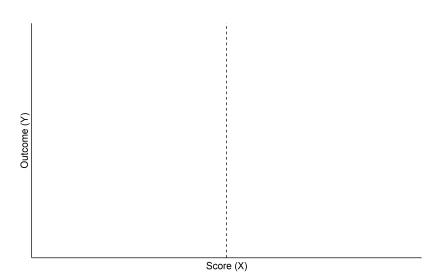
Gaussian Process Regression Discontinuity

Joseph T. Ornstein JBrandon Duck-Mayr

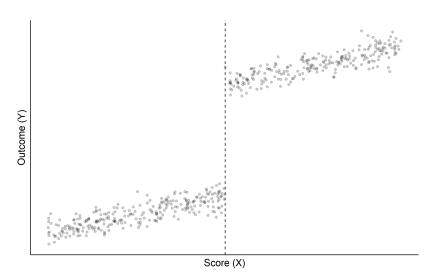
Washington University in St. Louis

February 21, 2020

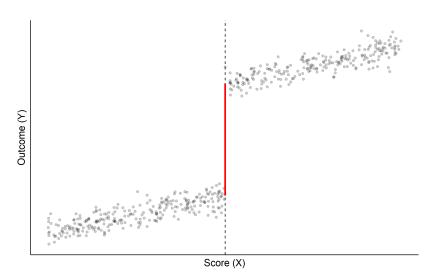
The Regression Discontinuity (RD) Design



The Regression Discontinuity (RD) Design

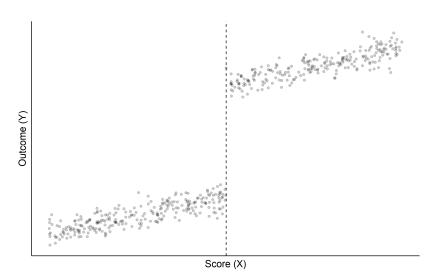


The Regression Discontinuity (RD) Design

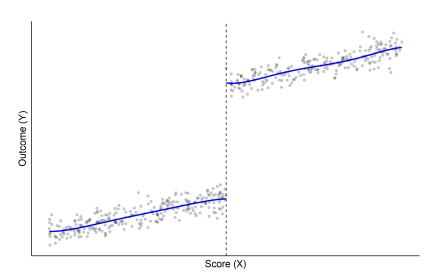


1. Global Parametric RD

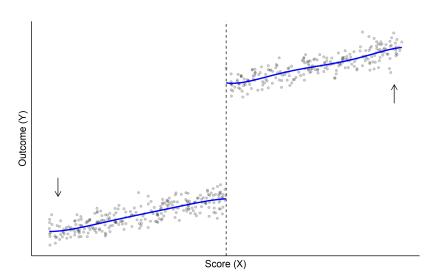
Global Parametric RD



Global Parametric RD



Global Parametric RD



1. Global Parametric RD

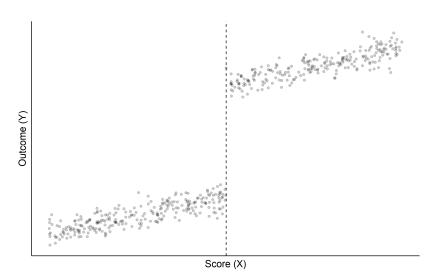
- 1. Global Parametric RD
 - Specification Bias

1. Global Parametric RD

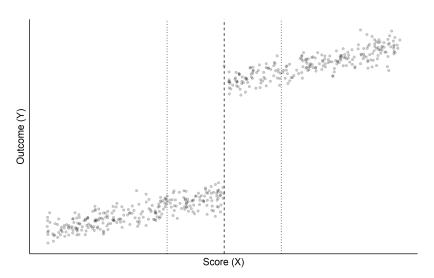
- Specification Bias
- Overfits to observations far from the cutoff

- 1. Global Parametric RD
 - Specification Bias
 - Overfits to observations far from the cutoff
- 2. Local Nonparametric RD

