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Replication Crisis (Type M Error)

Low power + statistical signi�cance �lter → Exaggerated Claims
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Gaussian Process Regression

• We propose and RD estimator based on Gaussian process (GP)

regression

• GP regression can be viewed as a simple but �exible extension

of Bayesian linear regression

• GP regression helps us avoid strong assumptions about the

function mapping the forcing variable x to the outcomes y

• This helps us estimate function values from the left and the

right without resorting to local strategies
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Gaussian Process Regression
The basic setting is observing inputs x and noisy outputs y that are

a function of x .
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Figure: Learning the Mapping from x to y with a GP Prior
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Gaussian Process Regression
But, the problem is we may not know the functional form of

f : x → y .

−3 −2 −1 0 1 2 3

−
1

0
1

2

x

y

Noisy Observations

Figure: Learning the Mapping from x to y with a GP Prior



Preliminaries GPRD Empirical Applications Conclusion

Gaussian Process Regression

• So, we put a GP prior over f .

• Technically, a GP is an in�nite-dimensional generalization of

the normal distribution.

• Theoretically, in our case, it is a distribution over functions.

• Practically, it's fancy way of assuming outputs are distributed

normally given the inputs, but crucially the covariance between

outputs are a function of the inputs.
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Gaussian Process Regression

So, we put a GP prior over f (with a Gaussian likelihood)

y = f (x) + ε,

f (x) ∼ GP (m(x),K (x, x)) ,

ε ∼ N (0, σ2y ),

where m(x) and K are functions of the inputs.

In this example, we show a common and simple case: m(x) = 0,

and the i , j element of the covariance matrix is given by

K (xi , xj) = σ2f exp

(
−0.5

(xi − xj)
2

`2

)
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Gaussian Process Regression
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Gaussian Process Regression

The posterior over f is given using well-known Gaussian identities

[
y

f∗

]
∼ N

(
0,

[
K + σ2y I KT

∗
K∗ K∗∗

])
,

K = K (x, x) ,

K∗ = K (x∗, x) ,

K∗∗ = K (x∗, x∗) ,

f∗ | x, y, x∗ ∼ N
(
K∗
[
K + σ2y I

]−1
y,K∗∗ − K∗

[
K + σ2y I

]−1
KT
∗

)
.
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Gaussian Process Regression
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Gaussian Process Regression for Regression Discontinuity
Designs

• Two methods to estimate treatment e�ects in RD designs

using GP regression.

• First is the global GPRD estimator:

• We �t one GP regression to all the data, with a dummy for

treatment
• Then the treatment e�ect is the di�erence in predictions when

x equals the cuto� and the dummy is 1 and 0

• Second is the piecewise GPRD estimator:

• We �t two GP regressions, one to each side of the cuto�
• Then the treatment e�ect is the di�erence in the two GPs'

predictions when x equals the cuto�
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Global GPRD Estimator

For the global GPRD estimator, we place a Gaussian process (GP)

prior on f (x),

p(f ) = GP(Xβ,K (X)),

X =
[
1|x|D

]
,

where K is the squared exponential automatic relevance

determination covariance function

K
(
X,X′

)
= σ2f exp

−0.5∑
j

(
X·,j − X′·,j

)2
`2j

 .
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Global GPRD Estimator

So we are interested in the treatment e�ect

τGPRD−G
def
= f

([
0 1

])
− f

([
0 0

])
,

or the di�erence between f (x = 0,D = 1) and f (x = 0,D = 0),
which is distributed

τGPRD−G ∼ N (µ∗,Σ∗) ,

µ∗ = f̄
([
0 1

])
− f̄

([
0 0

])
,

Σ∗ = cov
(
f
([
0 1

]))
+ cov

(
f
([
0 0

]))
.
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Global GPRD Estimator

Here's an example, where

x ∼ N (0, 1)

f (x) =

{
x2 + 1 if x > 0

−x2 − 1 otherwise,

y = f (x) + ε,

ε ∼ N (0, 0.52).
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Global GPRD Estimator
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True e�ect: 2; Estimate: 2.19; 95% CI: [1.77, 2.62]
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Piecewise GPRD Estimator

For the piecewise GPRD estimator, we place GP priors on f+ (x)
and f− (x),

p(f+) = GP(X+β+,K (x+)),

p(f−) = GP(X−β−,K (x−)),

X =
[
1|x
]
,

where K is the isometric squared exponential covariance function

K
(
x , x ′

)
= σ2f exp

(
−0.5(x − x ′)2

`2

)
.
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Piecewise GPRD Estimator

So we are interested in the treatment e�ect

τGPRD−P
def
= f+(0)− f−(0),

which is distributed

τGPRD−P ∼ N (f̄+(0)− f̄−(0), cov(f+(0)) + cov(f−(0))).
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Piecewise GPRD Estimator
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Hyperparameter Selection

• Choice of hyperparameters�particularly the length scale
(`)�likely to a�ect our estimates.

• Length scale in GPRD performs similar role as bandwidth in

local linear approach.

• Commonly in GP regression, chosen by maximizing marginal

log likelihood

• In simulations and applications shown here, covariance hypers

chosen via MLE, prior placed over β then exact inference

performed for τ
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Gaussian Process RD
Now with GPRD...



