. We answer the question “a is to b
as c is to ?” by finding the word d whose repre-
sentation w

d

is closest to w
b

� w
a

+ w
c

according
to the cosine similarity.4

2http://lebret.ch/words/
3http://code.google.com/p/word2vec/
4Levy et al. (2014) introduce a multiplicative analogy

evaluation, 3COSMUL, and report an accuracy of 68.24% on

Section	2:	

Recurrent	neural	
networks

Recurrent	Neural	Networks	(!)

9/25/16Richard	Socher 24

• Similar	to	normal	neural	networks

• RNNs	tie	the	weights	at	each	time	step

• Condition	the	neural	network	on	all	previous	words

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

RNN	language	model

9/25/16Richard	Socher 25

Given	list	of	word	vectors:

At	each	time	step,
predict	the	next	word:

X[t] ht

ßà

RNN	language	model
Same	set	of	W	weights	at	all	time	steps!

Everything	else	is	the	same:

is	initialization	vector	for	hidden	layer	at	first	step	

The	next	word	is	the	“class.”	Performance	measured	in

Perplexity:	2J where:

Main	RNN	improvement:	Better	Units

9/25/16Richard	Socher 27

• More	complex	hidden	unit	computation	in	recurrence!

• Gated	Recurrent	Units	(GRU)	introduced	by	Cho	et	al.	2014.	
Special	case	of	an	LSTM	Hochreiter and	Schmidhuber 1997

• Main	ideas:	

• keep	around	memories	to	capture	long	distance	
dependencies

• allow	error	messages	to	flow	at	different	strengths	
depending	on	the	inputs

GRUs

9/25/16Richard	Socher 28

• Standard	RNN	computes	hidden	layer	at	next	time	step	
directly:

• GRU	first	computes	an	update	gate (another	layer)	
based	on	current	input	word	vector	and	hidden	state

• Compute	reset	gate	similarly	but	with	different	weights

GRUs

9/25/16Richard	Socher 29

• Update	gate	

• Reset	gate

• New	memory	content:
If	reset	gate	unit	is	~0,	then	this	ignores	previous	
memory	and	only	stores	the	new	word	information	

• Final	memory	at	time	step	combines	current	and	
previous	time	steps:		

Attempt	at	a	clean	illustration

9/25/16Richard	Socher 30

rtrt-1

zt-1

~ht~ht-1

zt

ht-1 ht

xtxt-1Input:

Reset	gate

Update	gate

Memory	(reset)

Final	memory

GRU	intuition

9/25/16Richard	Socher 31

• If	reset	is	close	to	0,	
ignore	previous	hidden	state
à Allows	model	to	drop	
information	that	is	irrelevant
in	the	future

• Update	gate	z	controls	how	much	of	past	state	should	
matter	now.

• If	z	close	to	1,	then	we	can	copy	information	in	that	unit	
through	many	time	steps!	Less	vanishing	gradient!

• Units	with	short-term	dependencies	often	have	reset	
gates	very	active

More	amazing	RNN	work

• In	Quoc’s	lecture

Basic	lego blocks

• Word	vectors	and	RNNs	are	the	two	most	
important	concepts	for	deepNLP

• Congrats!

• Now	we	can	play	with	these	lego blocks

Problem	with	all	models	so	far

• Can	only	predict	frequently	seen	classes
• Example:	Language	modeling	where	classes=words

• New	words	occur	all	the	time	during	testing

• Solution:	Combine	softmax with	
pointers	to	context	words!

• Work	by	Stephen	Merity et	al.	2016
(Released	next	week	:)

@Smerity

Pointer	sentinel	mixture	models

Language	Model	Evaluation

• Perplexity:	2J where:

• Lower	is	better

• Results	with
normal	RNNs
plus	count-
based	models
à

• Mikolov 2010

Lots	of	progress	in	last	years

From	87	perplexity	with	8	RNNs	ensemble	plus	count-based	methods	to	70.9	
with	single	end-to-end	trainable	neural	model

Section	3:	

Dynamic	memory	
networks

Current	Research

Can	all	NLP	tasks	be	
seen	as			

question	answering

problems?

QA	Examples

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden
I: Everybody is happy.
Q: What’s the sentiment?
A: positive

I: Jane has a baby in Dresden.
Q: What are the named entities?
A: Jane - person, Dresden - location
I: Jane has a baby in Dresden.
Q: What are the POS tags?
A: NNP VBZ DT NN IN NNP .
I: I think this model is incredible
Q: In French?
A: Je pense que ce modèle est incroyable.

Figure 1: Example inputs and questions together with answers all of which are generated by the
same dynamic memory network.

2 The Dynamic Memory Network

The Dynamic memory network (DMNs) is a general model for asking questions over inputs. The
default for the DMN is to represent inputs and their parts in vector form. In this paper, we will focus
on asking questions over natural language inputs.

Seman&c(
Memory(

(
•  Word(

vectors(

•  Knowledge(
Basis(

(

Input(Text(Sequence(Ques&on(

Episodic(Memory(Answer(

Figure 2: Overview of DMN modules. Communication between them is indicated by arrows and
uses only semantic vector representations. Questions trigger gates which allow some input words or
sentences to be given to the episodic memory module. The final state of the episodic memory is the
input to the answer module.

We will first give an overview of the model as illustrated in Fig. 2 and then describe our specific
instantiation of each module. The DMN consist of the following modules which are listed in the
order of which they are used:

Input Module: This module processes raw inputs and maps them into a representation that is useful
for asking questions about this input. Generally, the input can be visual, speech or text. In
our case the inputs are sequences of words and the representations that are being computed
are semantic vectors at every time step. For instance, this may be a long story, a movie
review, news article or all of Wikipedia.

Semantic Memory: Semantic memory stores general world knowledge about concepts and facts.
For example, it might contain information about what a hang glider is. This module is
inspired by cognitive neuroscience. While the exact location of semantic memory in the
human brain is still being explored, its general existence is well established [1]. Distributed
word vectors like Glove [2] or Word2Vec [3] form the basis of semantic memory. More
complex information can be stored in the form of knowledge bases which capture relation-
ships between various words in the form of triplets [4].

Question Module: The question module simply computes a representation of a question such as
Where did the author first fly?. This representation, in our case a vector, then triggers a
gated attention and retrieval process over facts from the input sequence.

Episodic Memory: In humans this memory stores specific experiences, times and places in their
temporal and autonoetic context. For instance, it might contain the first memory somebody
flew a hang glider. It is also a central part of the DMN. Each question draws attention to

2

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden
I: Everybody is happy.
Q: What’s the sentiment?
A: positive

I: Jane has a baby in Dresden.
Q: What are the named entities?
A: Jane - person, Dresden - location
I: Jane has a baby in Dresden.
Q: What are the POS tags?
A: NNP VBZ DT NN IN NNP .
I: I think this model is incredible
Q: In French?
A: Je pense que ce modèle est incroyable.

Figure 1: Example inputs and questions together with answers all of which are generated by the
same dynamic memory network.

2 The Dynamic Memory Network

The Dynamic memory network (DMNs) is a general model for asking questions over inputs. The
default for the DMN is to represent inputs and their parts in vector form. In this paper, we will focus
on asking questions over natural language inputs.

Seman&c(
Memory(

(
•  Word(

vectors(

•  Knowledge(
Basis(

(

Input(Text(Sequence(Ques&on(

Episodic(Memory(Answer(

Figure 2: Overview of DMN modules. Communication between them is indicated by arrows and
uses only semantic vector representations. Questions trigger gates which allow some input words or
sentences to be given to the episodic memory module. The final state of the episodic memory is the
input to the answer module.

We will first give an overview of the model as illustrated in Fig. 2 and then describe our specific
instantiation of each module. The DMN consist of the following modules which are listed in the
order of which they are used:

Input Module: This module processes raw inputs and maps them into a representation that is useful
for asking questions about this input. Generally, the input can be visual, speech or text. In
our case the inputs are sequences of words and the representations that are being computed
are semantic vectors at every time step. For instance, this may be a long story, a movie
review, news article or all of Wikipedia.

Semantic Memory: Semantic memory stores general world knowledge about concepts and facts.
For example, it might contain information about what a hang glider is. This module is
inspired by cognitive neuroscience. While the exact location of semantic memory in the
human brain is still being explored, its general existence is well established [1]. Distributed
word vectors like Glove [2] or Word2Vec [3] form the basis of semantic memory. More
complex information can be stored in the form of knowledge bases which capture relation-
ships between various words in the form of triplets [4].

Question Module: The question module simply computes a representation of a question such as
Where did the author first fly?. This representation, in our case a vector, then triggers a
gated attention and retrieval process over facts from the input sequence.

Episodic Memory: In humans this memory stores specific experiences, times and places in their
temporal and autonoetic context. For instance, it might contain the first memory somebody
flew a hang glider. It is also a central part of the DMN. Each question draws attention to

2

Goal

A	joint	model	for	
general	QA

First	Major	Obstacle

• For	NLP	no	single	model	architecture with	
consistent	state	of	the	art	results	across	tasks

Task State	of	the	art	model
Question	answering	
(babI)

Strongly	Supervised	MemNN
(Weston	et	al	2015)

Sentiment	Analysis
(SST)

Tree-LSTMs	(Tai	et	al.	2015)

Part	of	speech	tagging
(PTB-WSJ)

Bi-directional	LSTM-CRF	
(Huang	et	al.	2015)	

Second	Major	Obstacle

• Fully	joint	multitask	learning*	is	hard:
– Usually	restricted	to	lower	layers
– Usually	helps	only	if	tasks	are	related
– Often	hurts	performance	if	tasks	are	not	related

*	meaning:	same	decoder/classifier	
and	not	only	transfer	learning

Dynamic	Memory	

Networks	

An	architecture	for	any	QA	task

Tackling	First	Obstacle

High	level	idea	for	harder	questions

• Imagine	having	to	read	an	
article,	memorize it,	then	get	
asked	various	questions	à
Hard!

• You	can't	store	everything	in	
working	memory

• Optimal: give	you	the	input	
data,	give	you	the	question,	
allow	as	many	glances	as	
possible

Basic	lego block:	GRU	(defined	before)

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

specific facts from the input sequence which are henceforth given as input to this module. It
then takes several passes over input sequence and incorporates new facts in its hidden state.
This can then trigger the retrieval of new facts which were previously thought to not be
relevant. In our case it is a hierarchical, recurrent, neural sequence model which collects,
stores and reasons over facts.

