
Beyond the Hazard Ratio: Generating Expected
Durations from the Cox Proportional Hazards Model

Jonathan Kropko∗ Jeffrey J. Harden†

August 6, 2015

Abstract

The Cox proportional hazards model is commonly used in duration analyses. However, be-
cause it is estimated using only the observed durations’ rank ordering, typical quantities of
interest (QI) come from the hazard function, such as hazard ratios or percentage changes in
the hazard rate. These QI are easy to misinterpret, substantively vague, and difficult for many
audiences of social science research to understand. We propose the COX ED method, which es-
timates expected durations from the Cox model by fitting a generalized additive model (GAM)
of the observed durations on the ranks of the linear predictor values. This allows researchers to
calculate expected durations and marginal changes in duration for a specified change in a co-
variate. These QI closely match researchers’ theoretical interests and are easily understood by
most readers. We validate COX ED through a simulation study, then employ it in re-analyses
of published articles from three subfields of political science.
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1 Introduction
The Cox proportional hazards model is a popular method of duration analysis that has been

employed in every empirical subfield of political science. For example, the Cox model has been

used to study the time required for coalition government formation in multiparty democracies

(Diermeier and van Roozendaal 1998; Martin and Vanberg 2003), delay in the U.S. Senate’s con-

firmation of federal judges (Binder and Maltzman 2002; Shipan and Shannon 2003), challenger

entry into U.S. House races (Box-Steffensmeier 1996), position-taking on legislation in Congress

(Box-Steffensmeier, Arnold, and Zorn 1997), the duration of militarized conflicts (Krustev 2006;

Meernik and Brown 2007), peace after wars (Fortna 2004; Mattes and Savun 2010), and many

other political processes. However, in spite of its well-earned popularity, the standard method of

reporting results from the Cox model is easy to misinterpret, substantively vague, and difficult for

many audiences of social science research to understand. In this paper we detail these problems

and provide a solution.

Duration models (also called survival models), are built around the concept of hazard, which

represents the risk that an event will occur (e.g., “failure”) at a particular point in time given that

it has not occurred (or failed) up to that point. There are two widely-used, general classes of

duration models that make different statements about hazard. One class, the class of parametric

duration models, begins with an assumption about the general shape of the baseline hazard for

every observation over time. For instance, the exponential model makes the assumption that the

baseline hazard is constant, the Weibull model assumes it increases or decreases monotonically,

and the log-normal model assumes it is either monotonic or increases towards a single mode and

decreases thereafter (Box-Steffensmeier and Jones 2004).

The second class, the class of semi-parametric duration models, includes the Cox proportional

hazards model (Cox 1972, 1975). The Cox model does not make an assumption about the shape

of the baseline hazard, which gives it considerable flexibility. For this reason, the Cox model has

become a preferred option for researchers in several fields of study. To avoid an assumption about

the baseline hazard, the Cox model disregards the magnitudes of the event times and instead only
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considers their relative ranks, or the ordering of the cases based on their observed durations. The

use of ranks alone allows the Cox model to maximize a partial likelihood function to estimate

coefficients without having to include the baseline hazard function in the computation. In effect,

the problem of characterizing the baseline hazard function is circumvented, not solved. As a result,

estimates of expected duration or the marginal change in expected duration with respect to a change

in a covariate are not readily available from the Cox model.

Instead, researchers typically make substantive interpretations of Cox model results via relative

changes in the hazard function. For example, the coefficient estimates can be used to construct

quantities of interest (QI) called hazard ratios that report the average multiplicative change in the

ratio of each observation’s hazard—denoted hi(t), where i is an observation and t is time—to the

baseline hazard, h0(t), as a result of a one-unit increase in a covariate.1 Applied researchers usually

report hazard ratios with an emphasis on whether they are greater or less than one to describe the

direction of an effect, then look to the p-value to test the null hypothesis that the ratio is equal to

one (i.e., no effect).

QI from the hazard rate are mathematically correct, so we do not claim that researchers who

employ them are necessarily making incorrect inferences. However, we contend that understand-

ing the substantive implications of Cox model results could be greatly improved by shifting to QI

based on expected durations, or the expected length of time until event occurrence, according to

the estimated model. Applied research in political science appears to support this contention; be-

low we show evidence from over 60 published articles employing the Cox model that researchers’

hypotheses are more often focused on the time to event occurrence, not on the risk of event occur-

rence.

Furthermore, compared to expected durations, hazard rate QI present several complications

with respect to substantive interpretation, which make communication of results to social scientists

and (especially) general audiences difficult. Hazard ratios exist on the same scale as the probability

1These quantities are often referred to as “hazard ratios” when they actually represent the multiplicative change
in this ratio. In that way, hazard ratios are similar to odds ratios from a logistic regression. Henceforth we follow
previous work in referring to them as hazard ratios.
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density function of failure over time for each observation, and therefore describe changes in the

height of densities, not probabilities. Yet it is easy to mistakenly conceptualize them as changes

in probability. Additionally, because QI based on the hazard function have no meaningful scale,

questions regarding the magnitude of an effect are difficult to answer. Finally, even if used cor-

rectly, hazard ratios still require technical knowledge to understand, and therefore do not work well

in presenting research to general audiences such as students, journalists, and policymakers.2

Our objective in this research is to derive a method for computing QI from the Cox model that

are more intuitive, easier to interpret in terms of both the direction and magnitude of an effect,

and straightforward for a general audience to comprehend. To that end, below we develop and

validate a method for computing expected durations and marginal changes in expected duration,

with estimates of uncertainty, from the Cox model. We call this method Cox Proportional Hazards

with Expected Durations, or COX ED. This method is not a new estimator of the parameters of

the Cox model (its first step is estimation of the Cox model just as researchers have always done).

Rather, COX ED is a new approach for drawing substantively-meaningful inferences from Cox

model estimates.

We motivate the need for the COX ED method in the next two sections. We use data collected

from the text of articles in top journals to demonstrate that political scientists tend to frame their

hypotheses in terms of duration, but then switch to discussing the risk of event occurrence after

Cox model estimation. Then in section 3 we discuss several other shortcomings of QI based

on the hazard rate. We discuss why past solutions to these problems are not ideal in section

4, then describe implementation of COX ED in section 5. In section 6 we evaluate COX ED

in a simulation study and demonstrate its superior performance compared to parametric models

(from which expected durations are readily available). We then apply COX ED in section 7 to

replicate and extend four of the published studies listed above (Box-Steffensmeier 1996; Binder

and Maltzman 2002; Martin and Vanberg 2003; Mattes and Savun 2010). We provide answers to

substantively important questions that the Cox model cannot answer with hazard ratios alone:

2As King, Tomz, and Wittenberg (2000) point out, statistical models must “convey numerically precise estimates
of the quantities of greatest substantive interest. . . and require little specialized knowledge to understand” (347).
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• How many more days will it take for a government to form if the bargaining parties are

ideologically distant?

• How much longer will the Senate delay the confirmation of a judge if government is divided?

• By how many weeks can an incumbent delay a quality challenger’s entry into a race if she

raises more campaign funds?

• How much longer will peace last after a civil war as a result of an uncertainty-reducing

provision in the peace agreement?

Finally, in section 8 we discuss practical issues with implementing COX ED in applied work and

conclude.

2 How Do Researchers Use the Cox Model?
Before describing the COX ED method in detail, we establish the need for a method of gener-

ating expected durations from the Cox model.3 We accomplish this with a systematic assessment

of how researchers employ the Cox model in substantive work. Specifically, we conducted a meta

analysis of journal articles that report one or more Cox models appearing between 1990 and 2015

in four leading political science journals: American Political Science Review, American Journal

of Political Science, Journal of Politics, and International Organization. We addressed two main

questions in this analysis: (1) What kind of language do researchers who employ the Cox model

tend to use in framing their hypotheses? (2) What method(s) do these researchers use to commu-

nicate results of the Cox model?

2.1 Framing Hypotheses

We began by identifying all articles in our chosen time period that reported the estimation of

the Cox model in the main text.4 This produced 63 articles across the four journals ranging in

publication date from 1996–2015. Next, we collected the text of the articles’ hypotheses. We then

identified words in this text as part of either a “risk frame,” a “duration frame,” or not related to

framing. We dropped most of the words because they fell into the third category (i.e., they were
3We assume reader familiarity with duration models. See the appendix for a brief summary of these models or

Box-Steffensmeier and Jones (2004) for a more comprehensive treatment.
4See the appendix for full details of this analysis.
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not relevant to the manner in which the authors’ framed their hypotheses). For the words that did

fit a category, we coded any word that related to probability, likelihood, or chance in the risk frame

and any word relating to time in the duration frame category (see the appendix for the complete

list of words).

For example, consider Maltzman and Shipan’s (2008) analysis of the stability of legislation

in Congress, which contains a representative example of a hypothesis framed in terms of risk.

The authors posit that “Laws enacted during periods of divided government are more likely to be

amended than those enacted under unified control” (256, emphasis added). The key term in this

hypothesis is likely, signaling that the authors are interested in how covariates (such as divided

government) influence the likelihood, or risk, that the phenomenon of interest (whether a law is

changed) occurs. In contrast, Lo, Hashimoto, and Reiter (2008) report their expectations using the

duration frame. They hypothesize that “Peace following interstate war lasts longer when the war

ends with one state suffering foreign-imposed regime change” (720, emphasis added). Here the

authors frame their expectation in terms of how long the phenomenon of interest (the duration of

peace) will last as a function of a covariate (foreign-imposed regime change).

In all, we coded eight unique words as risk frame words and 47 unique words as duration frame

words. The counts of total words strongly favored the duration frame (215 words) over the risk

frame (119). We also counted the unique and total words from each frame within each article, then

coded the article as either predominantly using a risk frame, duration frame, or equal use of both

frames. Using the unique word count, we coded 33 articles as a duration frame, 16 with a risk

frame, and 14 with equal use of both frames. With the total word count these numbers were 33,

20, and 10, respectively.

Thus, the first part of our meta analysis revealed that political scientists employing the Cox

model over the last 25 years tend to discuss their theoretical expectations in the language of time

until event occurrence. Language related to the risk of event occurrence also appears, but it is less

common than duration-based framing. Approximately 70% of the hypotheses in articles in our

sample contain more duration words or an equal amount of duration and risk words. In contrast,
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only 48% contain more risk words or an equal number from the two frames. It is clear that re-

searchers’ substantive interests usually center on the duration of political phenomena, not just their

likelihood of occurring.

2.2 Interpretation Methods

Our second objective was to code which method(s) each article in our sample used to interpret

the results of the estimated Cox model. This was accomplished by reading the results section and

identifying each unique method employed. We created a total of four categories based on what we

found in the text, which we list below with their frequencies (see the appendix for specific coding

details).5

• Hazard ratios (24 articles).