Preliminaries GPRD Empirical Applications Conclusion

Simulations

x = 2z − 1,

z ∼ B(2, 4),

f (x) = x + τ I (x > 0),

y = f (x) + ε,

ε ∼ N (0, σ2),

for τ = 0 and τ = 1, and for σ = 0.5 and σ = 1.
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Simulation Results
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Simulation Results
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Empirical Applications

Two Published Examples:

1. The Radical Right and Mainstream Party Platforms

(Abou-Chadi & Krause, 2018)

2. Ethnic Diversity on City Councils and Municipal Finance

(Beach & Jones, 2017)
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The Radical Right in Parliament
Global GPRD (τ̂ = 1.7, 95% CI: [0.8, 3.1])
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The Radical Right in Parliament
Piecewise GPRD (τ̂ = 1.9, 95% CI: [0.6, 2.8])

−5 0 5 10

−
6

−
4

−
2

0
2

4
6

Radical Right Margin

C
ha

ng
e 

in
 C

ul
tu

ra
l P

ro
te

ct
io

ni
sm



Preliminaries GPRD Empirical Applications Conclusion

Ethnic Diversity on City Councils



Preliminaries GPRD Empirical Applications Conclusion

Ethnic Diversity on City Councils



Preliminaries GPRD Empirical Applications Conclusion

Ethnic Diversity on City Councils



Preliminaries GPRD Empirical Applications Conclusion

Ethnic Diversity on City Councils



Preliminaries GPRD Empirical Applications Conclusion

Ethnic Diversity on City Councils
Global GPRD (τ̂ = 0.02, 95% CI: [−0.115, 0.154])
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Ethnic Diversity on City Councils
Piecewise GPRD (τ̂ = −0.13, 95% CI: [−0.311, 0.038])
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Conclusion

• GPRD overcomes several disadvantages of current approaches

• Performs well in simulation, particularly for noisy or low

powered datasets

• Provides more plausible estimates in empirical applications

• Research in progress:
• Alternative hyperparameter optimization approaches
• Extend to include pre-treatment covariates, fuzzy designs,

multiple cuto�s

• R package in development (gprd)



Preliminaries GPRD Empirical Applications Conclusion

Conclusion

• GPRD overcomes several disadvantages of current approaches

• Performs well in simulation, particularly for noisy or low

powered datasets

• Provides more plausible estimates in empirical applications

• Research in progress:
• Alternative hyperparameter optimization approaches
• Extend to include pre-treatment covariates, fuzzy designs,

multiple cuto�s

• R package in development (gprd)



Preliminaries GPRD Empirical Applications Conclusion

Conclusion

• GPRD overcomes several disadvantages of current approaches

• Performs well in simulation, particularly for noisy or low

powered datasets

• Provides more plausible estimates in empirical applications

• Research in progress:
• Alternative hyperparameter optimization approaches
• Extend to include pre-treatment covariates, fuzzy designs,

multiple cuto�s

• R package in development (gprd)



Preliminaries GPRD Empirical Applications Conclusion

Conclusion

• GPRD overcomes several disadvantages of current approaches

• Performs well in simulation, particularly for noisy or low

powered datasets

• Provides more plausible estimates in empirical applications

• Research in progress:
• Alternative hyperparameter optimization approaches
• Extend to include pre-treatment covariates, fuzzy designs,

multiple cuto�s

• R package in development (gprd)



Preliminaries GPRD Empirical Applications Conclusion

Conclusion

• GPRD overcomes several disadvantages of current approaches

• Performs well in simulation, particularly for noisy or low

powered datasets

• Provides more plausible estimates in empirical applications

• Research in progress:

• Alternative hyperparameter optimization approaches
• Extend to include pre-treatment covariates, fuzzy designs,

multiple cuto�s

• R package in development (gprd)



Preliminaries GPRD Empirical Applications Conclusion

Conclusion

• GPRD overcomes several disadvantages of current approaches

• Performs well in simulation, particularly for noisy or low

powered datasets

• Provides more plausible estimates in empirical applications

• Research in progress:
• Alternative hyperparameter optimization approaches

• Extend to include pre-treatment covariates, fuzzy designs,

multiple cuto�s

• R package in development (gprd)



Preliminaries GPRD Empirical Applications Conclusion

Conclusion

• GPRD overcomes several disadvantages of current approaches

• Performs well in simulation, particularly for noisy or low

powered datasets

• Provides more plausible estimates in empirical applications

• Research in progress:
• Alternative hyperparameter optimization approaches
• Extend to include pre-treatment covariates, fuzzy designs,

multiple cuto�s

• R package in development (gprd)



Preliminaries GPRD Empirical Applications Conclusion

Conclusion

• GPRD overcomes several disadvantages of current approaches

• Performs well in simulation, particularly for noisy or low

powered datasets

• Provides more plausible estimates in empirical applications

• Research in progress:
• Alternative hyperparameter optimization approaches
• Extend to include pre-treatment covariates, fuzzy designs,

multiple cuto�s

• R package in development (gprd)


	Preliminaries
	GPRD
	Empirical Applications
	Conclusion