Answer Module: Depending on the question, the answer module can be triggered in two ways: (i)
It can produce an output at every time step of the episodic memory sequence, corresponding
to word or sentence level labels like named entity tags. (ii) For tasks that are not sequence
labeling the output is produced based on the final hidden representation of the episodic
memory.

The remainder of this section describes the general mathematical framework and our specific instan-
tiation of the DMN for natural language processing tasks.

2.1 Input Module

General. The input module is responsible for computing representations of audio, visual or textual
inputs such that they can be retrieved when needed later. For most cognitive inputs we can assume a
temporal sequence indexable by a time stamp. For instance, in the case of video input, this would be
an image at each time step. For written language we have a sequence of Tw words v

1

, . . . , vTw . In
order to compute the most useful input representations it is often beneficial to do both unsupervised
and supervised learning as well as computing context-independent and context-dependent hidden
states.

NLP. In order to compute context-independent, unsupervised representations at each time step, the
entirety of a language corpus is used to compute semantic word vectors using the Glove model [2].
The glove objective is the first element of the full DMN objective function. Henceforth, we describe
each word sequence in terms of a list of corresponding word vectors vt at each time step t. These
word vectors are stored in the semantic memory described in the next subsection.

Furthermore, word vectors are given as inputs to a recurrent neural network (RNN) sequence model
[5] to compute context-dependent representations at each time step: wt = SEQ MODEL(vt, wt�1

)

resulting in the full sequence W . Other modules can access both the original word vectors as well as
the hidden states wt. In particular, we use a gated recurrent network (GRU) [6, 7]. We also explored
the more complex LSTM [8] but it performed similarly and is more complex. Both work much
better than the standard single layer tanh RNN and we postulate that the main strength comes from
having gates that allow the model to suffer less from the vanishing gradient problem.

GRU Definition: We define the GRU subcomponent in general since it is used for various sequences
inside DMN modules. Assume each time step has an input xt and a hidden node ht. We will
abbreviate the below computation with ht = GRU(xt, ht�1

):

zt = �

⇣
W

(z)
xt + U

(z)
ht�1

+ b

(z)
⌘

(1)

rt = �

⇣
W

(r)
xt + U

(r)
ht�1

+ b

(r)
⌘

(2)

˜

ht = tanh

⇣
Wxt + rt � Uht�1

+ b

(h)
⌘

(3)

ht = zt � ht�1

+ (1� zt) � ˜ht, (4)

where � is an element-wise product. In some cases, there is a direct output in terms of a word
(equivalent to a standard supervised class label) which is computed via yt = softmax(W

(S)

ht).
Depending on which module is being described, the GRU notation changes but the internal states
and equations are the same. For the input module, we have wt = GRU(vt, wt).

Different subsequences such as sentences can also be retrieved depending on the task. For some
datasets, the sentence separation is useful and we assume we can access each sentence’s last hidden
vector in order to obtain a sequence S of sentence vectors S = s

1

, . . . , sTs .

3

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

specific facts from the input sequence which are henceforth given as input to this module. It
then takes several passes over input sequence and incorporates new facts in its hidden state.
This can then trigger the retrieval of new facts which were previously thought to not be
relevant. In our case it is a hierarchical, recurrent, neural sequence model which collects,
stores and reasons over facts.

Answer Module: Depending on the question, the answer module can be triggered in two ways: (i)
It can produce an output at every time step of the episodic memory sequence, corresponding
to word or sentence level labels like named entity tags. (ii) For tasks that are not sequence
labeling the output is produced based on the final hidden representation of the episodic
memory.

The remainder of this section describes the general mathematical framework and our specific instan-
tiation of the DMN for natural language processing tasks.

2.1 Input Module

General. The input module is responsible for computing representations of audio, visual or textual
inputs such that they can be retrieved when needed later. For most cognitive inputs we can assume a
temporal sequence indexable by a time stamp. For instance, in the case of video input, this would be
an image at each time step. For written language we have a sequence of Tw words v

1

, . . . , vTw . In
order to compute the most useful input representations it is often beneficial to do both unsupervised
and supervised learning as well as computing context-independent and context-dependent hidden
states.

NLP. In order to compute context-independent, unsupervised representations at each time step, the
entirety of a language corpus is used to compute semantic word vectors using the Glove model [2].
The glove objective is the first element of the full DMN objective function. Henceforth, we describe
each word sequence in terms of a list of corresponding word vectors vt at each time step t. These
word vectors are stored in the semantic memory described in the next subsection.

Furthermore, word vectors are given as inputs to a recurrent neural network (RNN) sequence model
[5] to compute context-dependent representations at each time step: wt = SEQ MODEL(vt, wt�1

)

resulting in the full sequence W . Other modules can access both the original word vectors as well as
the hidden states wt. In particular, we use a gated recurrent network (GRU) [6, 7]. We also explored
the more complex LSTM [8] but it performed similarly and is more complex. Both work much
better than the standard single layer tanh RNN and we postulate that the main strength comes from
having gates that allow the model to suffer less from the vanishing gradient problem.

GRU Definition: We define the GRU subcomponent in general since it is used for various sequences
inside DMN modules. Assume each time step has an input xt and a hidden node ht. We will
abbreviate the below computation with ht = GRU(xt, ht�1

):

zt = �

⇣
W

(z)
xt + U

(z)
ht�1

+ b

(z)
⌘

(1)

rt = �

⇣
W

(r)
xt + U

(r)
ht�1

+ b

(r)
⌘

(2)

˜

ht = tanh

⇣
Wxt + rt � Uht�1

+ b

(h)
⌘

(3)

ht = zt � ht�1

+ (1� zt) � ˜ht, (4)

where � is an element-wise product. In some cases, there is a direct output in terms of a word
(equivalent to a standard supervised class label) which is computed via yt = softmax(W

(S)

ht).
Depending on which module is being described, the GRU notation changes but the internal states
and equations are the same. For the input module, we have wt = GRU(vt, wt).

Different subsequences such as sentences can also be retrieved depending on the task. For some
datasets, the sentence separation is useful and we assume we can access each sentence’s last hidden
vector in order to obtain a sequence S of sentence vectors S = s

1

, . . . , sTs .

3

:

Cho	et	al.	2014

Dynamic	Memory	Network

Answer module

Question Module

Semantic Memory
Module

Episodic Memory
Module

Input Module

Mary got th
e m

ilk
 th

ere.

Jo
hn m

oved to
 th

e bedroom.

Sandra w
ent b

ack
 to

 th
e kitc

hen.

Mary tra
velle

d to
 th

e hallw
ay.

Jo
hn got th

e fo
otb

all t
here.

Jo
hn w

ent to
 th

e hallw
ay.

Jo
hn put d

own th
e fo

otb
all.

Mary w
ent to

 th
e garden.

s1 s2 s3 s4 s5 s6 s7 s8

Where is
the fo

oball?

q

0.0 0.3 0.0 0.0 0.0 0.9 0.0 0.0

0.3 0.0 0.0 0.0 0.0 0.0 1.0 0.0
e1 e2 e3 e4 e5 e6 e7 e8

1 1 1 1 1 1 1 1

e1 e2 e3 e4 e5 e6 e7 e8
2 2 2 2 2 2 2 2

hallw
ay

<EOS>

m1

m2

(Glove vectors)

w1
wT

Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
q, c

T
W

(b)
m] (3)

G(c,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)

⌘
(4)

To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:

h

i
t = g

i
tGRU(ct, h

i
t�1

) + (1� g

i
t)h

i
t�1

(5)

e

i
= h

i
TC

(6)

Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification

4

The	Modules:	Input

Answer module

Question Module

Semantic Memory
Module

Episodic Memory
Module

Input Module

Mary got th
e m

ilk
 th

ere.

Jo
hn m

oved to
 th

e bedroom.

Sandra w
ent b

ack
 to

 th
e kitc

hen.

Mary tra
velle

d to
 th

e hallw
ay.

Jo
hn got th

e fo
otb

all t
here.

Jo
hn w

ent to
 th

e hallw
ay.

Jo
hn put d

own th
e fo

otb
all.

Mary w
ent to

 th
e garden.

s1 s2 s3 s4 s5 s6 s7 s8

Where is
the fo

oball?

q

0.0 0.3 0.0 0.0 0.0 0.9 0.0 0.0

0.3 0.0 0.0 0.0 0.0 0.0 1.0 0.0
e1 e2 e3 e4 e5 e6 e7 e8

1 1 1 1 1 1 1 1

e1 e2 e3 e4 e5 e6 e7 e8
2 2 2 2 2 2 2 2

hallw
ay

<EOS>

m1

m2

(Glove vectors)

w1
wT

Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
q, c

T
W

(b)
m] (3)

G(c,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)

⌘
(4)

To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:

h

i
t = g

i
tGRU(ct, h

i
t�1

) + (1� g

i
t)h

i
t�1

(5)

e

i
= h

i
TC

(6)

Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification

4

Answer module

Question Module

Semantic Memory
Module

Episodic Memory
Module

Input Module

Mary got th
e m

ilk
 th

ere.

Jo
hn m

oved to
 th

e bedroom.

Sandra w
ent b

ack
 to

 th
e kitc

hen.

Mary tra
velle

d to
 th

e hallw
ay.

Jo
hn got th

e fo
otb

all t
here.

Jo
hn w

ent to
 th

e hallw
ay.

Jo
hn put d

own th
e fo

otb
all.

Mary w
ent to

 th
e garden.

s1 s2 s3 s4 s5 s6 s7 s8

Where is
the fo

oball?

q

0.0 0.3 0.0 0.0 0.0 0.9 0.0 0.0

0.3 0.0 0.0 0.0 0.0 0.0 1.0 0.0
e1 e2 e3 e4 e5 e6 e7 e8

1 1 1 1 1 1 1 1

e1 e2 e3 e4 e5 e6 e7 e8
2 2 2 2 2 2 2 2

hallw
ay

<EOS>

m1

m2

(Glove vectors)

w1
wT

Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
q, c

T
W

(b)
m] (3)

G(c,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)

⌘
(4)

To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:

h

i
t = g

i
tGRU(ct, h

i
t�1

) + (1� g

i
t)h

i
t�1

(5)

e

i
= h

i
TC

(6)

Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification

4

Standard	GRU.	The	last	hidden	state	of	each	sentence	is	accessible.	