• Changes to the hazard rate (33 articles).

• Empirical estimates of the hazard and/or survivor functions (17 articles).

• Only sign and significance of the coefficient estimates (8 articles).

All of the articles in our sample that go beyond sign and significance in their interpretation of

the Cox model focus on the hazard rate, whether through hazard ratios, changes to the hazard rate,

or estimation and graphing of the baseline hazard function. The closest that any article comes to

interpreting results with respect to duration is the few (3 articles) that construct estimates of the

survivor function. However, even in those cases the focus is on the probability of survival, not

estimates of expected duration.6

To summarize, while researchers’ hypotheses are often framed with respect to time, no article

published in top political science journals in the last 25 years generates expected durations from

the Cox model. Researchers who employ the Cox model are typically forced to switch the manner

in which they discuss their research when moving from hypotheses to results. This motivates our

5The articles employed an average of 1.3 of these interpretation methods. 45 articles used one method, 17 articles
used two methods, and 1 article employed three different methods.

6Berliner and Erlich (2015) report the “half-life” of an event for a given configuration of covariates, which is
defined as the time point in which the expected probability of event occurrence reaches 0.50. This is potentially useful
for interpreting substantive effects, but is not exactly the same as estimating an expected duration.
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research, which provides a method for generating expected durations from the Cox model. The

COX ED approach described below allows researchers to maintain consistency between the lan-

guage they use to describe their theoretical framework and the language they use to communicate

their empirical findings.

3 The Hazards of Hazard Ratios
As our meta analysis of journal articles shows, QI from the hazard rate are the accepted stan-

dard method for interpreting the results of a Cox model, despite the fact that most researchers are

actually interested in the duration of political phenomena. Furthermore, even if researchers do not

wish to frame their hypotheses with respect to time, we contend that hazard rate QI are limited

in several other ways. First, we show that a single hazard ratio can correspond to many different

ratios of failure probability. Second, we make the case that a hazard ratio or change in the hazard

rate is a substantively vague quantity to which even experts may struggle to give precise meaning.

Finally, we argue that even if a researcher can adequately explain the substantive implications of a

hazard ratio, many important consumers of political science research may still have difficulty un-

derstanding it. In contrast, an expected duration is a straightforward, intuitive quantity that better

communicates substantive significance to a wide range of readers.

3.1 The Relationship Between Risk and Failure Probability

Box-Steffensmeier and Jones (2004, 15) describe the substantive meaning of a hazard rate

as “the risk a unit incurs of having a spell or duration end in some period, given that the spell

or duration has lasted up to or beyond some length of time.” The word risk conveys a positive

relationship between hazard and failure probability, but the concept of risk itself is vague. This

may lead researchers to mistakenly interpret results in probabilistic terms. If risk and probability

were always the same, it may not be as necessary to look for other quantities to compute from the

Cox model because probability is an intuitive concept that conveys precise substantive meaning

and is easy for many readers to understand. However, although the two concepts are directly

related, in general risk is not equal to failure probability.

7



In the appendix we show proof that a single hazard ratio almost never corresponds to a single

probability ratio. In fact, a given hazard ratio usually corresponds to many probability ratios, de-

pending on the duration under consideration and on the functional form of the baseline probability

CDF. Therefore, the information conveyed by the hazard ratio essentially never gives the change

in probability of event occurrence. If the baseline hazard function is known, the multiplicative

change in the conditional probability of instantaneous failure could be calculated for any duration.

However, for the Cox model there is no assumed parametric baseline hazard function, so we can-

not know how the hazard ratio relates to multiplicative changes in probability. Researchers who

employ the Cox model are limited to strictly reporting the effects of covariates on the risk—not

probability—of event occurrence.

3.2 Intuition and Communication of Results

Another potential problem with QI generated from the hazard rate is that they can be substan-

tively vague. Consider Shipan and Shannon’s (2003) analysis of the duration of U.S. Supreme

Court nominee confirmations. The authors report that, consistent with their expectations, when the

opposing party of the president controls the Senate, the hazard rate of confirmation drops by 47.8%

compared to when the president’s party controls the Senate (665). While the authors’ implemen-

tation and interpretation of the Cox model is methodologically sound, we contend that it is still

difficult to put into precise substantive terms what a 47.8% reduction of hazard actually means. Is

that estimate “large enough,” or would it need to be greater than 50% (or 60%, or 75%, etc. . . )

to be considered an “important” effect? Without a meaningful scale, that question is difficult to

answer. The result of this substantive vagueness is that researchers can often only responsibly

interpret the sign and significance of coefficient estimates and/or hazard rate changes.

Finally, even if a researcher is able to appropriately contextualize a hazard rate-based QI, the

audience for which that discussion will make sense is primarily limited to other academics or

those who have had graduate-level statistics training. This leaves out a wide range of potentially

important consumers of the research findings. Students, journalists, and even policymakers may

stand to benefit from the substantive conclusions that researchers make, but many lack the training

8



to comprehend statistical jargon and academic prose.

In contrast, an expected duration is a substantively intuitive concept that researchers can ex-

pand upon to add more nuance and detail. Shipan and Shannon (2003, 656) make the following

substantive argument about the confirmation process:

. . . delaying the confirmation of a nominee may have important policy implications.

Supporters of a nominee want to get him or her on the Court as soon as possible, so he

or she can start influencing arguments, deliberations, and case decisions. Opponents,

on the other hand, want to delay this process.

Expected durations would allow researchers to address this point directly. For instance, they could

use Supreme Court caseload data to estimate how many cases a nominee would miss due to a con-

firmation delay. That allows for more specificity and depth in assessing model results, and puts

researchers’ substantive expertise to work (see our second replication below for an example). In

addition, an expected duration is direct, intuitive, and requires virtually no specialized knowledge.

We replicated Shipan and Shannon’s (2003) analysis with our COX ED method described below.

Nearly anyone can understand the substantive implications of our results: all else being equal, dur-

ing divided government the confirmation of a nominee to the Supreme Court takes approximately

25 days longer than when the government is unified, give or take about 8 days.7 Expected dura-

tions focus interpretation of the statistical model on the reason why scholars and non-experts alike

care about the research: to understand the factors that affect the duration of important political

phenomena.

4 Are There Existing Solutions?
It is important to note that we are not the first to point out the difficulties that arise with the

interpretation and communication of Cox model results. Given the Cox model’s heavy use in

epidemiology and biostatistics, it is not surprising to find that researchers in those fields have also

written on this issue (e.g., Bender, Augustin, and Blettner 2005). Hernan (2010) explains that the
7Of course, scholars could still disagree over whether 25 days represents a notable effect. But at least in that case

the discussion would center on substantively meaningful quantities.
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hazard ratio cannot be used for causal inference in medical studies, primarily because the hazard

ratio may change over the lifespan of a patient (i.e., the proportional hazards assumption may be

violated). On the issue of generating expected durations, he recommends avoiding the Cox model

altogether and using a parametric model instead (14, see also Cox et al. [2007]).

Uno et al. (2014) also contend that hazard ratios are problematic because the proportional

hazards assumption may be violated and because they cannot be translated “into a more transparent

clinical benefit, such as the prolonged survival time” (2380). As an alternative, they provide several

“model-free” means of analyzing survival data. These alternatives all involve comparisons of the

survivor functions (estimated with Kaplan-Meier curves) of a treatment and control group. For

example, they suggest computing the ratio of the survivor functions at a given point in time or the

ratio of the median survival times in each group. These quantities are potentially useful in some

contexts, but are generally most applicable to data generated from the experimental trials common

in health sciences research.

Another possible solution that may be better suited for social science research is to use es-

timates of the baseline hazard or survivor function to generate expected durations (see Cox and

Oakes 1984; Kalbfleisch and Prentice 2002; Collett 2003). While computationally feasible, this

approach is not commonly employed in political science; as our meta analysis shows only a few

articles report estimates of these functions at all.8 Furthermore, this approach has, in our view,

several suboptimal properties. It assumes that the baseline hazard is a step function, meaning there

is a uniform probability of event occurrence between successive timepoints. It also considers the

event occurrence rates in the sample to be estimates of the rates in the population, but does not ac-

count for uncertainty due to sampling variability. As we discuss below, COX ED does not assume

uniform failure probability between observed failure times and does account for uncertainty due to

sampling variability.

8To our knowledge, only Katz and Sala (1996) do something similar, and they report failure probabilities after
estimating the baseline hazard, not expected durations.
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5 Cox Proportional Hazards with Expected Durations
The goal of COX ED is to generate expected durations for individual observations and marginal

changes in expected duration given a change in a covariate from the Cox model. Specifically,

our method can compute the expected duration for each observation used to fit the Cox model,

given the covariates, the expected duration for a “new” observation with an independent variable

profile set by the analyst, or the first difference, or change, in expected duration given two new

observations. Our software implementation of COX ED is a package called coxed in the R

statistical environment.9 The method proceeds according to five steps, which we detail below.

Step 1: Estimate a Cox model. The COX ED method uses coefficient estimates from the

Cox model. Thus, researchers should first estimate the model just as they always have, paying

close attention to measurement of variables, model specification choices, and other considerations.

Issues such as the method for handling tied durations, testing the proportional hazards assumption,

and model fit—while important on their own—should be resolved before implementing COX ED.

Step 2: Generate and rank the linear predictor. In this step the method computes expected

values of risk for each observation by matrix-multiplying the covariates, X , by the estimated coeffi-

cients from step 1, β , then exponentiating the result. This creates exp(Xβ ), or the linear predictor.

Then the observations are ranked from smallest to largest according to their values of the linear pre-

dictor. This ranking is interpreted as the expected order of failure; the larger the value of exp(Xβ ),

the sooner the model expects that observation to fail, relative to the other observations.

Step 3: Fit a GAM. The next step is to connect the model’s expected risk for each observation

(exp[Xβ ]) to duration time (the observed durations). A generalized additive model (GAM) fits

a model to data by using a series of locally-estimated polynomial splines (Beck and Jackman

1998). It is a flexible means of allowing for the possibility of nonlinear relationships between

variables. COX ED uses a GAM to model the observed durations as a function of the linear

predictor ranks generated in step 2. More specifically, the method utilizes a cubic regression spline

9Note that COX ED is different from the tools available in the popular Zelig and simPH packages in R (Imai,
King, and Lau 2012; Gandrud 2015). The QI that these packages compute include the hazard ratio, survivor function,
and hazard function. They do not compute expected durations from the Cox model.
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to draw a “smoothed” line summarizing the bivariate relationship between the observed durations

and the ranks.10 A GAM is appropriate because the relationship between the observed durations

and the ranks can be linear or nonlinear. It is similar to LOWESS methods (locally weighted

scatterplot smoothing). The critical difference is that GAMs can generate expected values for new

observations.11

Figure 1 shows an example of this step. The data and model come from Martin and Vanberg’s

(2003) research on the duration of coalition government bargaining, which is the first of our repli-

cation studies below. The graph gives the expected ranks of the observations on the x-axis—from

the smallest values of the linear predictor on the left side of the graph (last to event occurrence) to

the largest on the right (first to event occurrence)—against the observed durations on the y-axis.12

The solid line represents the GAM fit and the shading indicates its 95% confidence interval. Note

the clear downward (but nonlinear) relationship between the durations and the ranks. As an ob-

servation’s value of the linear predictor becomes relatively larger (i.e., larger relative risk of event

occurrence), its actual number of bargaining days decreases, but at a decreasing rate. This nonlin-

earity is captured by the GAM.