The	Modules:	Question

Answer module

Question Module

Semantic Memory
Module

Episodic Memory
Module

Input Module

Mary got th
e m

ilk
 th

ere.

Jo
hn m

oved to
 th

e bedroom.

Sandra w
ent b

ack
 to

 th
e kitc

hen.

Mary tra
velle

d to
 th

e hallw
ay.

Jo
hn got th

e fo
otb

all t
here.

Jo
hn w

ent to
 th

e hallw
ay.

Jo
hn put d

own th
e fo

otb
all.

Mary w
ent to

 th
e garden.

s1 s2 s3 s4 s5 s6 s7 s8

Where is
the fo

oball?

q

0.0 0.3 0.0 0.0 0.0 0.9 0.0 0.0

0.3 0.0 0.0 0.0 0.0 0.0 1.0 0.0
e1 e2 e3 e4 e5 e6 e7 e8

1 1 1 1 1 1 1 1

e1 e2 e3 e4 e5 e6 e7 e8
2 2 2 2 2 2 2 2

hallw
ay

<EOS>

m1

m2

(Glove vectors)

w1
wT

Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
q, c

T
W

(b)
m] (3)

G(c,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)

⌘
(4)

To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:

h

i
t = g

i
tGRU(ct, h

i
t�1

) + (1� g

i
t)h

i
t�1

(5)

e

i
= h

i
TC

(6)

Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification

4

Answer module

Question Module

Semantic Memory
Module

Episodic Memory
Module

Input Module

Mary got th
e m

ilk
 th

ere.

Jo
hn m

oved to
 th

e bedroom.

Sandra w
ent b

ack
 to

 th
e kitc

hen.

Mary tra
velle

d to
 th

e hallw
ay.

Jo
hn got th

e fo
otb

all t
here.

Jo
hn w

ent to
 th

e hallw
ay.

Jo
hn put d

own th
e fo

otb
all.

Mary w
ent to

 th
e garden.

s1 s2 s3 s4 s5 s6 s7 s8

Where is
the fo

oball?

q

0.0 0.3 0.0 0.0 0.0 0.9 0.0 0.0

0.3 0.0 0.0 0.0 0.0 0.0 1.0 0.0
e1 e2 e3 e4 e5 e6 e7 e8

1 1 1 1 1 1 1 1

e1 e2 e3 e4 e5 e6 e7 e8
2 2 2 2 2 2 2 2

hallw
ay

<EOS>

m1

m2

(Glove vectors)

w1
wT

Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
q, c

T
W

(b)
m] (3)

G(c,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)

⌘
(4)

To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:

h

i
t = g

i
tGRU(ct, h

i
t�1

) + (1� g

i
t)h

i
t�1

(5)

e

i
= h

i
TC

(6)

Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

2.2 Semantic Memory

The semantic memory stores general facts about concepts based on information it receives from the
input module. For NLP, the semantic memory consists of (i) stored word concepts and (ii) facts about
them. The former is in the form of word vectors which are learned while input is being processed as
described in the section above. The latter is stored in terms of an embedded knowledge base (KB)
[9, 10, 4]. The KB can include tables with single facts like lists of city names or people names as
well as relationship triplets like (dog,has-part,tail). If a KB is being used the semantic memory will
train a max-margin objective similar to Socher et al. [4] to distinguish true facts from false ones.
This is the second part of the full DMN objective function.

2.3 Question

This module maps an input into a representation that can then be used for querying specific facts
from the input module. Assume each question consists of a sequence of Tq word vectors vt. We
compute a hidden state for each via qt = GRU(vt, qt�1

), where the GRU weights are shared with
the input module. The final question vector is defined as q = qTq .

2.4 Episodic Memory

This section introduces our novel episodic memory module. It combines the previous three modules’
outputs in order to reason over them and give the resulting knowledge to the answer module. Given
a question vector q it dynamically retrieves the necessary information over the sequence of words W
or sentences S. In many cases, the first such retrieval process brings to light the necessity to retrieve
additional facts. Hence this process potentially iterates over the inputs multiple times, each iteration
is defined as an episode. In other words, some questions require the model to do transitive inference
(TI). TI has been studied extensively in psychology and neuroscience. Interestingly, it appears that
the hippocampus, the seat of episodic memory in humans, is active during this kind of inference
[11], and disruption of the hippocampus impairs TI [12].

Generally, this memory module is a deep function that returns a memory representation from inputs:
m = EM(W,S, q) that is relevant for the question q. There are two options that are triggered based on
a simple linear classifier on the question vector: We can have a memory sequence over (i) sentences
or (ii) words. For words, the representation that is output is simply a sequence M = m

1

, . . . ,mTw ,
where each mt is computed either via a simple neural network (mt = f(W

(m)

wt)) or an additional
GRU. In this case, the answer module will output a label for each element of this sequence. This
is the case of part of speech tagging and named entity recognition and any other sequence labeling
tasks.

The more interesting scenario is when the model has to reason over complex semantic questions
involving multiple facts written in a series of natural language sentences. This case is described
in detail now. The final output will be a memory vector m, which is the last of a sequence of
increasingly complete memory vectors. At the beginning of the retrieval process, we set the initial
episode’s memory to simply be the question m

0

= q. Next we compute a series of gates, one for
each sentence in the input. The gate basically captures how relevant that sentence is for the current
question and takes into account what else the model has already stored in its memory.

For instance, in the first set of inputs of Fig. 1, we may ask Where is Mary? and would hope that
the gate for the first sentence is close to 1, whereas all other gates of sentences that do not mention
Mary would be close to 0.

The gating function G takes as input a sentence vector at time step t, the current memory vector
and the question vector: g

1

t = G(st,m
0

, q) and returns a single scalar g. We define the function
G(s,m, q) as follows:

z(s,m, q) = [s � q, s �m, |s� q|, |s�m|, s,m, q, s

T
W

(b)
q, s

T
W

(b)
m] (5)

G(s,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(s,m, q) + b

(1)

⌘
+ b

(2)

⌘
(6)

4

The	Modules:	Episodic	Memory
Answer module

Question Module

Semantic Memory
Module

Episodic Memory
Module

Input Module

Mary got th
e m

ilk
 th

ere.

Jo
hn m

oved to
 th

e bedroom.

Sandra w
ent b

ack
 to

 th
e kitc

hen.

Mary tra
velle

d to
 th

e hallw
ay.

Jo
hn got th

e fo
otb

all t
here.

Jo
hn w

ent to
 th

e hallw
ay.

Jo
hn put d

own th
e fo

otb
all.

Mary w
ent to

 th
e garden.

s1 s2 s3 s4 s5 s6 s7 s8

Where is
the fo

oball?

q

0.0 0.3 0.0 0.0 0.0 0.9 0.0 0.0

0.3 0.0 0.0 0.0 0.0 0.0 1.0 0.0
e1 e2 e3 e4 e5 e6 e7 e8

1 1 1 1 1 1 1 1

e1 e2 e3 e4 e5 e6 e7 e8
2 2 2 2 2 2 2 2

hallw
ay

<EOS>

m1

m2

(Glove vectors)

w1
wT

Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
q, c

T
W

(b)
m] (3)

G(c,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)

⌘
(4)

To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:

h

i
t = g

i
tGRU(ct, h

i
t�1

) + (1� g

i
t)h

i
t�1

(5)

e

i
= h

i
TC

(6)

Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification

4

Answer module

Question Module

Semantic Memory
Module

Episodic Memory
Module

Input Module

Mary got th
e m

ilk
 th

ere.

Jo
hn m

oved to
 th

e bedroom.

Sandra w
ent b

ack
 to

 th
e kitc

hen.

Mary tra
velle

d to
 th

e hallw
ay.

Jo
hn got th

e fo
otb

all t
here.

Jo
hn w

ent to
 th

e hallw
ay.

Jo
hn put d

own th
e fo

otb
all.

Mary w
ent to

 th
e garden.

s1 s2 s3 s4 s5 s6 s7 s8

Where is
the fo

oball?

q

0.0 0.3 0.0 0.0 0.0 0.9 0.0 0.0

0.3 0.0 0.0 0.0 0.0 0.0 1.0 0.0
e1 e2 e3 e4 e5 e6 e7 e8

1 1 1 1 1 1 1 1

e1 e2 e3 e4 e5 e6 e7 e8
2 2 2 2 2 2 2 2

hallw
ay

<EOS>

m1

m2

(Glove vectors)

w1
wT

Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
q, c

T
W

(b)
m] (3)

G(c,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)

⌘
(4)

To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:

h

i
t = g

i
tGRU(ct, h

i
t�1

) + (1� g

i
t)h

i
t�1

(5)

e

i
= h

i
TC

(6)

Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification

4

ℎ"# = %"#&'()", ℎ"+,# + 1 − %"# ℎ"+,#

Last	hidden	state:	mt

The	Modules:	Episodic	Memory

• Gates	are	activated	if	sentence	relevant	to	the	
question	or	memory

• When	the	end	of	the	input	is	reached,	the	
relevant	facts	are	summarized	in	another	GRU

0"# = [)" ∘ 3	;)" ∘ 6#+,; |)" − 3|	; |)" − 6#+,|]

The	Modules:	Episodic	Memory

• If	summary	is	insufficient	to	answer	the	question,	
repeat	sequence	over	input

Answer module

Question Module

Semantic Memory
Module

Episodic Memory
Module

Input Module

Mary got th
e m

ilk
 th

ere.

Jo
hn m

oved to
 th

e bedroom.

Sandra w
ent b

ack
 to

 th
e kitc

hen.

Mary tra
velle

d to
 th

e hallw
ay.

Jo
hn got th

e fo
otb

all t
here.

Jo
hn w

ent to
 th

e hallw
ay.

Jo
hn put d

own th
e fo

otb
all.

Mary w
ent to

 th
e garden.

s1 s2 s3 s4 s5 s6 s7 s8

Where is
the fo

oball?

q

0.0 0.3 0.0 0.0 0.0 0.9 0.0 0.0

0.3 0.0 0.0 0.0 0.0 0.0 1.0 0.0
e1 e2 e3 e4 e5 e6 e7 e8

1 1 1 1 1 1 1 1

e1 e2 e3 e4 e5 e6 e7 e8
2 2 2 2 2 2 2 2

hallw
ay

<EOS>

m1

m2

(Glove vectors)

w1
wT

Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
q, c

T
W

(b)
m] (3)

G(c,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)

⌘
(4)

To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:

h

i
t = g

i
tGRU(ct, h

i
t�1

) + (1� g

i
t)h

i
t�1

(5)

e

i
= h

i
TC

(6)

Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification

4

Answer module

Question Module

Semantic Memory
Module

Episodic Memory
Module

Input Module

Mary got th
e m

ilk
 th

ere.

Jo
hn m

oved to
 th

e bedroom.

Sandra w
ent b

ack
 to

 th
e kitc

hen.

Mary tra
velle

d to
 th

e hallw
ay.

Jo
hn got th

e fo
otb

all t
here.

Jo
hn w

ent to
 th

e hallw
ay.

Jo
hn put d

own th
e fo

otb
all.

Mary w
ent to

 th
e garden.

s1 s2 s3 s4 s5 s6 s7 s8

Where is
the fo

oball?

q

0.0 0.3 0.0 0.0 0.0 0.9 0.0 0.0

0.3 0.0 0.0 0.0 0.0 0.0 1.0 0.0
e1 e2 e3 e4 e5 e6 e7 e8

1 1 1 1 1 1 1 1

e1 e2 e3 e4 e5 e6 e7 e8
2 2 2 2 2 2 2 2

hallw
ay

<EOS>

m1

m2

(Glove vectors)

w1
wT

Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
q, c

T
W

(b)
m] (3)

G(c,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)

⌘
(4)

To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:

h

i
t = g

i
tGRU(ct, h

i
t�1

) + (1� g

i
t)h

i
t�1

(5)

e

i
= h

i
TC

(6)

Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification

4

Inspiration	from	Neuroscience

• Episodic	memory is	the	memory of	
autobiographical	events	(times,	places,	etc).	A	
collection	of	past	personal	experiences	that	
occurred	at	a	particular	time	and	place.

• The	hippocampus,	the	seat	of	episodic	memory	in	
humans,	is	active	during	transitive	inference

• In	the	DMN	repeated	passes	over	the	input	are	
needed	for	transitive	inference

The	Modules:	Answer

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Now, we define the first episode vector as a gate-weighted sum of all the sentence vectors:

e

1

=

TX

t=1

softmax(g

1

t)st, (7)

where softmax(g

1

t) =

exp(g1
t)PT

j=1 exp(g1
j)

. This episode vector stores the information that the model
deems relevant at the current episode. Doing this once would be enough if there was only one
relevant fact necessary to answer the question. However, consider the first question in Fig. 1 again.
In order to answer where the milk is, the model first has to retrieve the sentence that mentions that
Sarah took the milk. Now the model knows that Sarah’s whereabouts are relevant. However, that
fact was mentioned before the model knew it was relevant. Hence, we need to incorporate the first
fact in our memory, and then iterate another episode over the inputs to retrieve the second one (that
Sarah is in the garden). We use another GRU over episode vectors as defined in Eq. 7 to compute
memories: m1

= GRU(e

1

,m

0

).

This process may iterate until a classifier on each memory vector predicts that all necessary infor-
mation is collected and ends. Otherwise, the gates would compute again, this time incorporating
the last memory: g

2

t = G(st,m
1

, q), followed by the computation of the episode vector which is
given to the final memory GRU. The ability to take multiple passes over the same input but with
knowledge from previous passes allows us to do such multi-step reasoning. In the case of the some
datasets that mark which facts are important for a given question (e.g. the Facebook babI dataset)
the input gates of Eq. 6 can be trained supervised with a standard cross entropy classification error
function. The final output of the episodic memory is the final episode memory vector m = m

E .

2.5 Answer Sequence

The first hidden state of the answer sequence model is the last hidden state of the memory GRU
a

0

= m. The other hidden elements are computed with a separate GRU which takes into account
the last hidden state and the previously predicted output yt�1

as well as the question:

at = GRU([yt�1

, q], at�1

), yt = softmax(W

(a)
at), (8)

where W

(a) is a standard softmax layer. The output is simply trained with the cross entropy error
classification of the correct sequences. This is the last but most important part of the overall objective
functions.

In the word sequence tagging case, we simply predict an output at every hidden state of the memory
directly: yt = softmax(W

s
mt). Note that, with enough training data, this case can be reduced to

the standard answer sequence prediction which just outputs the same number of labels as there are
words.

2.6 Training

Training is unsupervised over word input sequnces to learn word vectors [2] and store them in se-
mantic memory. Question-answer training is cast as a supervised classification problem to minimize
cross entropy errors at either each word (in the case of sequence models) or at the end of the episodic
memory (in the case of all other tasks). Because all modules communicate over vector representa-
tions and various types of differentiable and deep neural networks with gates, the entire DMN model
can be trained via backpropagation from the the errors of the answer sequence model.

3 Experiments

3.1 Semantic Question Answering

Facebook dataset

BioProcess dataset

5

Answer module

Question Module

Semantic Memory
Module

Episodic Memory
Module

Input Module

Mary got th
e m

ilk
 th

ere.

Jo
hn m

oved to
 th

e bedroom.

Sandra w
ent b

ack
 to

 th
e kitc

hen.

Mary tra
velle

d to
 th

e hallw
ay.

Jo
hn got th

e fo
otb

all t
here.

Jo
hn w

ent to
 th

e hallw
ay.

Jo
hn put d

own th
e fo

otb
all.

Mary w
ent to

 th
e garden.

s1 s2 s3 s4 s5 s6 s7 s8

Where is
the fo

oball?

q

0.0 0.3 0.0 0.0 0.0 0.9 0.0 0.0

0.3 0.0 0.0 0.0 0.0 0.0 1.0 0.0
e1 e2 e3 e4 e5 e6 e7 e8

1 1 1 1 1 1 1 1

e1 e2 e3 e4 e5 e6 e7 e8
2 2 2 2 2 2 2 2

hallw
ay

<EOS>

m1

m2

(Glove vectors)

w1
wT

Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
q, c

T
W

(b)
m] (3)

G(c,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)

⌘
(4)

To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:

h

i
t = g

i
tGRU(ct, h

i
t�1

) + (1� g

i
t)h

i
t�1

(5)

e

i
= h

i
TC

(6)

Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification

4

Related	work

• Sequence	to	Sequence	(Sutskever et	al.	2014)

• Neural	Turing	Machines	(Graves	et	al.	2014)

• Teaching	Machines	to	Read	and	Comprehend	(Hermann	et	al.	2015)

• Learning	to	Transduce	with	Unbounded	Memory	(Grefenstette 2015)

• Structured	Memory	for	Neural	Turing	Machines	(Wei	Zhang	2015)

• Memory	Networks	(Weston	et	al.	2015)

• End	to	end	memory	networks	(Sukhbaatar et	al.	2015)

àMore	on	these	in	Quoc’s	lecture

Comparison	to	MemNets

Similarities:
• MemNets and	DMNs	have	input,	scoring,	attention	and	response	

mechanisms
Differences:
• For	input	representations	MemNets use	bag	of	word,	nonlinear	or	

linear	embeddings	that	explicitly	encode	position	
• MemNets iteratively	run	functions	for	attention	and	response

• DMNs	show	that	neural	sequence	models	can	be	used	for	
input	representation,	attention	and	response	mechanisms	
à naturally	captures	position	and	temporality

• Enables	broader	range	of	applications

Experiments:	QA	on	babI (1k)
4.1 Question Answering

The Facebook bAbI dataset is a synthetic dataset meant to test a model’s ability to retrieve facts
and reason over them. Each task tests a different skill that a good question answering model ought
to have, such as coreference resolution, deduction, and induction. Training on the bAbI dataset

Task MemNN DMN Task MemNN DMN

1: Single Supporting Fact 100 100 11: Basic Coreference 100 99.9
2: Two Supporting Facts 100 98.2 12: Conjunction 100 100
3: Three Supporting facts 100 95.2 13: Compound Coreference 100 99.8
4: Two Argument Relations 100 100 14: Time Reasoning 99 100
5: Three Argument Relations 98 99.3 15: Basic Deduction 100 100
6: Yes/No Questions 100 100 16: Basic Induction 100 99.4
7: Counting 85 96.9 17: Positional Reasoning 65 59.6
8: Lists/Sets 91 96.5 18: Size Reasoning 95 95.3
9: Simple Negation 100 100 19: Path Finding 36 34.5
10: Indefinite Knowledge 98 97.5 20: Agent’s Motivations 100 100

Mean Accuracy (%) 93.3 93.6

Table 1: Test accuracies on the bAbI dataset. MemNN numbers taken from Weston et al. [18]. The
DMN passes (accuracy > 95%) 18 tasks, whereas the MemNN passes 16.

uses the following objective function: J = ↵ECE(Gates) + �ECE(Answers), where ECE is the
standard cross-entropy cost and ↵ and � are hyperparameters. In practice, we begin training with ↵

set to 1 and � set to 0, and then later switch � to 1 while keeping ↵ at 1. We subsample the facts
from the input module by end-of-sentence tokens. The gate supervision aims to select one sentence
per pass; thus, we also experimented with modifying Eq. 6 to a simple softmax instead of a GRU.
Here, we compute the final episode vector via: e

i
=

PT
t=1

softmax(g

i
t)ct, where softmax(g

i
t) =

exp(gi
t)PT

j=1 exp(gi
j)

, and g

i
t here is the value of the gate before the sigmoid. This setting achieves better

results, likely because the softmax is better suited to picking one sentence at a time.

We list results in table 1. The DMN does worse than the MemNN on tasks 2 and 3, both tasks with
long input sequences. We suspect this is due to the recurrent input sequence model having trouble
modeling very long inputs. The MemNN does not suffer from this problem as it views each sentence
seperately. The power of the episodic memory module is evident in tasks 7 and 8, where the DMN
significantly outperforms the MemNN. Both tasks require the model to iteratively retrieve facts and
store them in a representation that slowly incorporates more of the relevant information of the input
sequence. Both models do poorly on tasks 17 and 19, though the MemNN does better. We suspect
this is due to the MemNN using n-gram features as well as explicit sequence position features.