[Insert Figure 1 here]

Step 4: Generate expected durations and estimate marginal effects from the GAM fit.

Expected durations can be computed for observations in the data, similar to generating expected

values of the dependent variable from a linear regression model. To do this, COX ED uses the

GAM fit to compute the expected value of the duration given the observation’s rank. The solid line

in Figure 1 shows these values for the Martin and Vanberg (2003) model. As an example, consider

the observation highlighted in black (Netherlands, 1986). That observation’s rank is 162 (x-axis),
10Several other smoothers are available in the R package mgcv, although we found minimal differences between

them (for more details, see Wood 2006, 2011). The number of knots in the GAM is a tunable parameter in our R
package.

11COX ED only uses observations that are not censored in step 3. Unlike the Cox model, the GAM has no means
of accounting for censoring. Thus, using the observed durations of the censored observations could skew the fit of the
GAM because those observations’ durations are governed by the linear predictor and the limits of the data collection
enterprise.

12No observations are censored in this example, but see our simulations and other replications for examples with
censoring.
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which corresponds to an expected duration of about 44 days according to the GAM (y-axis). Note

also that the actual duration for that observation is 54 days (the black point). Thus, the GAM is

off by about 10 days. As we discuss in section 6, we utilize the differences between the GAM’s

expected values and the actual durations as a means of assessing the performance of COX ED.

In order to examine marginal changes in duration given a change in a covariate, it is necessary

to create two or more “new” observations corresponding to theoretically-interesting, hypothetical

covariate profiles. For example, we might set an indicator variable to 0 and 1 or a continuous

variable to a “low” and a “high” value.13 For the other variables in the model, COX ED employs

the “observed value” method of Hanmer and Kalkan (2013). Instead of setting those variables to

their means or modes, it allows them to vary naturally over the entire data, then averages over them

in the computations.14 For instance, to estimate the effect of an increase in a covariate X1 from 0

to 1 on the expected duration, we use the following steps:

(4a) Set X1 to 1 for the entire data (all N observations) and calculate the linear predictor for every

observation, then take the average value of those computations (the median is the default).

(4b) Repeat step (4a) while setting X1 equal to 0.

(4c) Take the values obtained in steps (4a) and (4b) and append them to the list of linear predictor

values from the original Cox model in which X1 is left as exogenous data. Then compute

new rankings of the linear predictor values from this list, which is length N +2.

(4d) Pass the list of rankings from step (4c) to the GAM from step 3 as new data to generate

expected values. Note that a new GAM is not estimated at this step. Rather, expected

durations are generated for each observation—including the two new ones created in steps

(4a) and (4b)—using the previously estimated GAM. This produces point estimates of the

expected durations for those two new observations.

13COX ED can also compute interactive effects by setting the constituent terms and the interaction term to desired
values. For instance, consider the interaction effect with two indicator variables, X1 and X2. The proper interaction
specification would include a parameter on each variable plus a parameter on the multiplicative term: β1X1 +β2X2 +
β3(X1×X2). To compute the expected duration when X1 = 1 and X2 = 1, the analyst can easily set X1 to 1, X2 to 1,
and X1×X2 to 1 in the cox.ed() function in our R package.

14This default can be changed at the discretion of the analyst.
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(4e) Compute the difference between the two estimates obtained in step (4d): the expected du-

ration for the data in which X1 is set to 1 and the expected duration for the data in which

X1 is set to 0. This quantity is a point estimate for the marginal effect, or first difference,

corresponding to the change in X1 from 0 to 1.

Step 5: Repeat the process many times. To produce estimates of uncertainty, COX ED repeats

steps 1–4 many times (1,000 is the default) via bootstrapping. The method generates bootstrap

samples of the data and re-estimates the Cox model coefficients on each bootstrap sample.15 At

each iteration, this produces a new vector of actual durations and a new ranking of linear predictor

values, which are then used to fit a new GAM. This results in a distribution of expected durations

for each independent variable profile (e.g., step 4d) and a distribution of the marginal effect (step

4e). These distributions can be used to produce standard errors and confidence intervals for the

estimates.16 Importantly, by bootstrapping the entire process, this step incorporates the uncertainty

from the Cox model estimation and the uncertainty from the GAM.

This process is mostly automated in our R package; analysts need only a coxph model object,

the name of the variable of interest, and the two values of that variable they wish to input. However,

the function also allows for several changes to default settings, including the formulation of the

GAM and the computation of confidence intervals. Additionally, COX ED can also be used with

models that include time-varying covariates (see our replication of Box-Steffensmeier [1996] in

the appendix).

6 Monte Carlo Simulations
Having described the COX ED procedure, we next turn to an assessment of its performance. We

evaluate COX ED based on its ability to return accurate expected durations and marginal changes

in duration compared to three popular parametric models using simulated data. Importantly, we

15Standard bootstrapping at the observation level or cluster-level bootstrapping (see Harden 2011) are both avail-
able.

16By default, the method computes the standard errors of each quantity as the standard deviation of its bootstrap
distribution. The halfwidth of the confidence interval is then computed by multiplying a tunable critical value based
on the normal distribution by the standard error. The default critical value is 1.96 (i.e., a 95% confidence interval). A
fully non-parametric confidence interval based on quantiles of the bootstrap distribution is also available.
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simulate the data so as not to privilege the parametric models. We use a “random spline” data

generating process (DGP), which generates baseline hazards by fitting cubic splines to randomly-

drawn points. This produces a variety of shapes, some of which are monotonic or unimodal,

but many of which are multimodal. Figure 2 displays four randomly generated baseline hazard

functions using this method. See the appendix for details on this process as well as simulations

with the assumed DGPs of the parametric models.

[Insert Figure 2 here]

We use these baseline hazard functions, along with three covariates and four true coefficients

generated from standard normal distributions, to create simulated durations and marginal changes

in durations that depend on data. We then run COX ED and the exponential, Weibull, and log-

normal survival models on the simulated data, and assess how accurately they return the expected

durations and marginal changes in duration.17 We compare competing models because it is difficult

to assess absolute performance in a simulation setting (Carsey and Harden 2013). We conduct

these comparisons with two performance criteria: (1) the root mean square error (RMSE) of each

method’s expected durations for each observation and (2) the RMSE of each estimator’s expected

change in duration for a one-unit change in a covariate. In both cases smaller values indicate less

error, and thus better performance. We run these simulations in R for 1,000 iterations each with

sample sizes of 50, 200, 500, and 1,000. Additionally, we vary the amount of right censoring in

the data: 5%, 10%, and 20% of the observations at each sample size.

Within each simulation iteration, we obtain N expected durations, but only one marginal change

in duration. Each iteration allows us to calculate an RMSE from the N expected durations, but

we can only calculate an RMSE for the marginal changes once all of the simulation iterations

are complete. Therefore we describe the distribution of 1,000 RMSE statistics for the expected

durations, but we can only report one RMSE for marginal changes.

17We use the survival package in R for model estimation here and in our replication analyses (Therneau 2013).
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In Table 1 we present results for the three parametric models and as ratios over the RMSE for

COX ED.18 Ratios that are greater than 1 favor COX ED because the RMSE for COX ED is less

than the RMSE for the competitor. The first two columns of results summarize the ratios of the

expected duration RMSEs: the average ratio and the proportion greater than 1. The third column

of results gives the ratios of the marginal effect RMSEs. All DGPs summarized in Table 1 include

10% right censoring. See the appendix for results with 5% and 20% right censoring.

[Insert Table 1 here]

For each competing model, for both evaluative metrics, and at all four sample sizes, the RMSE

is lower for COX ED. The proportion of iterations for which COX ED outperforms the competitor

in predicting duration increases with the sample size. This result stems from the fact that as the

sample size increases, the empirical shape of the baseline hazard more closely approximates its

asymptotic shape implied by the randomly generated baseline hazard. As a result, the parametric

models’ error increases because the baseline hazard is not drawn from their assumed distributions,

but COX ED’s performance is not affected because the Cox model makes no such assumption.

Likewise, COX ED recovers the true marginal effect with less error than do the parametric models.

Furthermore, this improvement increases as the sample size increases to the point that the para-

metric model’s marginal effect error ranges from about 1.70 times to nearly twice as large as the

COX ED error with 1,000 observations. Overall, COX ED decisively outperforms the parametric

models in accurately generating durations, and in computing the estimated effect of a change to

a covariate. Furthermore, the additional results in the appendix shows that this finding holds at

smaller and larger proportions of right censoring in the data.

As is mentioned above, we also ran a series of simulations comparing COX ED to the expo-

nential, Weibull, and log-normal survival models after simulating the baseline hazard from those

parametric models’ assumed distributions. These simulations are described in the appendix. As

expected, when the baseline hazard comes from a known distribution (an unlikely situation in ap-

18We consider that ratios of RMSE statistics to be more meaningful than the individual RMSEs since the absolute
magnitude of RMSE can be influenced by the simulation conditions.
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plied research), the corresponding parametric survival model’s performance relative to COX ED

improves. However, in several instances COX ED still performs nearly equal or better than the

parametric models by our RMSE criteria.

7 Applying COX ED to Political Science
Having shown evidence that COX ED performs better than other options for generating ex-

pected durations, we next turn to its utility for applied researchers. We re-analyze four published

papers that employ the Cox model to assess the extent to which COX ED can help political sci-

entists better understand the substantive implications of their results. These papers span three

subfields—comparative politics (Martin and Vanberg 2003), American politics (Box-Steffensmeier

1996; Binder and Maltzman 2002), and international relations (Mattes and Savun 2010). We repli-

cated the Cox model in each article, then employed our Cox ED procedure to assess the substantive

effects of key independent variables. Our goal with these replications is not to critique the authors’

modeling choices, but rather to demonstrate how COX ED can help applied researchers present

Cox model results with more meaningful QI. In doing so, we uncover novel substantive insights in

each example. We present the replications of Martin and Vanberg (2003) and Binder and Maltzman

(2002) here. To conserve space, we present the Box-Steffensmeier (1996) and Mattes and Savun

(2010) replications in the appendix.

7.1 Coalition Bargaining and Government Formation

Martin and Vanberg (2003) examine the determinants of negotiation time among political par-

ties forming a coalition government. In particular, they are interested in the effects of ideological

distance between the parties in the coalition as well as the size of the coalition. They use data on

government formation in 10 European countries from 1950–1990 to test two hypotheses: that ne-

gotiations conclude more quickly (1) when bargaining parties are ideologically close and (2) when

there are fewer parties engaged in bargaining (see Martin and Vanberg 2003, 325–326).

The dependent variable in Martin and Vanberg’s (2003) analysis is the number of days between

the beginning and end of the bargaining period. Martin and Vanberg model this variable as a

17



function of the Range of Government, which is a measure of the ideological distance between the

extreme members of the coalition, the Number of Government Parties (and its interaction with the

natural log of time), and several other variables. Their hypotheses predict negative coefficients on

the variables of interest, indicating that increases in the ideological distance between the parties

and in the number of parties correspond with a decrease in the risk of government formation, or a

longer negotiation time.

The authors demonstrate support for their hypotheses by computing changes in the hazard rate

based on changes to these independent variables. Regarding the estimated effect of Range of Gov-

ernment, they state the following (331): “an increase in the ideological range of the government

from zero (the case of a single-party government) to 1.24 (the average range for coalition gov-

ernments in our sample) decreases the odds of government formation on any given day in the

bargaining process by approximately 23 percent.” On the second hypothesis, they find that “for all

governments that formed after two weeks of bargaining, negotiations leading to three-party coali-

tions were on average over 50 percent less likely to end on any particular day than negotiations

leading to two-party coalitions” (Martin and Vanberg 2003, 331). Overall, they conclude that both

variables are important determinants of the time it takes governments to form.

Martin and Vanberg’s (2003) discussion of the substantive effects of their key variables meets

the discipline’s current standards. However, it also highlights our critiques of relying on the hazard

rate. For instance, it is difficult to assess what the estimated effects of Range of Government and

Number of Government Parties mean in substantive terms. How much longer will negotiations

take for a typical coalition government than for a single-party government? How long does each

additional party delay the process? Our COX ED method is able to answer these kinds of questions.

After replicating the model, we utilized the COX ED method to generate expected durations

and confidence intervals for different independent variable profiles. Recall from above that these

expected durations are generated from a GAM fit of the observed durations on the expected ranks

for each observation produced by the Cox model (Figure 1 displays the GAM fit for this example).

The authors expect that as the parties in the coalition become ideologically farther apart and/or
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more parties join the coalition, the risk of government formation decreases. Put differently, this

means that as Range of Government and/or Number of Government Parties increases, so too should

the expected number of bargaining days. Figure 3 graphs these relationships.

[Insert Figure 3 here]

Panel (a) of Figure 3 graphs the expected number of bargaining days for a comparison that

Martin and Vanberg (2003) consider in their analysis: a single-party government (Range of Gov-

ernment = 0) versus the average value for coalition governments (Range of Government = 1.24).

Recall that they report that this change results in an expected 23 percent decrease in the hazard

rate. Using COX ED and averaging over the other variables in the model, we estimate about 20

days until government formation for a single party government compared to 22 days for the typical

coalition government. This difference is of about 2 days is relatively small and not statistically

significant.

Figure 3, panel (b) shows the effect of Number of Government Parties with time set to 38 days

(its 75th percentile). There we graph the expected increase in bargaining days as a function of

three different changes to the number of parties. We estimate that a change from 2 to 3 parties

corresponds to an increase of 9 days, moving from 2 to 4 parties lengthens bargaining by 19 days,

and moving along the full observed range from 1 to 6 parties makes bargaining longer by almost 1.5

months (43 days). All of these differences are statistically significant at the 0.05 level. We can also

examine the impact of time on the effect of coalition size. Panel (c) presents the expected number

of bargaining days for 1–6 parties with time set to 1, 19, and 61 days (the 10th percentile, median,

and 90th percentile, respectively). The graph shows clear evidence of duration dependence. Adding

more parties exerts a substantively small and statistically nonsignificant effect on bargaining time

early on, but becomes strongly positive and statistically significant later in the process.

In sum, we find that the effect of Range of Government is relatively small compared to the

effect of Number of Government Parties, at least when a sufficient amount of time has elapsed.

The estimated difference of two days due to a change in Range of Government is not statistically

significant, and even the smallest change in Number of Government Parties in panel (b) produces an

19



estimated effect that is over four times as large. This example illustrates the utility of the COX ED

method in assessing Cox model results. While Martin and Vanberg’s (2003) analysis of changes

in the hazard rate does show that the effect of Number of Government Parties is larger than that of

Range of Government, our analysis adds much more detail about the substantive magnitude of this

difference. Moreover, by deriving results in terms of bargaining days, we frame the results in ways

that are intuitive and easily understood by a wide audience of readers.

7.2 The Confirmation of Federal Judges

Binder and Maltzman (2002) examine the determinants of the time to confirmation by the

Senate for all of the 413 nominees to U.S. Circuit Courts of Appeal between 1947 and 1998. They

focus on two types of variables that shape the political context for confirming judges: ideological

incentives and institutional opportunities. For example, they expect that the confirmation process

takes longer when the opposing party and the president are ideologically far apart and when the

nominee would become a critical vote on the court for which he or she is nominated. Institutions

also influence the confirmation process. Senators from nominees’ home states, for instance, are

given the opportunity to object to nominees through the “blue slip” procedure and if the opposing

party to the president controls the Senate the majority leader can cause delay in confirmation (see

Binder and Maltzman 2002, 191–192).

The dependent variable in this analysis is the number of days a nomination was pending on

the Senate floor. Binder and Maltzmann model this variable as a function of several covariates

capturing their theoretical framework. In particular, they measure ideological distance between the

president and the opposing party in the Senate with DW-NOMINATE scores (President-Opposing

Party Distance). They also include indicator variables for Divided Government, a Critical Nomi-

nation, an Ideologically-Distant Home-State Senator, and a control for whether it is a Presidential

Election Year. They expect these variables to produce negative coefficients, indicating a decrease

in the risk of confirmation, or longer time to confirmation.

The authors demonstrate support for their hypotheses by computing percentage changes in the

hazard rate based on changes to these independent variables. Table 2—which reproduces their
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Table 3 (196)—reports these estimates. Most notably, all of them are negative (as expected) and

statistically significant (p < 0.05). From this, Binder and Maltzmann conclude that both ideologi-

cal and institutional factors influence the duration of the confirmation process.

[Insert Table 2 here]

As in our last example, it is difficult to determine which (if any) of the effects reported in

Table 2 are substantively meaningful. For instance, we know that the drop in the hazard rate

associated with an Ideologically-Distant Home-State Senator is roughly twice the magnitude of

Divided Government and Critical Nomination. But without a meaningful scale, it is difficult to

put these factors in context. How do these variables actually influence the amount of time until

confirmation? After replicating the model, we utilized COX ED to generate the change in expected

durations for the same independent variable profiles shown in Table 2 (see the appendix for the

GAM fit). Figure 4 graphs the results.

[Insert Figure 4 here]

Figure 4 shows that for the change in each variable given in Table 2, the expected number

of days to confirmation increases. This result is consistent with the decreases in the hazard rate

that Binder and Maltzmann report. For example, averaging over the other variables in the model,

moving from unified to divided government produces an expected increase in confirmation time of

41 days. Compare that to whether the home-state senator is ideologically close to or distant from

the president (during divided government): an increase of about 102 days, averaging over the other

variables.

The ability to generate expected durations also allows us to go one step further in assessing

the substantive magnitude of these effects. One means of determining whether a confirmation

delay is large or small is to consider how many cases a nominee would miss. According to the

Federal government’s caseload statistics, the median number of filings in the Courts of Appeals in

2000 (the year closest to the authors’ data) was 4,069, which amounts to an average of about 11
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cases per day.19 During unified government, a nominee’s expected time to confirmation is 46 days

according to the COX ED method. This corresponds to absence from 506 cases between the time

of nomination and the confirmation date (46 days × 11 cases/day). When government is divided,

that number jumps to 957 (expected duration of 87 days × 11 cases/day). On average, divided

government leads a typical nominee to miss an additional 451 case filings (957 − 506) because

of delay in the Senate. Now consider the change from an ideologically close to an ideologically

distant home-state senator. In the latter scenario the typical nominee misses 1,122 more cases than

in the former ([188 × 11] − [86 × 11]). Clearly the institution of the blue slip gives individual

senators substantial control over the confirmation process. Most importantly, this sort of analysis

is more substantively meaningful than examining changes in the hazard rate.

8 Conclusions
The Cox model is, for good reason, a popular choice among researchers in political science as

well as several other disciplines. The ability to estimate a survival model while leaving the base-

line hazard function unspecified makes the Cox model a major contribution to applied statistics.

However, this flexibility limits the QI that analysts can compute from their results. Specifically,

the typical means of interpreting model results involves multiplicative changes in the hazard rate

of event occurrence. This approach may lead researchers to conflate risk and probability, produces

substantively vague estimates of covariate effects, and is challenging to effectively communicate

to non-academic consumers of research.

As a solution, we present COX ED , a method for computing expected durations from Cox

model estimates. The method operates by fitting a GAM of the observed durations to the expected

ranks of the observations from the Cox model. This GAM fit is then used to generate expected

durations for the observed data or new observations with substantively interesting covariate profiles

(which can include time-varying covariates). Importantly, our replications of published studies that

employ the Cox model show that these expected durations are useful for substantive discussions

of model results. Expected durations are easy to interpret, closely reflect the substantive goal of

19See http://www.uscourts.gov/Statistics/FederalJudicialCaseloadStatistics.aspx.
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survival analysis (understanding the determinants of the duration of some phenomenon), and can

be easily understood by academics, students, journalists, and public officials.

Practically speaking, COX ED is straightforward to implement in the R statistical environment.

Our accompanying R package, coxed, contains functions that allow researchers to use the method

even with minimal knowledge of R syntax. Additionally, the functions are flexible; users can make

several changes to many of the features of the method that we describe above. Importantly, the

output from the functions provides point estimates, standard errors, and confidence intervals, so

researchers can report their results with appropriate measures of uncertainty. In some cases, this

uncertainty may be large because the method involves two estimation routines (Cox model and

GAM). However, in practice this would only produce conservative, Type II errors rather than lead

an analyst to mistakenly find a statistically significant effect. Thus, while it may effectively reduce

statistical power in some cases, the considerable benefit to substantive interpretation from COX

ED is worthwhile.

Of course, researchers have always had the ability to generate expected durations from a para-

metric duration model; we do not claim to have developed the quantity for the first time here.