4.2 Sequence Tagging: Part of Speech Tagging

Part-of-speech tagging is traditionally modeled as a sequence tagging problem: every word in a
sentence is to be classified into its part-of-speech class (see Fig. 1). We evaluate on the standard
Wall Street Journal dataset included in Penn-III [26]. We use the standard splits of sections 0-18
for training, 19-21 for development and 22-24 for test sets [27]. Since this is a word level tagging
task, DMN memories are produced at the word -rather than sentence- level. We compare the DMN

Model SVMTool Sogaard Suzuki et al. Spoustova et al. SCNN DMN

Acc (%) 97.15 97.27 97.40 97.44 97.50 97.56

Table 2: Test accuracies on WSJ-PTB

with the results in [27]. The DMN achieves state-of-the-art accuracy with a single model, reaching
a development set accuracy of 97.5. Ensembling the top 4 development models, the DMN gets to
97.58 dev and 97.56 test accuracies, achieving a new state-of-the-art (Table 2).

7

This	still	requires	that	relevant	facts	are	marked	during	training	to	train	the	gates.

Experiments:	Sentiment	Analysis

• Stanford	Sentiment	Treebank

• Test	accuracies:
• MV-RNN	and	RNTN:	Socher	et	al.	(2013)
• DCNN:	Kalchbrenner et	al.	(2014)
• PVec:	Le	&	Mikolov.	(2014)
• CNN-MC:	Kim	(2014)
• DRNN:	Irsoy &	Cardie (2015)
• CT-LSTM:	Tai	et	al.	(2015)	

Ask Me Anything: Dynamic Memory Networks for Natural Language Processing

Task MemNN DMN

1: Single Supporting Fact 100 100
2: Two Supporting Facts 100 98.2
3: Three Supporting Facts 100 95.2
4: Two Argument Relations 100 100
5: Three Argument Relations 98 99.3
6: Yes/No Questions 100 100
7: Counting 85 96.9
8: Lists/Sets 91 96.5
9: Simple Negation 100 100
10: Indefinite Knowledge 98 97.5
11: Basic Coreference 100 99.9
12: Conjunction 100 100
13: Compound Coreference 100 99.8
14: Time Reasoning 99 100
15: Basic Deduction 100 100
16: Basic Induction 100 99.4
17: Positional Reasoning 65 59.6
18: Size Reasoning 95 95.3
19: Path Finding 36 34.5
20: Agent’s Motivations 100 100

Mean Accuracy (%) 93.3 93.6

Table 1. Test accuracies on the bAbI dataset. MemNN numbers
taken from Weston et al. (Weston et al., 2015a). The DMN passes
(accuracy > 95%) 18 tasks, whereas the MemNN passes 16.

4.1. Question Answering

The Facebook bAbI dataset is a synthetic dataset for test-
ing a model’s ability to retrieve facts and reason over them.
Each task tests a different skill that a question answering
model ought to have, such as coreference resolution, de-
duction, and induction. Showing an ability exists here is
not sufficient to conclude a model would also exhibit it on
real world text data. It is, however, a necessary condition.

Training on the bAbI dataset uses the following objective
function: J = ↵ECE(Gates) + �ECE(Answers), where
ECE is the standard cross-entropy cost and ↵ and � are hy-
perparameters. In practice, we begin training with ↵ set to
1 and � set to 0, and then later switch � to 1 while keep-
ing ↵ at 1. As described in Section 2.1, the input module
outputs fact representations by taking the encoder hidden
states at time steps corresponding to the end-of-sentence to-
kens. The gate supervision aims to select one sentence per
pass; thus, we also experimented with modifying Eq. 8 to
a simple softmax instead of a GRU. Here, we compute the
final episode vector via: ei =

PT
t=1

softmax(g

i
t)ct, where

softmax(g

i
t) =

exp(gi
t)PT

j=1 exp(gi
j)

, and g

i
t here is the value of

the gate before the sigmoid. This setting achieves better re-
sults, likely because the softmax encourages sparsity and is
better suited to picking one sentence at a time.

Task Binary Fine-grained

MV-RNN 82.9 44.4
RNTN 85.4 45.7
DCNN 86.8 48.5
PVec 87.8 48.7
CNN-MC 88.1 47.4
DRNN 86.6 49.8
CT-LSTM 88.0 51.0

DMN 88.6 52.1

Table 2. Test accuracies for sentiment analysis on the Stanford
Sentiment Treebank. MV-RNN and RNTN: Socher et al. (2013).
DCNN: Kalchbrenner et al. (2014). PVec: Le & Mikolov. (2014).
CNN-MC: Kim (2014). DRNN: Irsoy & Cardie (2015), 2014.
CT-LSTM: Tai et al. (2015)

We list results in Table 1. The DMN does worse than
the Memory Network, which we refer to from here on as
MemNN, on tasks 2 and 3, both tasks with long input se-
quences. We suspect that this is due to the recurrent input
sequence model having trouble modeling very long inputs.
The MemNN does not suffer from this problem as it views
each sentence separately. The power of the episodic mem-
ory module is evident in tasks 7 and 8, where the DMN
significantly outperforms the MemNN. Both tasks require
the model to iteratively retrieve facts and store them in a
representation that slowly incorporates more of the rele-
vant information of the input sequence. Both models do
poorly on tasks 17 and 19, though the MemNN does better.
We suspect this is due to the MemNN using n-gram vectors
and sequence position features.

4.2. Text Classification: Sentiment Analysis

The Stanford Sentiment Treebank (SST) (Socher et al.,
2013) is a popular dataset for sentiment classification. It
provides phrase-level fine-grained labels, and comes with a
train/development/test split. We present results on two for-
mats: fine-grained root prediction, where all full sentences
(root nodes) of the test set are to be classified as either very
negative, negative, neutral, positive, or very positive, and
binary root prediction, where all non-neutral full sentences
of the test set are to be classified as either positive or neg-
ative. To train the model, we use all full sentences as well
as subsample 50% of phrase-level labels every epoch. Dur-
ing evaluation, the model is only evaluated on the full sen-
tences (root setup). In binary classification, neutral phrases
are removed from the dataset. The DMN achieves state-of-
the-art accuracy on the binary classification task, as well as
on the fine-grained classification task.

In all experiments, the DMN was trained with GRU se-
quence models. It is easy to replace the GRU sequence
model with any of the models listed above, as well as in-

Analysis	of	Number	of	Episodes

• How	many	attention	+	memory	passes	are	needed	in	the	episodic	memory?
Ask Me Anything: Dynamic Memory Networks for Natural Language Processing

Model Acc (%)

SVMTool 97.15
Sogaard 97.27
Suzuki et al. 97.40
Spoustova et al. 97.44
SCNN 97.50

DMN 97.56
Table 3. Test accuracies on WSJ-PTB

corporate tree structure in the retrieval process.

4.3. Sequence Tagging: Part-of-Speech Tagging

Part-of-speech tagging is traditionally modeled as a se-
quence tagging problem: every word in a sentence is to
be classified into its part-of-speech class (see Fig. 1). We
evaluate on the standard Wall Street Journal dataset (Mar-
cus et al., 1993). We use the standard splits of sections
0-18 for training, 19-21 for development and 22-24 for test
sets (Søgaard, 2011). Since this is a word level tagging
task, DMN memories are classified at each time step corre-
sponding to each word. This is described in detail in Sec-
tion 2.4’s discussion of sequence modeling.

We compare the DMN with the results in (Søgaard, 2011).
The DMN achieves state-of-the-art accuracy with a single
model, reaching a development set accuracy of 97.5. En-
sembling the top 4 development models, the DMN gets to
97.58 dev and 97.56 test accuracies, achieving a slightly
higher new state-of-the-art (Table 3).

4.4. Quantitative Analysis of Episodic Memory Module

The main novelty of the DMN architecture is in its episodic
memory module. Hence, we analyze how important the
episodic memory module is for NLP tasks and in particular
how the number of passes over the input affect accuracy.

Table 4 shows the accuracies on a subset of bAbI tasks as
well as on the Stanford Sentiment Treebank. We note that
for several of the hard reasoning tasks, multiple passes over
the inputs are crucial to achieving high performance. For
sentiment the differences are smaller. However, two passes
outperform a single pass or zero passes. In the latter case,
there is no episodic memory at all and outputs are passed
directly from the input module to the answer module. We
note that, especially complicated examples are more of-
ten correctly classified with 2 passes but many examples
in sentiment contain only simple sentiment words and no
negation or misleading expressions. Hence the need to have
a complicated architecture for them is small. The same is
true for POS tagging. Here, differences in accuracy are less
than 0.1 between different numbers of passes.

Next, we show that the additional correct classifications are

Max
passes

task 3
three-facts

task 7
count

task 8
lists/sets

sentiment
(fine grain)

0 pass 0 48.8 33.6 50.0
1 pass 0 48.8 54.0 51.5
2 pass 16.7 49.1 55.6 52.1
3 pass 64.7 83.4 83.4 50.1
5 pass 95.2 96.9 96.5 N/A

Table 4. Effectiveness of episodic memory module across tasks.
Each row shows the final accuracy in term of percentages with
a different maximum limit for the number of passes the episodic
memory module can take. Note that for the 0-pass DMN, the
network essential reduces to the output of the attention module.

hard examples with mixed positive/negative vocabulary.

4.5. Qualitative Analysis of Episodic Memory Module

Apart from a quantitative analysis, we also show qualita-
tively what happens to the attention during multiple passes.
We present specific examples from the experiments to illus-
trate that the iterative nature of the episodic memory mod-
ule enables the model to focus on relevant parts of the input.
For instance, Table 5 shows an example of what the DMN
focuses on during each pass of a three-iteration scan on a
question from the bAbI dataset.

We also evaluate the episodic memory module for senti-
ment analysis. Given that the DMN performs well with
both one iteration and two iterations, we study test exam-
ples where the one-iteration DMN is incorrect and the two-
episode DMN is correct. Looking at the sentences in Fig. 4
and 5, we make the following observations:

1. The attention of the two-iteration DMN is generally
much more focused compared to that of the one-
iteration DMN. We believe this is due to the fact that
with fewer iterations over the input, the hidden states
of the input module encoder have to capture more of
the content of adjacent time steps. Hence, the atten-
tion mechanism cannot only focus on a few key time
steps. Instead, it needs to pass all necessary informa-
tion to the answer module from a single pass.

2. During the second iteration of the two-iteration DMN,
the attention becomes significantly more focused on
relevant key words and less attention is paid to strong
sentiment words that lose their sentiment in context.
This is exemplified by the sentence in Fig. 5 that in-
cludes the very positive word ”best.” In the first iter-
ation, the word ”best” dominates the attention scores
(darker color means larger score). However, once its
context, ”is best described”, is clear, its relevance is
diminished and ”lukewarm” becomes more important.

We conclude that the ability of the episodic memory mod-

Analysis	of	Attention	for	Sentiment

Ask Me Anything: Dynamic Memory Networks for Natural Language Processing

Question: Where was Mary before the Bedroom?
Answer: Cinema.

Facts Episode 1 Episode 2 Episode 3

Yesterday Julie traveled to the school.
Yesterday Marie went to the cinema.
This morning Julie traveled to the kitchen.
Bill went back to the cinema yesterday.
Mary went to the bedroom this morning.
Julie went back to the bedroom this afternoon.
[done reading]

Table 5. An example of what the DMN focuses on during each episode on a real query in the bAbI task. Darker colors mean that the
attention weight is higher.

Figure 4. Attention weights for sentiment examples that were
only labeled correctly by a DMN with two episodes. The y-axis
shows the episode number. This sentence demonstrates a case
where the ability to iterate allows the DMN to sharply focus on
relevant words.

ule to perform multiple passes over the data is beneficial. It
provides significant benefits on harder bAbI tasks, which
require reasoning over several pieces of information or
transitive reasoning. Increasing the number of passes also
slightly improves the performance on sentiment analysis,
though the difference is not as significant. We did not at-
tempt more iterations for sentiment analysis as the model
struggles with overfitting with three passes.

Figure 5. These sentence demonstrate cases where initially posi-
tive words lost their importance after the entire sentence context
became clear either through a contrastive conjunction (”but”) or a
modified action ”best described.”

5. Conclusion
The DMN model is a potentially general architecture for a
variety of NLP applications, including classification, ques-
tion answering and sequence modeling. A single architec-
ture is a first step towards a single joint model for multi-
ple NLP problems. The DMN is trained end-to-end with
one, albeit complex, objective function. Future work will
explore additional tasks, larger multi-task models and mul-
timodal inputs and questions.

• Sharper	attention	when	2	passes	are	allowed.	
• Examples	that	are	wrong	with	just	one	pass

Analysis	of	Attention	for	Sentiment

• Examples	where	full	sentence	context	from	first	pass	changes	
attention	to	words	more	relevant	for	final	prediction

Ask Me Anything: Dynamic Memory Networks for Natural Language Processing

Question: Where was Mary before the Bedroom?
Answer: Cinema.

Facts Episode 1 Episode 2 Episode 3

Yesterday Julie traveled to the school.
Yesterday Marie went to the cinema.
This morning Julie traveled to the kitchen.
Bill went back to the cinema yesterday.
Mary went to the bedroom this morning.
Julie went back to the bedroom this afternoon.
[done reading]

Table 5. An example of what the DMN focuses on during each episode on a real query in the bAbI task. Darker colors mean that the
attention weight is higher.

Figure 4. Attention weights for sentiment examples that were
only labeled correctly by a DMN with two episodes. The y-axis
shows the episode number. This sentence demonstrates a case
where the ability to iterate allows the DMN to sharply focus on
relevant words.

ule to perform multiple passes over the data is beneficial. It
provides significant benefits on harder bAbI tasks, which
require reasoning over several pieces of information or
transitive reasoning. Increasing the number of passes also
slightly improves the performance on sentiment analysis,
though the difference is not as significant. We did not at-
tempt more iterations for sentiment analysis as the model
struggles with overfitting with three passes.

Figure 5. These sentence demonstrate cases where initially posi-
tive words lost their importance after the entire sentence context
became clear either through a contrastive conjunction (”but”) or a
modified action ”best described.”

5. Conclusion
The DMN model is a potentially general architecture for a
variety of NLP applications, including classification, ques-
tion answering and sequence modeling. A single architec-
ture is a first step towards a single joint model for multi-
ple NLP problems. The DMN is trained end-to-end with
one, albeit complex, objective function. Future work will
explore additional tasks, larger multi-task models and mul-
timodal inputs and questions.

4.1 Question Answering

The Facebook bAbI dataset is a synthetic dataset meant to test a model’s ability to retrieve facts
and reason over them. Each task tests a different skill that a good question answering model ought
to have, such as coreference resolution, deduction, and induction. Training on the bAbI dataset

Task MemNN DMN Task MemNN DMN

1: Single Supporting Fact 100 100 11: Basic Coreference 100 99.9
2: Two Supporting Facts 100 98.2 12: Conjunction 100 100
3: Three Supporting facts 100 95.2 13: Compound Coreference 100 99.8
4: Two Argument Relations 100 100 14: Time Reasoning 99 100
5: Three Argument Relations 98 99.3 15: Basic Deduction 100 100
6: Yes/No Questions 100 100 16: Basic Induction 100 99.4
7: Counting 85 96.9 17: Positional Reasoning 65 59.6
8: Lists/Sets 91 96.5 18: Size Reasoning 95 95.3
9: Simple Negation 100 100 19: Path Finding 36 34.5
10: Indefinite Knowledge 98 97.5 20: Agent’s Motivations 100 100

Mean Accuracy (%) 93.3 93.6

Table 1: Test accuracies on the bAbI dataset. MemNN numbers taken from Weston et al. [18]. The
DMN passes (accuracy > 95%) 18 tasks, whereas the MemNN passes 16.

uses the following objective function: J = ↵ECE(Gates) + �ECE(Answers), where ECE is the
standard cross-entropy cost and ↵ and � are hyperparameters. In practice, we begin training with ↵

set to 1 and � set to 0, and then later switch � to 1 while keeping ↵ at 1. We subsample the facts
from the input module by end-of-sentence tokens. The gate supervision aims to select one sentence
per pass; thus, we also experimented with modifying Eq. 6 to a simple softmax instead of a GRU.
Here, we compute the final episode vector via: e

i
=

PT
t=1

softmax(g

i
t)ct, where softmax(g

i
t) =

exp(gi
t)PT

j=1 exp(gi
j)

, and g

i
t here is the value of the gate before the sigmoid. This setting achieves better

results, likely because the softmax is better suited to picking one sentence at a time.

We list results in table 1. The DMN does worse than the MemNN on tasks 2 and 3, both tasks with
long input sequences. We suspect this is due to the recurrent input sequence model having trouble
modeling very long inputs. The MemNN does not suffer from this problem as it views each sentence
seperately. The power of the episodic memory module is evident in tasks 7 and 8, where the DMN
significantly outperforms the MemNN. Both tasks require the model to iteratively retrieve facts and
store them in a representation that slowly incorporates more of the relevant information of the input
sequence. Both models do poorly on tasks 17 and 19, though the MemNN does better. We suspect
this is due to the MemNN using n-gram features as well as explicit sequence position features.

4.2 Sequence Tagging: Part of Speech Tagging

Part-of-speech tagging is traditionally modeled as a sequence tagging problem: every word in a
sentence is to be classified into its part-of-speech class (see Fig. 1). We evaluate on the standard
Wall Street Journal dataset included in Penn-III [26]. We use the standard splits of sections 0-18
for training, 19-21 for development and 22-24 for test sets [27]. Since this is a word level tagging
task, DMN memories are produced at the word -rather than sentence- level. We compare the DMN

Model SVMTool Sogaard Suzuki et al. Spoustova et al. SCNN DMN

Acc (%) 97.15 97.27 97.40 97.44 97.50 97.56

Table 2: Test accuracies on WSJ-PTB

with the results in [27]. The DMN achieves state-of-the-art accuracy with a single model, reaching
a development set accuracy of 97.5. Ensembling the top 4 development models, the DMN gets to
97.58 dev and 97.56 test accuracies, achieving a new state-of-the-art (Table 2).

7

Experiments:	POS	Tagging

• PTB	WSJ,	standard	splits
• Episodic	memory	does	not	require	multiple	passes,	single	pass	enough

Modularization	Allows	for	Different	Inputs

Dynamic Memory Networks for Visual and Textual Question Answering

Caiming Xiong*, Stephen Merity*, Richard Socher {CMXIONG,SMERITY,RICHARD}METAMIND.IO

MetaMind, Palo Alto, CA USA

Abstract
Neural network architectures with memory and
attention mechanisms exhibit certain reason-
ing capabilities required for question answering.
One such architecture, the dynamic memory net-
work (DMN), obtained high accuracy on a vari-
ety of language tasks. However, it was not shown
that the architecture achieves strong results for
question answering when supporting facts are not
marked during training or whether the question
answering capability could be applied to other
modalities such as images. We analyze the DMN
on the question answering task without support-
ing fact labels. Based on this analysis, we pro-
pose several improvements to the memory and
input modules. Together with these changes we
introduce a novel input module for images in
order to be able to answer questions about im-
ages. Our new DMN+ model improves the state
of the art on both the Visual Question Answering
(VQA) dataset and the bAbI-10k text question-
answering dataset.

1. Introduction
Neural network based methods have made tremendous
progress in image and text classification (Krizhevsky et al.,
2012; Socher et al., 2013b). However, only recently has
progress been made on more complex tasks that require
logical reasoning. This success is based in part on the
addition of memory and attention components to complex
neural networks. For instance, memory networks (Weston
et al., 2015b) are able to reason over several facts written in
natural language or (subject, relation, object) triplets. At-
tention mechanisms have been successful components in
both machine translation (Bahdanau et al., 2015; Luong
et al., 2015) and image captioning models (Xu et al., 2015).

The dynamic memory network (Kumar et al., 2015)

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

Episodic Memory
Answer

QuestionInput Module

Episodic Memory
Answer

QuestionInput Module

(a) Text Question-Answering (b) Visual Question-Answering

 John moved to the
garden.
 John got the apple there.
 John moved to the
kitchen.
 Sandra picked up the
milk there.
 John dropped the apple.
 John moved to the
office.

Where is
the
apple?

Kitchen

What kind
of tree is
in the
backgrou
nd?

Palm

Figure 1. Question Answering over text and images using a Dy-
namic Memory Network.