However, the parametric models for which expected durations are available force researchers to

make an assumption about the baseline hazard function. This assumption may not be correct and

is never truly testable. So it is no surprise that the Cox model is a well-used tool in applied work.

The main drawback to its popularity is that the substantive clarity of interpretation of results lags

behind that of other common statistical models, such as linear regression or logistic regression.

COX ED solves this problem. The method provides the benefit of the intuitive QI available in

parametric models while retaining the desirable estimation properties of the Cox model.
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Appendix

A A Brief Summary of Survival Models
Survival models are designed to provide an explanation for why a particular observation sur-

vives for a particular duration of time. A duration, denoted ti for observation i, can be a patient’s

lifespan after a diagnosis, the time needed for a negotiation to result in an agreement, or the amount

of time that passes before a catastrophic event like government failure or war, among many other

examples. While both parametric survival models and the Cox model have similar purposes, they

also exhibit key differences. We briefly review these models in a technical discussion below. See

Box-Steffensmeier and Jones (2004)—which we rely on extensively for this review—for more

details.

A.1 Parametric Survival Models

Survival models improve upon ordinary least squares (OLS) for duration data by allowing for

skewed distributions of the durations and by explicitly accounting for the fact that some observa-

tions are right censored, meaning that their durations end some time after data collection ends. The

likelihood function used by all parametric survival models takes the form

L(θ |t,X) =
N

∏
i=1

fi(t)δi Si(t)1−δi, (1)

where i indexes observations, θ represents the parameters to be estimated, t represents the observed

durations with ti referring to the duration of observation i, X represents the matrix of covariates,

N is the sample size, and δi is an indicator for the right censored observations. fi(t) is the PDF of

failure times t and

Si(t) = 1−
∫ t

0
fi(t) dt (2)

is the survivor function, which represents the probability that observation i survives until time t or

later.
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An important concept in survival modeling is the hazard function, or hazard rate, defined as the

ratio of the failure PDF to the survivor function,

hi(t) =
fi(t)
Si(t)

. (3)

The hazard rate represents the relative risk of failure at time ti conditional on survival until time

ti (Box-Steffensmeier and Jones 2004, 15). Results from survival models are often expressed in

terms of the hazard ratio, the ratio of two (actual or hypothetical) observations’ hazard rates. The

failure and survivor functions are different for each observation. These idiosyncratic functions

share the same baseline failure PDF, f0(t), and the variation across cases is induced by the data.

If a parametric survival model can be reparameterized as

log(ti) = α +β1xi1 + . . .+βkxik +σεi, (4)

then the model has an accelerated failure time interpretation in which it is possible to derive the

expected duration and marginal change in duration with respect to a covariate. The exponential,

Weibull, and log-normal models can all be interpreted in this way. Specifically, in equation 4, σ = 0

for the exponential model, εi is distributed by the type-1 extreme-value distribution for the Weibull

model and by the standard normal distribution for the log-normal model (see Box-Steffensmeier

and Jones 2004, 23–32).

Since parametric survival models provide an analytic function for the hazard rate, the hazard is

assumed to follow one of the paths allowed by this functional form. In many cases this assumption

is too restrictive. For instance, the exponential model assumes that the hazard is constant, the

Weibull model assumes that the hazard rate is monotonically increasing or decreasing over time,

and the log-normal model assumes that the hazard rate is either monotonic or unimodal. Many

researchers do not wish to assume that the hazard rate follows exactly one of these forms. As a

result, the Cox model has gained wide use in the social sciences relative to the parametric survival

models.
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A.2 The Cox Proportional Hazards Model

The parameters of the Cox model are estimated by maximizing a partial likelihood function.

Cox (1975) shows that the this estimator converges, in the sample size, to the maximum likelihood

estimator. Carrying notation from above forward, the partial likelihood is defined as follows

N

∏
i=1

 exp(β ′X (ti)
i )

∑∀ j∈Rti
exp(β ′X (ti)

j )

δi

(5)

where β is a vector of regression coefficients to be estimated and δ is an indicator for censored

observations.

The key feature of the estimator is the term in the denominator: R(ti). This refers to observation

i’s “risk set.” An observation’s risk set is comprised of the observations that experience the event

at the same time or after observation i. Thus, the partial likelihood estimator is the product of

the conditional probability of failure at a certain time, given all the observations that have not

yet failed at that time. This allows the method to estimate parameters while relying only on the

ranks of the durations—not the actual durations—and thus avoid making an assumption about the

baseline hazard.20

However, that advantage comes with some costs. If the baseline hazard assumption is correct,

a parametric model will be more efficient than the Cox model because the former uses more in-

formation from the data (Box-Steffensmeier and Jones 2004). Moreover, coefficient estimates can

only be interpreted with respect to the hazard rate; positive coefficients indicate the hazard is rising

while negative estimates signify a decrease. For example, exponentiating a coefficient estimate

yields the average multiplicative change in the hazard ratio for a one-unit increase in the inde-

pendent variable. Similarly, Box-Steffensmeier and Jones (2004, 60) recommend the following

formula for computing the percentage change in the hazard rate between two values (X1 and X2) of

20This also means the partial likelihood estimator is quite sensitive to model specification issues such as omitted
variables and measurement error. However, analysts need not abandon the Cox model due to these problems because
they can be resolved with a robust estimator of the partial likelihood (see Desmarais and Harden 2012).
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an independent variable

%∆h(t) =
[

exp(β [Xi = X1])− exp(β [Xi = X2])

exp(β [Xi = X2])

]
×100. (6)

As we state above, these hazard rate-based computations are mathematically sound; researchers

who employ them are not doing so in error. However, because the Cox model does not use the

actual durations, estimates of expected duration are not readily available. In the main text we

contend that the interpretation and communication of substantive results from the Cox model can

be improved by adapting the Cox model to estimate expected durations and marginal changes in

these durations with respect to a covariate. We show that COX ED fulfills this objective.

B Journal Article Meta Analysis
Our meta analysis examined use of the Cox proportional hazards model and methods for in-

terpreting results in four political science journals from 1990–2015: American Political Science

Review, American Journal of Political Science, Journal of Politics, and International Organiza-

tion. We first searched for articles using Google Scholar. Then we coded the articles based on (1)

the language used to frame hypotheses and (2) the methods used to interpret Cox model results.

We describe the details of these procedures below.

Our central objectives were to assess (1) the type of language researchers typically use to

frame their hypotheses when employing the Cox model and (2) the methods they typically use to

interpret Cox model results. On the first objective we considered two possible framing styles: a

risk frame and a duration frame. A risk frame discusses hypotheses with respect to the risk of

event occurrence. For example: “as X increases, the risk of event Y occurring also increases.” In

such a case the researcher is not primarily concerned with duration, but rather focuses on how the

covariates make the event more or less likely to occur. In contrast, a duration frame discusses the

hypothesis in terms of event time, as in “as X increases, the number of days until event Y occurs

decreases.” In this case the length of time that an event takes is of central importance.
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B.1 Searching for Articles

We searched https://scholar.google.com/ for “cox proportional hazards” OR “cox model” OR

“cox regression” in each journal listed above, one journal at a time. We set the date range to

1990–2015. We downloaded all of the articles returned by these searches, checked each one to

make sure it included analysis with the Cox model, then saved it for coding in the next step. We

included any paper that reported the estimation of a Cox model in the main text. This produced 63

total articles, ranging in publication date from 1996–2015. The articles came from four subfields:

international relations (35), comparative politics (13), American politics (11), and methodology

(4). Additionally, the articles spanned all four journals: 20 from American Journal of Political

Science, 20 from Journal of Politics, 12 from American Political Science Review, and 11 from

International Organization.

B.2 Coding Hypothesis Text

First, we identified the number of hypotheses in each article and copied the text of those hy-

potheses. If multiple analyses were presented, we only included hypotheses pertaining to the Cox

model(s) reported in the main text. If no hypotheses were presented with the Cox model (i.e., in

a descriptive analysis), we used the authors’ descriptions of the model specification (i.e., variables

used and purpose of the estimation).

Next, we placed all of the hypotheses’ text into a single string, omitted common English stop

words, then counted word frequencies of the remaining words. This produced a list of 1,373

unique words, from which we identified words as either predominantly part of a risk frame and

words predominantly used in a duration frame.21 Our general rule was to code any word that

related to probability, likelihood, or chance in the risk frame category and any word relating to

time in the duration frame category. In all, we coded eight unique words as risk frame words and

47 unique words as duration frame words. Table 3 reports these words and their frequencies.

[Insert Table 3 here]
21This was a subjective assessment, and we encourage interested readers to obtain the replication materials and

assess whether they agree with our decisions.
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B.3 Hypothesis Framing Results

The fact that we coded many more words as duration frame words gives some preliminary

evidence that authors tend to frame their hypotheses with respect to the time until event occurrence

more often than the risk of event occurrence. However, this may be skewed by the possibility that

authors simply have more choices when it comes to duration frame words. Looking at word counts

of all eight risk frame words and the top eight duration frame words reveals a larger count of risk

frame words: 119 instances of risk frame words and 106 duration frame words. Nonetheless, the

full count of all the duration frame words we coded is 215—substantially larger than the total count

of risk frame words.

We also coded each article as either predominantly using a risk frame, duration frame, or equal

use of both frames. We accomplished this in two ways: a count of unique words and a count of

total words. First, we counted how many unique words from each frame appeared in the text of the

hypotheses. This approach did not give additional weight to the same word appearing more than

once. We then coded an article’s frame as the type with the most instances of unique words from

its list. Second, for each article we counted the total number of instances of words in its hypotheses

from each frame (e.g., allowing for repeats of the same word). In both cases if an equal number of

risk and duration frame words appeared, we coded the article as equal.

Using the unique word count, we coded 33 articles as using a duration frame, 16 with a risk

frame, and 14 with equal use of both frames. With the total word count these numbers are 33, 20,

and 10, respectively. Almost half (29) of the articles use words from both frames, 20 contain no

risk frame words, and 14 contain no duration frame words. We also conducted these counts after

deleting all of the duration words that appear two or fewer times to check whether these results are

driven only by the fact that there may be more choices of duration frame words. In that case the

numbers are 25, 18, and 20, further indicating that the duration frame is more common.
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B.4 Coding the Interpretation Methods

Our second objective was to code which method(s) each article used to interpret the results of

the estimated Cox model. This was accomplished by reading the results sections of the articles and

identifying each unique method used. We created a total of four categories based on what we found

in the text, which we list below. Note that all of the articles discussed the sign and significance

of the Cox model coefficient estimates. The categories reflect any interpretation beyond sign and

significance. The articles employed an average of 1.3 of these interpretation methods. 45 articles

used one method, 17 articles used two methods, and 1 article employed three different methods.

• Hazard ratios (24 articles). This category included any article that reported the exponen-

tiation of one or more Cox model coefficients, as well as a discussion about the resulting

multiplicative effect of a one-unit change in the covariate of interest.

• Changes to the hazard rate (33 articles). This category included any article that reported a

marginal change in the hazard rate (usually expressed as a percentage) corresponding to a

substantively interesting change in the values of a covariate.

• Empirical estimates of the hazard and/or survivor functions (17 articles). This category

included any article that graphically displayed an estimate of the baseline hazard from the

model and/or computed the survivor function. Typically this was done for different covariate

values to show the effect of changes to the covariate.

• Only sign and significance of the coefficient estimates (8 articles). This category included

any article that did not report any interpretation of the Cox model other than the sign and

significance of the relevant coefficient estimates.

The most important finding from this analysis is the fact that all of the articles that go beyond

sign and significance in their interpretation of the Cox model focus on the hazard rate, whether

through hazard ratios, changes to the hazard rate, or estimation and graphing of the baseline haz-

ard and/or survivor functions. To further emphasize this point, one article in our data did report

expected durations after estimating a Cox model, but those estimates came from re-estimating the

model using the Weibull parameterization (Senese and Quackenbush 2003, 714).
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B.5 Meta Analysis Conclusions

This analysis yields two important insights. First, we find that political scientists employing

the Cox model over the last 25 years tend to discuss their theoretical expectations in the language

of time until event occurrence. Language related to the risk of event occurrence also appears, but

it is less common than duration-based framing. Approximately 70% of the articles in our sample

contain more duration words or an equal amount of duration and risk words (compared to only

48% containing more or equal risk words). It is clear that researchers’ substantive interests usually

center on the duration of some political phenomenon, not just its likelihood of occurring.

This first finding contrasts sharply with the second finding, which is that researchers nearly

exclusively rely on interpretation of the hazard rate after estimating the Cox model. We found no

instances where researchers generated expected durations from their Cox model estimates. Thus,

researchers who employ the Cox model are typically forced to switch the manner in which they

discuss their research when moving from hypotheses to results. This provides motivation for our

research, which provides a method for generating expected durations from the Cox model. The

COX ED approach allows researchers to maintain consistency between the language they use to

describe their theoretical framework and the language they use to communicate their empirical

findings.

C The Relationship Between Risk and Failure Probability
Here we show proof that a single hazard ratio almost never corresponds to a single probability

ratio. Consider an example of a proportional hazards model in which the coefficients are non-zero.

Without loss of generality, consider how an observation t1 in which X1 = 1 and X j = 0 for j > 1

compares to a baseline observation t0 in which all covariates are zero so that the hazard, failure

probability density function (PDF), and survivor function for the observations are all equal to the

baseline functions. Let β be the coefficient on X1. The ratio of the hazard functions for each

observation is
h1(t)
h0(t)

=
exp(β )h0(t)

h0(t)
= exp(β ). (7)
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Therefore, a one-unit increase in X1 is associated with a multiplicative increase of exp(β ) in hazard.

Now consider how the probability of failure between t = a and t = b, conditional on t > a, compares

for each observation. The conditional probability that the baseline observation fails in this interval

is given by

Pr(a≤ t0 ≤ b|t0 > a) =
Pr(a≤ t0 ≤ b)

Pr(t0 > a)
. (8)

The numerator can be calculated from the baseline failure cumulative distribution function (CDF),

Pr(a≤ t0 ≤ b) =
∫ b

a
f0(t) dt = F0(b)−F0(a), (9)

and the denominator is the baseline survivor function S0(t) at t = a. The entire conditional proba-

bility is given by

Pr(a≤ t0 ≤ b|t0 > a) =
F0(b)−F0(a)

S0(a)
. (10)

Likewise, the conditional probability that the non-baseline observation fails in this interval is

Pr(a≤ t1 ≤ b|t1 > a) =
F1(b)−F1(a)

S1(a)
. (11)

We can rewrite the numerator of (11) as22

F1(b)−F1(a) = [1−S1(b)]− [1−S1(a)]

= S1(a)−S1(b)

= S0(a)exp(β )−S0(b)exp(β )

= [1−F0(a)exp(β )]− [1−F0(b)exp(β )]

= F0(b)exp(β )−F0(a)exp(β ), (12)

22We exponentiate the coefficient β twice because we raise the baseline survivor function to the power of the hazard
ratio, which is exp[β ] (see Box-Steffensmeier and Jones 2004, 65, eq. 4.15).
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and we can rewrite the denominator of (11) as

S1(a) = S0(a)exp(β ), (13)

so that the conditional probability is

Pr(a≤ t1 ≤ b|t1 > a) =
F0(b)exp(β )−F0(a)exp(β )

S0(a)exp(β )
. (14)

Therefore the ratio of the two probabilities is

Pr(a≤ t1 ≤ b|t1 > a)
Pr(a≤ t0 ≤ b|t0 > a)

=

F0(b)exp(β )−F0(a)exp(β )

S0(a)exp(β )

F0(b)−F0(a)
S0(a)

=
F0(b)exp(β )−F0(a)exp(β )

F0(b)−F0(a)
· S0(a)

S0(a)exp(β )

= S0(a)1−exp(β ) · F0(b)exp(β )−F0(a)exp(β )

F0(b)−F0(a)
. (15)

In order to consider the multiplicative change in the conditional probability of instantaneous fail-

ure, let F0(b) = x, F0(a) = y, S0(a) = 1− y, and exp(β ) = α , and consider the following limit:

lim
x→y

(1− y)1−α xα − yα

x− y

= (1− y)1−α lim
x→y

xα − yα

x− y
.

This limit is the definition of the derivative of the function g(x) = xα evaluated at x = y, so the

limit is equal to g′(y) = αyα−1. Substituting for y and α , the instantaneous ratio of probabilities is

equal to

lim
b→a

Pr(a≤ t1 ≤ b|t1 > a)
Pr(a≤ t0 ≤ b|t0 > a)

= S0(a)1−exp(β ) exp(β )F0(a)exp(β )−1

= exp(β )
(

F0(a)
S0(a)

)exp(β )−1

. (16)
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The final expression in (16) is only equal to the hazard ratio, exp(β ), when β = 0 or F0(a) =

S0(a). The first case is not interesting to an applied researcher because it means the covariate that

corresponds to β does not belong in the model. The second case refers to the very specific situation

in which a is the median duration, so that the baseline probability of failure before the time point

in question is exactly 0.5. For any other duration, the hazard ratio in a proportional hazards model

cannot be interpreted as the ratio of conditional failure probabilities at a particular point in time.

To see this illustrated, consider the example of an exponential survival model in which the

baseline failure PDF has a mean of 10. Also, suppose we derive a hazard ratio of exp(β ) = 1.1.

This hazard ratio signifies a 10% increase in the risk of failure at time t conditional on survival until

time t for a one-unit increase in the covariate. However, in order to find the change in probability of

failure at time t conditional on survival until time t for a one-unit increase in a covariate, a quantity

we denote w(t), we substitute the failure CDF, the survivor function, and exp(β ) = 1.1 into the

formula from (16):

w(t) = 1.1
(

1− exp[−0.1t]
exp[−0.1t]

)0.1

.

At the median of this exponential distribution, t = 10ln(2), this function evaluates to w(10ln[2]) =

1.1. So the hazard ratio is equal to the probability ratio for the median survival time. But for any

other survival time these ratios are different. A hazard ratio of 1.1 implies probability ratios at

t = 4, t = 8, and t = 12 of w(4) = 1.02, w(8) = 1.12, and w(12) = 1.20, respectively.

D Simulating Baseline Hazard Functions
Many researchers prefer to use the Cox model in order to avoid making an assumption that the

baseline hazard follows a particular functional form. In particular, researchers often do not want to

assume that the hazard is constant as in the exponential model, monotonic as in the Weibull model,

or unimodal as in the log-normal model. Our challenge in this simulation is to generate durations

from functions that represent a variety of more realistic hazard functions that may or may not be

monotonic or unimodal. Our method involves fitting a cubic spline to randomly selected points

according to the following steps. Figure 5 illustrates key components of the process.
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[Insert Figure 5 here]

1. We create a time index that counts integers from 1 to 100. This index serves as the x-axis for

the randomly generated baseline hazard function.

2. We draw 10 points on this graph, as illustrated in panel (a) of Figure 5. The x-coordinates for

two of the points are 1 and 100, and we randomly draw x-coordinates for the other 8 points

without replacement. For example, for the illustration in Figure 5, points are chosen to occur

at 1, 6, 12, 20, 40, 51, 55, 71, 85, and 100.

3. We randomly draw the y-coordinates for these points from the standard normal distribution.

4. We fit a cubic smoothing spline to the 10 points. Panel (b) of Figure 5 shows an example.

5. Finally, we apply two transformations to this function to produce a valid PDF. First, we pass

the y-values to the standard normal PDF and take the densities. This transformation ensures

that the function is non-negative. Second, we divide the y-values by their sum to ensure that

the function integrates to 1. This final step in the generation of a baseline hazard function is

illustrated in panel (c) of Figure 5.

Having generated a baseline hazard function, our next challenge is to generate individual dura-

tions from this function in a way that depends on covariates. To that end, we follow the functional

form of the Cox model by using the following steps:

1. We generate a cumulative baseline hazard function by taking the cumulative sum of the

baseline hazard.

2. We then create a baseline survivor function from the formula

H0(t) =− log(S0[t])

by exponentiating the negative cumulative baseline hazard (Box-Steffensmeier and Jones

2004, 14).

3. We randomly generate three covariates (column vectors of length N denoted X1, X2, and X3),

three coefficients (scalars denoted β1, β2, and β3), and a constant (a scalar denoted α) from
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the standard normal distribution. We then create a linear predictor Xβ by multiplying

Xβ =

[
1 X1 X2 X3

]


α

β1

β2

β3


.

4. We use the baseline survivor function and the linear predictor to construct the individual-

specific survivor functions (Box-Steffensmeier and Jones 2004, 65):

Si(t) = S0(t)exp(Xiβ ).

In other words, we take the baseline survivor function to the power of each element of

exp(Xβ ). If, for example, the sample size is 50, then exp(Xβ ) has 50 elements and the

baseline survivor function is taken to the power of each of these elements to produce 50

individual-specific survivor functions.

5. We subtract each individual-specific survivor function from 1 and we take the first differ-

ences to obtain the individual-specific failure PDFs.

6. In order to draw a duration for each observation from each individual-specific failure PDF

we multiply each PDF by 1,000 and round every value up. We then expand a list of integers

from 1 to 100 by these rounded values. For example, if after multiplying by 1,000 and

rounding up the first two values of the PDF become 5 and 20, then the list of integers from

1 to 100 is expanded to produce 5 copies of 1, 20 copies of 2, and so on. Finally, we draw

one randomly selected element from this expanded list. The drawn element becomes the

duration for the observation.