(DMN) is one example of a neural network model that has
both a memory component and an attention mechanism.
The DMN yields state of the art results on question an-
swering with supporting facts labeled during training, sen-
timent analysis, and part-of-speech tagging. Its main idea
is to use a question to selectively pay attention to textual
inputs. These inputs are then given to an episodic memory
module which collects the relevant inputs in order to give
an answer. The memory module has two important steps:
(1) computing attention scores to focus on particular facts
given a question and (2) updating the memory by reasoning
over the attended facts.

We analyze the DMN components, specifically the input
module and memory module, to improve accuracy over
question answering. We propose a new input module which
uses a two level encoder with a sentence reader and input
fusion layer to allow for information flow between sen-
tences. For the memory, we propose a modification to gated
recurrent units (GRU) (Chung et al., 2014). The gates in
the new GRU formulation are dependent on the attention
scores and global knowledge over the facts. Unlike be-
fore, the new DMN+ model does not require that support-
ing facts (i.e. the facts that are relevant for answering a
particular question) are labeled during training. The model
learns to pick the important facts from a larger set.

In addition, we introduce a new input module to represent
images. This module is compatible with the rest of the
DMN architecture and its output is fed into the memory
module. We show that the changes in the memory module

Input	Module	for	ImagesDynamic Memory Networks for Visual and Textual Question Answering

the hidden state to retain and how much should be updated
with the transformed input xi from the current timestep. As
ui is computed using only the current input and the hidden
state from previous timesteps, it lacks any knowledge from
the question or previous episode memory.

We propose replacing the update gates ui in the GRU with
the output of the attention gates gti . As the input to the up-
date gate can be more detailed, we speculate it allows bet-
ter informed update decisions. Additionally, the attention
based GRU can now take positional and ordering informa-
tion of facts into account, which the soft attention model
cannot do. To produce the contextual vector c

t used for
updating the episodic memory state m

t, we use the final
hidden state of the attention based GRU.

Episode Memory Updates

After each pass through the attention mechanism, we wish
to update the episode memory m

t�1 with the newly con-
structed contextual vector ct, producing m

t. In the DMN,
a GRU with the initial hidden state set to the question vec-
tor q is used for this purpose. The episodic memory for
pass t is computed by

m

t
= GRU(c

t
,m

t�1
) (4)

The work of Sukhbaatar et al. (2015) suggests that using
different weights for each pass through the episodic mem-
ory may be advantageous. When the model contains only
one set of weights for multiple episodic passes, it is re-
ferred to as a tied model. For untied experiments where
each pass through the episodic memory module has inde-
pendent weights, the GRU makes less sense for memory
updates. Following the memory update component used in
Sukhbaatar et al. (2015) and Peng et al. (2015) we experi-
ment with using a ReLU layer for memory update, calcu-
lating the new episode memory state by

m

t
= ReLU

�
W [m

t�1
; c

t
; q] + b

�
(5)

3. DMN Input Module for VQA
To apply the DMN to visual question answering, we intro-
duce a new input module for images. The module splits
an image into small local regions and considers each re-
gion equivalent to a sentence in the input module for text.
The input module for VQA is composed of three parts, il-
lustrated in Fig. 3: local region feature extraction, visual
feature embedding, and the input fusion layer introduced
in Sec. 2.2.

Local region feature extraction: To extract features
from the image, we use a convolutional neural network
(Krizhevsky et al., 2012; Szegedy et al., 2015) based upon
the VGG-19 model (Simonyan & Zisserman, 2014). We

512

14

14

W W W

GRU GRU GRU

GRU GRU GRU

CNN

Vi
su

al
 fe

at
ur

e
ex

tr
ac

tio
n

Fe
at

ur
e

em
be

dd
in

g
In

pu
t f

us
io

n
la

ye
r

Input Module

Figure 3. VQA input module to represent images for the DMN.

first rescale the input image to 448⇥ 448 and take the out-
put from the last pooling layer which has dimensionality
d = 512 ⇥ 14 ⇥ 14. The pooling layer divides the image
into a grid of 14⇥14, resulting in 196 local regional vectors
of d = 512.

Visual feature embedding: As the VQA task involves
both image features and text features, we add a linear layer
with tanh activation to project the d = 512 local regional
vectors to the textual feature space used by the question
vector q.

Input fusion layer: The local regional vectors extracted
from above do not yet have global information available
to them. Without global information, their representational
power is quite limited, with simple issues like object scal-
ing or locational variance causing accuracy problems.

To solve this, we add an input fusion layer similar to that
of the textual input module described in Sec. 2.2. First,
to produce the input facts F , we traverse the image in a
snake like fashion, as seen in Figure 3. We then apply a
bi-directional GRU over these input facts F to produce the
globally aware input facts

 !
F . The bi-directional GRU al-

lows for information propagation from neighboring image
patches. As the bi-directional GRU is one dimensional and
the original image 2D, some spatial information may be
difficult to capture.

4. Related Work
The DMN is related to two major lines of recent work:
memory and attention mechanisms. We work on both vi-
sual and textual question answering which have, until now,
been developed in separate communities.

Neural Memory Models The earliest recent work with a
memory component that is applied to language processing
is that of memory networks (Weston et al., 2015b) which
adds a memory component for question answering over

Accuracy:	Visual	Question	Answering	
Dynamic Memory Networks for Visual and Textual Question Answering

Task DMN+ E2E NR
2: 2 supporting facts 0.3 0.3 -
3: 3 supporting facts 1.1 2.1 -
5: 3 argument relations 0.5 0.8 -
6: yes/no questions 0.0 0.1 -
7: counting 2.4 2.0 -
8: lists/sets 0.0 0.9 -
9: simple negation 0.0 0.3 -
11: basic coreference 0.0 0.1 -
14: time reasoning 0.2 0.1 -
16: basic induction 45.3 51.8 -
17: positional reasoning 4.2 18.6 0.9
18: size reasoning 2.1 5.3 -
19: path finding 0.0 2.3 1.6
Mean error (%) 2.8 4.2 -
Failed tasks (err >5%) 1 3 -

Table 2. Test error rates of various model architectures on tasks
from the the bAbI English 10k dataset. E2E = End-To-End Mem-
ory Network results from Sukhbaatar et al. (2015). NR = Neu-
ral Reasoner with original auxiliary task from Peng et al. (2015).
DMN+ and E2E achieve an error of 0 on bAbI question sets
(1,4,10,12,13,15,20).

state of the art question answering architectures: the end to
end memory network (E2E) (Sukhbaatar et al., 2015) and
the neural reasoner framework (NR) (Peng et al., 2015).
Neither approach use supporting facts for training.

The end-to-end memory network is a form of memory net-
work (Weston et al., 2015b) tested on both textual ques-
tion answering and language modeling. The model features
both explicit memory and a recurrent attention mechanism.
We select the model from the paper that achieves the low-
est mean error over the bAbI-10k dataset. This model uti-
lizes positional encoding for input, RNN-style tied weights
for the episode module, and a ReLU non-linearity for the
memory update component.

The neural reasoner framework is an end-to-end trainable
model which features a deep architecture for logical rea-
soning and an interaction-pooling mechanism for allowing
interaction over multiple facts. While the neural reasoner
framework was only tested on QA17 and QA19, these were
two of the most challenging question types at the time.

In Table 2 we compare the accuracy of these question an-
swering architectures, both as mean error and error on in-
dividual tasks. The DMN+ model reduces mean error by
1.4% compared to the the end-to-end memory network,
achieving a new state of the art for the bAbI-10k dataset.

One notable deficiency in our model is that of QA16: Ba-
sic Induction. In Sukhbaatar et al. (2015), an untied model
using only summation for memory updates was able to
achieve a near perfect error rate of 0.4. When the memory

test-dev test-std
Method All Y/N Other Num All
VQA
Image 28.1 64.0 3.8 0.4 -
Question 48.1 75.7 27.1 36.7 -
Q+I 52.6 75.6 37.4 33.7 -
LSTM Q+I 53.7 78.9 36.4 35.2 54.1
ACK 55.7 79.2 40.1 36.1 56.0
iBOWIMG 55.7 76.5 42.6 35.0 55.9
DPPnet 57.2 80.7 41.7 37.2 57.4
D-NMN 57.9 80.5 43.1 37.4 58.0
SAN 58.7 79.3 46.1 36.6 58.9
DMN+ 60.3 80.5 48.3 36.8 60.4

Table 3. Performance of various architectures and approaches on
VQA test-dev and test-standard data. VQA numbers are from
Antol et al. (2015); ACK Wu et al. (2015);iBOWIMG -Zhou
et al. (2015);DPPnet - Noh et al. (2015); D-NMN - Andreas et al.
(2016); SAN -Yang et al. (2015)

update was replaced with a linear layer with ReLU activa-
tion, the end-to-end memory network’s overall mean error
decreased but the error for QA16 rose sharply. Our model
experiences the same difficulties, suggesting that the more
complex memory update component may prevent conver-
gence on certain simpler tasks.

The neural reasoner model outperforms both the DMN and
end-to-end memory network on QA17: Positional Reason-
ing. This is likely as the positional reasoning task only
involves minimal supervision - two sentences for input,
yes/no answers for supervision, and only 5,812 unique ex-
amples after removing duplicates from the initial 10,000
training examples. Peng et al. (2015) add an auxiliary task
of reconstructing both the original sentences and question
from their representations. This auxiliary task likely im-
proves performance by preventing overfitting.

6.3. Comparison to state of the art using VQA

For the VQA dataset, each question is answered by mul-
tiple people and the answers may not be the same, the
generated answers are evaluated using human consensus.
For each predicted answer ai for the ith question with
target answer set T i, the accuracy of VQA: AccV QA =

1
N

PN
i=1 min(

P
t2Ti 1(ai==t)

3 , 1) where 1(·) is the indica-
tor function. Simply put, the answer ai is only 100% accu-
rate if at least 3 people provide that exact answer.

Training Details We use the Adam optimizer (Kingma &
Ba, 2014) with a learning rate of 0.003 and batch size of
100. Training runs for up to 256 epochs with early stop-
ping if the validation loss has not improved in the last 10
epochs. For weight initialization, we sampled from a ran-
dom uniform distribution with range [�0.08, 0.08]. Both

VQA	test-dev and	
test-standard:
• Antol et	al.	(2015)
• ACK	Wu	et	al.	(2015);
• iBOWIMG - Zhou	et	al.	

(2015);
• DPPnet - Noh	et	al.	