Finally, we randomly set a specified proportion of the observations (5%, 10%, or 20%) to be

right censored. We then create “true” marginal changes in duration by setting the first covariate in

Xβ equal to 1 for every observation, then by setting it equal to 0 for every observation. We pass
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these two new linear predictors to the mechanisms we use to generate the durations in each DGP.

We then measure the median change in duration.

The simulated durations and the generated covariates together form a simulated dataset. We fit

a Cox model (and COX ED) to the simulated data along with an exponential, Weibull, and log-

normal survival model. For each model, we compute the expected duration of each observation

and compare these estimates to the true durations using an RMSE statistic. To evaluate the esti-

mated marginal effects, we use the fitted models to generate expected durations by setting the first

covariate to 1 for every observation and again setting that covariate to 0 for every observation. We

subtract the values with X1 = 0 from those with X1 = 1 and save the median of the differences. We

then compare those medians to the true marginal effects using another RMSE statistic.

E Simulations with 5% and 20% Right Censoring
Table 1 in the main text reports simulation results from the random spline DGP with the pro-

portion of right censoring fixed at 10% of the observations. In Tables 4 and 5 we report results with

5% and 20% right censoring, respectively. As before, we present results for the three parametric

models as ratios over the RMSE for COX ED. Ratios that are greater than 1 favor COX ED because

the RMSE for COX ED is less than the RMSE for the competitor. The first two columns of results

summarize the ratios of the expected duration RMSEs: the average ratio and the proportion greater

than 1. The third column of results gives the ratios of the marginal effect RMSEs.

[Insert Table 4 here]

[Insert Table 5 here]

As with the results in the main text, we find that the RMSE is lower for COX ED across the

different simulation conditions. The proportion of iterations for which COX ED outperforms the

competitor in predicting duration again increases with the sample size. Additionally, COX ED

recovers the true marginal effect with less error than do the parametric models. Furthermore,

this improvement again increases as the sample size increases and increases as the amount of
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right censoring increases. Overall, we find that COX ED is superior to the parametric models in

accurately generating durations, and in computing the estimated effect of a change to a covariate.

F Simulations from Parametric Hazard Functions
In the simulation described in section 6 and the appendix, we generate simulated durations

from baseline hazard functions that do not follow any particular functional parametric form. We

argue that these baseline hazard functions are more realistic than common parametric functions.

However, these functions may also favor COX ED over the competing survival models because the

exponential, Weibull, and log-normal models are misspecified. To compare the estimators under

ideal conditions for the parametric models, we simulate the durations from the assumed distribution

of each of the parametric models, then compare each model to COX ED.

We conduct three simulations from parametric hazard functions. First, we generate the baseline

hazard from an exponential distribution in which the rate parameter is set to 1
exp(Xβ ) , and we com-

pare the relative performance of the exponential survival model and COX ED. Second, we generate

the baseline hazard from a Weibull distribution in which the scale parameter is set to exp(Xβ ) and

the shape parameter to 5, and we consider the performance of COX ED relative to the Weibull

survival model. Finally, we generate the baseline hazard from the log of the normal distribution

with a mean equal to exp(Xβ ) and a standard deviation equal to 1, and we compare COX ED and

the log-normal survival model. In all of the parametric simulations we set the proportion of right

censoring to 10% of the observations. Table 6 presents the parametric simulation results. It follows

the format of Table 1 in section 6 of the main text.

[Insert Table 6 here]

The expected duration RMSEs show that COX ED and the exponential model are roughly

similar in performance when the DGP is exponential. The expected durations slightly favor COX

ED, while the marginal effect RMSE ratios indicate that the exponential model is somewhat better.

The Weibull model results show a stronger pattern. When the true DGP comes from the Weibull

distribution, the Weibull model generally outperforms COX ED with respect to recovering expected
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durations and marginal changes in duration. The log-normal results are somewhat different. In

that case COX ED produces the smaller expected duration RMSEs across the four sample sizes.

However, the marginal effect RMSE ratios show that the log-normal model outperforms COX ED

at the sample sizes larger than 50.

Overall, these results show that when the baseline hazard comes from a known distribution (an

unlikely situation in applied research), the corresponding parametric survival model’s performance

relative to COX ED improves. However, in several instances COX ED still performs nearly equal

or better than the parametric models by our RMSE criteria.

G Box-Steffensmeier (1996) Replication
Box-Steffensmeier (1996) examines whether U.S. House incumbents’ ability to raise campaign

funds can effectively deter quality challengers from entering the race. The theoretical expectation

is that as incumbents raise more money, challengers further delay their decision to run for the

incumbent’s seat. She employs data on 397 House races in the 1989–1990 election cycle to test

this hypothesis.

The dependent variable in this analysis is the number of weeks after January 1, 1989 when

a challenger entered the race. Races in which no challenger entered are coded as the number of

weeks after January 1 when the state’s primary filing deadline occurred, and are treated as censored.

The key independent variable is the incumbent’s War Chest, or the amount of money in millions

of dollars that the incumbent has in reserve at a given time. Importantly, this measure updates over

the course of five Federal Election Commission (FEC) reporting periods, so it is a time-varying

covariate. The theory predicts a negative coefficient on this variable, which would indicate that as

the incumbent raises more money, the hazard of challenger entry declines (and the time until entry

increases).

The results of the Cox model provide support. The coefficient on War Chest is negative and

statistically significant. Box-Steffensmeier explains that “each $100,000 in an incumbent’s war

chest decreases the hazard of a high quality challenger entering by 16%” (365). Thus, the data

indicate that building a war chest is an effective way to avoid being challenged in an election.
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We employed COX ED to give an interpretation of these results in terms of the number of

weeks a challenger’s entry is expected to be delayed with a change in the incumbent’s fundraising

efforts. We contend that this is more meaningful than the hazard-rate QI that Box-Steffensmeier

reports. Additionally, this re-analysis provides an example of the use of COX ED with a time-

varying covariate.23 Figure 6 gives the expected duration, in weeks, until challenger entry for two

values of War Chest: $710,000 (the median) and $850,000 (the 80th percentile). It also reports the

difference between those two estimates.

[Insert Figure 6 here]

Figure 6 supports Box-Steffensmeier’s (1996) assertion that the size of an incumbent’s cam-

paign funds corresponds with a delay in challenger entry. All else equal, an incumbent with

$710,000 in reserve expects to face a challenger 51 weeks from January 1 while one with $850,000

in campaign money will not be challenged until 59 weeks. However, it is important to note that

there is quite a bit of uncertainty around these estimates and so the difference of 8 weeks is not

statistically significant.

The relatively large confidence intervals shown in Figure 6 appear due to the fact that only

a small number of challengers appear in the data, and so many observations are right censored.

As a result, the GAM is fit with only 40 observations (see Figure 8). This highlights a potential

drawback of COX ED. The GAM relies on the non-censored data, and so it will be estimated with

more uncertainty if a large proportion of the observations are censored. However, because the

method accounts for uncertainty from the Cox model and the GAM, this makes it susceptible to

the more conservative Type II errors: failing to find a significant effect when in truth there is one.

In this case, while not statistically significant, the substantive magnitude of an 8-week difference

is still noteworthy. A delay of two months over the course of a campaign gives an incumbent a

considerable amount of time to generate electoral support without competition.

23A function called cox.ed.tvc() in our coxed R package can perform the COX ED procedure using the
counting-process data structure that time-varying covariates require.

40



H Mattes and Savun (2010) Replication
Our final replication study is Mattes and Savun’s (2010) analysis of the duration of civil war

peace agreements. The central point the authors make is that provisions that require parties to

reveal otherwise private military information can greatly increase the endurance of an agreement.

Using data covering 51 civil wars from 1945–2005, they quantify the effect of peace agreements

with provisions designed to reduce uncertainty between sides on the life of the agreement. These

provisions include third-party monitoring, encouraging belligerents to provide troop and weapon

information, and third-party verification of information (see Mattes and Savun 2010, 516–517).

The dependent variable is the number of months a peace agreement lasted. Mattes and Savun

(2010) model this variable as a function of several covariates: a count of the Uncertainty-Reducing

Provisions in the peace agreement and control variables. They hypothesize that “[t]he greater the

number of uncertainty-reducing provisions in a civil war agreement, the less likely is the recurrence

of civil war between domestic belligerents” (517). This hypothesis predicts a negative coefficient

on Uncertainty-Reducing Provisions, indicating that as the number of provisions increases, the

hazard of peace failure declines (longer peace times).

The Cox model results support the authors’ hypothesis, producing a negative and statistically

significant estimate on Uncertainty-Reducing Provisions. Mattes and Savun (2010) report that its

effect is “not only statistically significant but also substantively important” (521). An increase

from zero provisions to one provision corresponds with a 46% drop in the hazard rate of peace

failure and an increase from zero to three provisions decreases the hazard rate by 84%. From

this, they conclude that provisions that reveal information about warring parties are a useful policy

prescription for the international community.

We use COX ED to better understand the implications of the results for future peace agree-

ments. The authors label a drop of 46% in the hazard rate as “substantively important.” This leads

to a key question: what percentage drop would be considered not substantively important? Would

10% or 20% be too small to indicate that Uncertainty-Reducing Provisions exerts a meaningful

effect? Assessing the magnitude of effects is always arbitrary to some degree, but this issue is
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compounded when the scale of the effect is not meaningful. It is difficult to state whether a drop of

46% really is “large” or “small.” Using our COX ED method, we assess the impact of Uncertainty-

Reducing Provisions on a much more intuitive quantity: the amount of time peace is expected to

last.

Figure 7 supports Mattes and Savun’s (2010) assertion that Uncertainty-Reducing Provisions

exerts a substantively important effect on the duration of civil war peace agreements, though there

is a great deal of uncertainty in the estimates. Averaging over the rest of the model, an agreement

with no provisions is expected to last about 89 months. Including one provision increases that

estimate to about 109, or a gain of 20 months. Moving to two and three provisions brings the

estimate to 126 and 158 months, respectively. However, while all of these estimates are statistically

significantly different from zero, they are not statistically distinguishable from one another. This

is not too surprising given the small sample of 51 cases. More importantly, the data suggest that

these estimates are substantively meaningful. The expected difference between a case with no

provisions and one with three provisions is 69 months, or the equivalent of moving from the 25th

percentile of the observed durations to the 55th. Put differently, it represents almost six additional

years of peace. Despite the large confidence intervals, these results indicate that provisions that

reduce uncertainty play an important role in the life of peace agreements.