(2015);	D-NMN	- Andreas	
et	al.	(2016);	

• SAN	- Yang	et	al.	(2015)	

Attention	Visualization
Dynamic Memory Networks for Visual and Textual Question Answering

Which man is dressed more
 flamboyantly ?

Answer: right

What time of day was this
picture taken ?

Answer: night

What is the boy holding ? Answer: surfboard

Who is on both photos ? Answer: girl

What is the main color on
the bus ?

Answer: blue

How many pink flags
are there ?

Answer: 2

What is this sculpture
made out of ?

Answer: metal

What is the pattern on the
cat ' s fur on its tail ?

Answer: stripes

What type of trees are in
the background ?

Answer: pine

Did the player hit
the ball ?

Answer: yes

What color are
the bananas ?

Answer: green

Is this in the wild ? Answer: no

Figure 4. Examples of qualitative results of attention for VQA. Each image (left) is shown with the attention that the episodic memory
module places on each region (right). Answers are given by the DMN+.

Kulkarni, G., Premraj, V., Dhar, S., Li, S., Choi, Y., Berg,
A. C., and Berg, T. L. Baby talk: Understanding and
generating image descriptions. In CVPR, 2011.

Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury,
J., Gulrajani, I., and Socher, R. Ask Me Anything: Dy-
namic Memory Networks for Natural Language Process-
ing. arXiv preprint arXiv:1506.07285, 2015.

Li, J., Luong, M. T., and Jurafsky, D. A Hierarchical Neu-
ral Autoencoder for Paragraphs and Documents. arXiv
preprint arXiv:1506.01057, 2015.

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. Microsoft
COCO: Common Objects in Context. In ECCV 2014,
2014.

Luong, M. T., Pham, H., and Manning, C. D. Effective ap-
proaches to attention-based neural machine translation.
In EMNLP, 2015.

Ma, L., Lu, Z., and Li, H. Learning to Answer Ques-
tions From Image Using Convolutional Neural Network.
arXiv preprint arXiv:1506.00333, 2015.

Malinowski, M. and Fritz, M. A Multi-World Approach to
Question Answering about Real-World Scenes based on
Uncertain Input. In NIPS, 2014.

Malinowski, M., Rohrbach, M., and Fritz, M. Ask your
neurons: A neural-based approach to answering ques-
tions about images. In ICCV, 2015.

Noh, H., Seo, P. H., and Han, B. Image question answer-
ing using convolutional neural network with dynamic
parameter prediction. arXiv preprint arXiv:1511.05756,
2015.

Peng, B., Lu, Z., Li, H., and Wong, K. To-
wards neural network-based reasoning. arXiv preprint
arXiv:1508.05508, 2015.

Attention	Visualization
Dynamic Memory Networks for Visual and Textual Question Answering

Which man is dressed more
 flamboyantly ?

Answer: right

What time of day was this
picture taken ?

Answer: night

What is the boy holding ? Answer: surfboard

Who is on both photos ? Answer: girl

What is the main color on
the bus ?

Answer: blue

How many pink flags
are there ?

Answer: 2

What is this sculpture
made out of ?

Answer: metal

What is the pattern on the
cat ' s fur on its tail ?

Answer: stripes

What type of trees are in
the background ?

Answer: pine

Did the player hit
the ball ?

Answer: yes

What color are
the bananas ?

Answer: green

Is this in the wild ? Answer: no

Figure 4. Examples of qualitative results of attention for VQA. Each image (left) is shown with the attention that the episodic memory
module places on each region (right). Answers are given by the DMN+.

Kulkarni, G., Premraj, V., Dhar, S., Li, S., Choi, Y., Berg,
A. C., and Berg, T. L. Baby talk: Understanding and
generating image descriptions. In CVPR, 2011.

Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury,
J., Gulrajani, I., and Socher, R. Ask Me Anything: Dy-
namic Memory Networks for Natural Language Process-
ing. arXiv preprint arXiv:1506.07285, 2015.

Li, J., Luong, M. T., and Jurafsky, D. A Hierarchical Neu-
ral Autoencoder for Paragraphs and Documents. arXiv
preprint arXiv:1506.01057, 2015.

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. Microsoft
COCO: Common Objects in Context. In ECCV 2014,
2014.

Luong, M. T., Pham, H., and Manning, C. D. Effective ap-
proaches to attention-based neural machine translation.
In EMNLP, 2015.

Ma, L., Lu, Z., and Li, H. Learning to Answer Ques-
tions From Image Using Convolutional Neural Network.
arXiv preprint arXiv:1506.00333, 2015.

Malinowski, M. and Fritz, M. A Multi-World Approach to
Question Answering about Real-World Scenes based on
Uncertain Input. In NIPS, 2014.

Malinowski, M., Rohrbach, M., and Fritz, M. Ask your
neurons: A neural-based approach to answering ques-
tions about images. In ICCV, 2015.

Noh, H., Seo, P. H., and Han, B. Image question answer-
ing using convolutional neural network with dynamic
parameter prediction. arXiv preprint arXiv:1511.05756,
2015.

Peng, B., Lu, Z., Li, H., and Wong, K. To-
wards neural network-based reasoning. arXiv preprint
arXiv:1508.05508, 2015.

Dynamic Memory Networks for Visual and Textual Question Answering

Which man is dressed more
 flamboyantly ?

Answer: right

What time of day was this
picture taken ?

Answer: night

What is the boy holding ? Answer: surfboard

Who is on both photos ? Answer: girl

What is the main color on
the bus ?

Answer: blue

How many pink flags
are there ?

Answer: 2

What is this sculpture
made out of ?

Answer: metal

What is the pattern on the
cat ' s fur on its tail ?

Answer: stripes

What type of trees are in
the background ?

Answer: pine

Did the player hit
the ball ?

Answer: yes

What color are
the bananas ?

Answer: green

Is this in the wild ? Answer: no

Figure 4. Examples of qualitative results of attention for VQA. Each image (left) is shown with the attention that the episodic memory
module places on each region (right). Answers are given by the DMN+.

Kulkarni, G., Premraj, V., Dhar, S., Li, S., Choi, Y., Berg,
A. C., and Berg, T. L. Baby talk: Understanding and
generating image descriptions. In CVPR, 2011.

Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury,
J., Gulrajani, I., and Socher, R. Ask Me Anything: Dy-
namic Memory Networks for Natural Language Process-
ing. arXiv preprint arXiv:1506.07285, 2015.

Li, J., Luong, M. T., and Jurafsky, D. A Hierarchical Neu-
ral Autoencoder for Paragraphs and Documents. arXiv
preprint arXiv:1506.01057, 2015.

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. Microsoft
COCO: Common Objects in Context. In ECCV 2014,
2014.

Luong, M. T., Pham, H., and Manning, C. D. Effective ap-
proaches to attention-based neural machine translation.
In EMNLP, 2015.

Ma, L., Lu, Z., and Li, H. Learning to Answer Ques-
tions From Image Using Convolutional Neural Network.
arXiv preprint arXiv:1506.00333, 2015.

Malinowski, M. and Fritz, M. A Multi-World Approach to
Question Answering about Real-World Scenes based on
Uncertain Input. In NIPS, 2014.

Malinowski, M., Rohrbach, M., and Fritz, M. Ask your
neurons: A neural-based approach to answering ques-
tions about images. In ICCV, 2015.

Noh, H., Seo, P. H., and Han, B. Image question answer-
ing using convolutional neural network with dynamic
parameter prediction. arXiv preprint arXiv:1511.05756,
2015.

Peng, B., Lu, Z., Li, H., and Wong, K. To-
wards neural network-based reasoning. arXiv preprint
arXiv:1508.05508, 2015.

Attention	Visualization

Dynamic Memory Networks for Visual and Textual Question Answering

Which man is dressed more
 flamboyantly ?

Answer: right

What time of day was this
picture taken ?

Answer: night

What is the boy holding ? Answer: surfboard

Who is on both photos ? Answer: girl

What is the main color on
the bus ?

Answer: blue

How many pink flags
are there ?

Answer: 2

What is this sculpture
made out of ?

Answer: metal

What is the pattern on the
cat ' s fur on its tail ?

Answer: stripes

What type of trees are in
the background ?

Answer: pine

Did the player hit
the ball ?

Answer: yes

What color are
the bananas ?

Answer: green

Is this in the wild ? Answer: no

Figure 4. Examples of qualitative results of attention for VQA. Each image (left) is shown with the attention that the episodic memory
module places on each region (right). Answers are given by the DMN+.

Kulkarni, G., Premraj, V., Dhar, S., Li, S., Choi, Y., Berg,
A. C., and Berg, T. L. Baby talk: Understanding and
generating image descriptions. In CVPR, 2011.

Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury,
J., Gulrajani, I., and Socher, R. Ask Me Anything: Dy-
namic Memory Networks for Natural Language Process-
ing. arXiv preprint arXiv:1506.07285, 2015.

Li, J., Luong, M. T., and Jurafsky, D. A Hierarchical Neu-
ral Autoencoder for Paragraphs and Documents. arXiv
preprint arXiv:1506.01057, 2015.

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. Microsoft
COCO: Common Objects in Context. In ECCV 2014,
2014.

Luong, M. T., Pham, H., and Manning, C. D. Effective ap-
proaches to attention-based neural machine translation.
In EMNLP, 2015.

Ma, L., Lu, Z., and Li, H. Learning to Answer Ques-
tions From Image Using Convolutional Neural Network.
arXiv preprint arXiv:1506.00333, 2015.

Malinowski, M. and Fritz, M. A Multi-World Approach to
Question Answering about Real-World Scenes based on
Uncertain Input. In NIPS, 2014.

Malinowski, M., Rohrbach, M., and Fritz, M. Ask your
neurons: A neural-based approach to answering ques-
tions about images. In ICCV, 2015.

Noh, H., Seo, P. H., and Han, B. Image question answer-
ing using convolutional neural network with dynamic
parameter prediction. arXiv preprint arXiv:1511.05756,
2015.

Peng, B., Lu, Z., Li, H., and Wong, K. To-
wards neural network-based reasoning. arXiv preprint
arXiv:1508.05508, 2015.

Live	Demo

Summary
• Word	vectors	and	RNNs	are	building	blocks

• Most	NLP	tasks	can	be	reduced	to	QA

• DMN	accurately	solves	variety	of	QA	tasks