[Insert Figure 7 here]

While we reach the same general conclusion as do Mattes and Savun (2010), our analysis us-

ing COX ED provides more substantive detail on the effects of Uncertainty-Reducing Provisions

on civil war peace duration. This is particularly important given that the authors’ research carries

important policy implications. They state that “[e]ncouraging the adoption of such uncertainty-

reducing provisions in civil war settlements may be a useful policy in the international commu-

nity’s effort to establish peace in civil-war-torn societies” (512). We suspect that should political

scientists be given the forum to formally make such recommendations, presenting evidence in

terms of the expected length of peace agreements rather than relative changes in the hazard rate

would be more intuitive to and make a stronger impression on policymakers.
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I Replication Model GAM Fits
Figure 8 presents the COX ED GAM fits for the Binder and Maltzman (2002), Box-Steffensmeier

(1996), and Mattes and Savun (2010) replication models. In all three graphs the points represent

non-censored observations, which are used to fit the GAMs.

[Insert Figure 8 here]
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Figure 1: GAM Fit of the Observed Durations Against Expected Ranks from the Martin and Van-
berg (2003) Cox Model

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

● ●

●●

●

●

●
●

●

●

● ●● ●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●●

●

●● ● ●

●

●●

●

●

●

●●

●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Netherlands, 1986
Rank: 162 of 203
Expected Duration: 44 Days
Actual Duration: 54 Days

0

20

40

60

80

100

120

140

160

180

200

220

1175 150 125 100 75 50 25203

Expected Rank

N
um

be
r 

of
 B

ar
ga

in
in

g 
D

ay
s

Note: The graph plots the expected ranks of the observations on the x-axis (descending order) against
the observed durations on the y-axis. The solid line and shading indicate the GAM fit and its 95%
confidence interval.
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Figure 2: Examples of Baseline Hazard Functions Generated with the Random Spline Method
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Note: The graphs illustrate four examples of baseline hazard functions generated with the random spline
method for use in the simulations.
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Figure 3: The Effects of Range of Government and Number of Government Parties on the Expected
Number of Bargaining Days until Coalition Government Formation (Martin and Vanberg 2003)
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(b) ∆ Parties in Coalition (Time = 38 Days)
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(c) Parties in Coalition (Time = 1, 19, and 61 Days)
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Note: Panel (a) graphs the expected number of bargaining days for a single-party government (Range of Government
= 0) versus the average value for coalition governments (Range of Government = 1.24) and the difference between
the two. Panel (b) graphs the increase in the expected number of bargaining days that corresponds to three different
changes in the number of parties in the coalition and time set to 38 days (75 th percentile). Panel (c) graphs the expected
number of bargaining days for 1–6 parties with time set to 1, 19, and 61 days (the 10th percentile, median, and 90th

percentile, respectively). Brackets and vertical lines indicate 95% confidence intervals.
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Figure 4: The Determinants of the Time to Confirmation on U.S. Circuit Courts of Appeal (Binder
and Maltzman 2002)
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Note: The graph plots the change in the expected number of days to confirmation corresponding to the
changes in each variable listed in Table 2. Brackets indicate 95% confidence intervals.
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Figure 5: An Example of the Random Spline DGP
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(b) Cubic Spline Fit
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Note: Panel (a) shows an example of 10 randomly-drawn time points (steps #1–3). Panel (b) gives the cubic spline fit
to those points (step #4). Panel (c) shows the transformation from the cubic spline to a valid PDF (step #5).
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Figure 6: The Effect of Incumbent War Chest on the Expected Time Until Quality Challenger
Entry into U.S. House Races (Box-Steffensmeier 1996)
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Note: The graph plots the expected number of weeks until quality challenger entry for the two values
of an incumbent’s war chest and the difference between the two estimates. Brackets indicate 95%
confidence intervals.
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Figure 7: The Effect of Uncertainty-Reducing Provisions on the Expected Duration of Civil War
Peace Agreements (Mattes and Savun 2010)
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Note: The graph plots the expected peace agreement length, in months, for each observed value of
Uncertainty-Reducing Provisions. Brackets indicate 95% confidence intervals.
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Figure 8: Replication Model GAM Fits

(a) Binder and Maltzman (2002)
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(b) Box-Steffensmeier (1996)
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(c) Mattes and Savun (2010)
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Note: The graphs present the COX ED GAM fits for the Binder and Maltzman (2002), Box-Steffensmeier (1996), and
Mattes and Savun (2010) models. Shading indicates 95% confidence intervals.
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Table 1: Comparison of Expected Duration RMSE and Marginal Change in Expected Duration
RMSE with the Random Spline DGP and 10% Right Censoring

Model Sample Size Expected Durations Marginal ∆

Average Ratio % Ratios > 1 Ratio

Exponential

50 1.234 94% 1.178
200 1.170 98% 1.555
500 1.156 99% 1.740

1,000 1.154 99% 1.932

Weibull

50 1.228 97% 1.053
200 1.175 99% 1.408
500 1.165 100% 1.525

1,000 1.160 100% 1.696

Log-normal

50 1.183 96% 1.142
200 1.145 100% 1.459
500 1.133 100% 1.712

1,000 1.136 100% 1.849
Note: Cell entries report the ratio of the parametric models’ RMSEs to COX ED’s RMSE
for each model/sample size combination. Values greater than 1 indicate better performance
by COX ED. The first two columns of results summarize the ratios of the expected duration
RMSEs: the average ratio and the proportion greater than 1. The third column of results
gives the ratios of the marginal effect RMSEs. The proportion of observations that are right
censored is fixed at 10%.
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Table 2: Estimated Hazard Rate Changes for Key Variables (Binder and Maltzman 2002, Table 3,
196)

Variable Change in % Change in 95% Conf. Interval
Variable Hazard Rate

Divided Government No to Yes −46.51 [−49.29, −46.15]
President-Opposing Party Distance Low to High −60 [−65, −54.73]
Critical Nomination No to Yes −42.22 [−54.44, −27.79]

during Divided Government
Ideologically-Distant Home-State Senator No to Yes −92.44 [−95.67, −87.28]

during Divided Government
Presidential Election Year No to Yes −73.96 [−75.13, −72.76]

54



Table 3: Frequency and Frame of Hypothesis Framing Words

Word Frequency Coded Frame

likely 73 Risk
risk 16 Risk
likelihood 8 Risk
probability 8 Risk
hazard 7 Risk
hazards 4 Risk
propensity 2 Risk
odds 1 Risk
time 26 Duration
timing 14 Duration
duration 13 Duration
longer 12 Duration
end 11 Duration
early 10 Duration
following 10 Duration
stable 10 Duration
delay 9 Duration
tenure 9 Duration
delays 8 Duration
earlier 8 Duration
termination 8 Duration
future 8 Duration
deadline 7 Duration
finite 5 Duration
quickly 4 Duration
survival 4 Duration
durable 3 Duration
short 3 Duration
date 2 Duration
deadlines 2 Duration
live 2 Duration
long 2 Duration
term 2 Duration
terminate 2 Duration
conclude 1 Duration
concludes 1 Duration
consistently 1 Duration
delayed 1 Duration
delaying 1 Duration
durability 1 Duration
immediately 1 Duration
indefinitely 1 Duration
last 1 Duration
lasts 1 Duration
longer 1 Duration
longer lasting 1 Duration
resilient 1 Duration
retards 1 Duration
shorter 1 Duration
shortrun 1 Duration
slow 1 Duration
slowly 1 Duration
onset 1 Duration
survive 1 Duration
temporal 1 Duration
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Table 4: Comparison of Expected Duration RMSE and Marginal Change in Expected Duration
RMSE with the Random Spline DGP and 5% Right Censoring

Model Sample Size Expected Durations Marginal ∆

Average Ratio % Ratios > 1 Ratio

Exponential

50 1.179 87% 1.125
200 1.129 95% 1.515
500 1.119 96% 1.602

1,000 1.116 98% 1.807

Weibull

50 1.197 96% 1.041
200 1.145 99% 1.391
500 1.136 99% 1.527

1,000 1.132 99% 1.617

Log-normal

50 1.191 99% 1.118
200 1.152 100% 1.403
500 1.141 100% 1.685

1,000 1.143 100% 1.768
Note: Cell entries report the ratio of the parametric models’ RMSEs to COX ED’s RMSE
for each model/sample size combination. Values greater than 1 indicate better performance
by COX ED. The first two columns of results summarize the ratios of the expected duration
RMSEs: the average ratio and the proportion greater than 1. The third column of results
gives the ratios of the marginal effect RMSEs. The proportion of observations that are right
censored is fixed at 5%.
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Table 5: Comparison of Expected Duration RMSE and Marginal Change in Expected Duration
RMSE with the Random Spline DGP and 20% Right Censoring

Model Sample Size Expected Durations Marginal ∆

Average Ratio % Ratios > 1 Ratio

Exponential

50 1.441 99% 1.332
200 1.316 99% 1.796
500 1.290 100% 1.947

1,000 1.290 100% 2.266

Weibull

50 1.302 99% 1.170
200 1.261 99% 1.538
500 1.240 100% 1.766

1,000 1.234 100% 1.934

Log-normal

50 1.202 91% 1.208
200 1.152 97% 1.563
500 1.134 99% 1.733

1,000 1.136 99% 2.027
Note: Cell entries report the ratio of the parametric models’ RMSEs to COX ED’s RMSE
for each model/sample size combination. Values greater than 1 indicate better performance
by COX ED. The first two columns of results summarize the ratios of the expected duration
RMSEs: the average ratio and the proportion greater than 1. The third column of results
gives the ratios of the marginal effect RMSEs. The proportion of observations that are right
censored is fixed at 20%.
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Table 6: Comparison of Expected Duration RMSE and Marginal Change in Expected Duration
RMSE with the Parametric DGPs

Model Sample Size Expected Durations Marginal ∆

Average Ratio % Ratios > 1 Ratio

Exponential

50 1.167 77% 0.890
200 1.032 67% 0.830
500 1.023 65% 0.915

1,000 0.997 58% 0.912

Weibull

50 1.093 67% 0.893
200 0.945 53% 0.443
500 0.896 44% 0.537

1,000 0.879 42% 0.405

Log-normal

50 1.145 96% 1.058
200 1.086 100% 0.949
500 1.066 100% 0.243

1,000 1.057 100% 0.208
Note: Cell entries report the ratio of the parametric models’ RMSEs to COX ED’s RMSE
for each model/sample size combination with the parametric DGPs. Values less than 1
indicate better performance by the parametric models. Values greater than 1 indicate bet-
ter performance by COX ED. The first two columns of results summarize the ratios of
the expected duration RMSEs: the average ratio and the proportion greater than 1. The
third column of results gives the ratios of the marginal effect RMSEs. The proportion of
observations that are right censored is fixed at 10%.
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