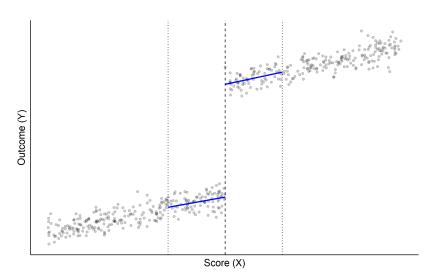
Local Nonparametric RD

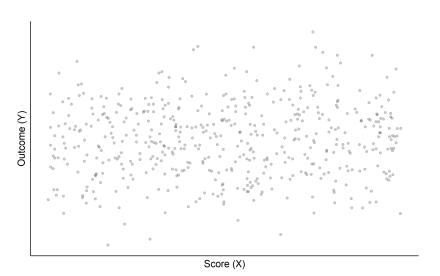


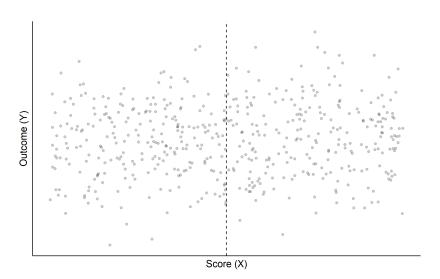
Local Nonparametric RD

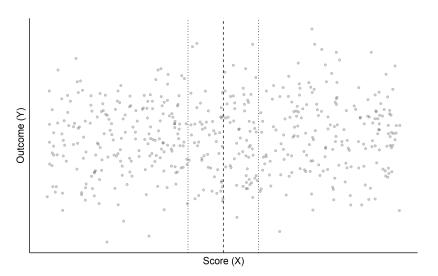


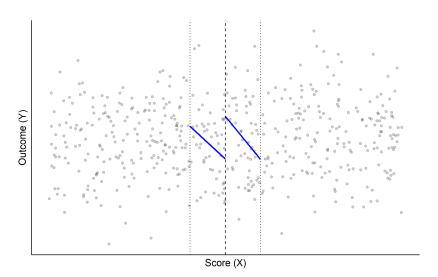
Local Nonparametric RD



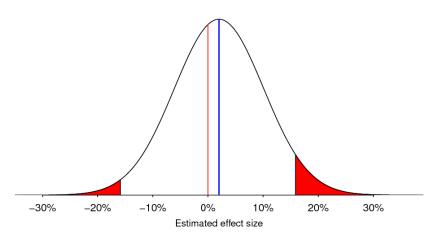








Replication Crisis (Type M Error)



Low power + statistical significance filter → Exaggerated Claims

- 1. Global Parametric RD
 - Specification Bias
 - Overfits to observations far from the cutoff
- 2. Local Nonparametric RD

- 1. Global Parametric RD
 - Specification Bias
 - Overfits to observations far from the cutoff
- 2. Local Nonparametric RD
 - Lower bias at the cost of ignoring observations, higher variance

- 1. Global Parametric RD
 - Specification Bias
 - Overfits to observations far from the cutoff
- 2. Local Nonparametric RD
 - Lower bias at the cost of ignoring observations, higher variance
 - When sample size small, published effect estimates exaggerated

- 1. Global Parametric RD
 - Specification Bias
 - Overfits to observations far from the cutoff
- 2. Local Nonparametric RD
 - Lower bias at the cost of ignoring observations, higher variance
 - When sample size small, published effect estimates exaggerated
- 3 Gaussian Process RD

- 1. Global Parametric RD
 - Specification Bias
 - Overfits to observations far from the cutoff
- 2. Local Nonparametric RD
 - Lower bias at the cost of ignoring observations, higher variance
 - When sample size small, published effect estimates exaggerated
- 3 Gaussian Process RD
 - Overcomes these disadvantages in a principled way

- We propose and RD estimator based on Gaussian process (GP) regression
- GP regression can be viewed as a simple but flexible extension of Bayesian linear regression
- GP regression helps us avoid strong assumptions about the function mapping the forcing variable x to the outcomes y
- This helps us estimate function values from the left and the right without resorting to local strategies

The basic setting is observing inputs x and noisy outputs y that are a function of x.

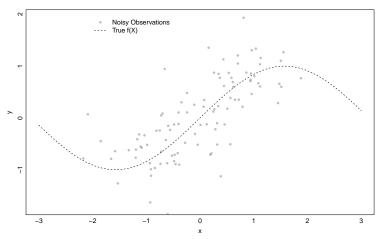


Figure: Learning the Mapping from x to y with a GP Prior

But, the problem is we may not know the functional form of $f: x \to y$.

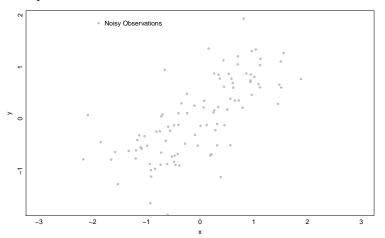


Figure: Learning the Mapping from x to y with a GP Prior

- So, we put a GP prior over f.
- Technically, a GP is an infinite-dimensional generalization of the normal distribution.
- Theoretically, in our case, it is a distribution over functions.
- Practically, it's fancy way of assuming outputs are distributed normally given the inputs, but crucially the covariance between outputs are a function of the inputs.

So, we put a GP prior over f (with a Gaussian likelihood)

$$\mathbf{y} = f(\mathbf{x}) + \varepsilon,$$

 $f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), K(\mathbf{x}, \mathbf{x})),$
 $\varepsilon \sim \mathcal{N}(0, \sigma_y^2),$

where $m(\mathbf{x})$ and K are functions of the inputs. In this example, we show a common and simple case: $m(\mathbf{x}) = \mathbf{0}$, and the i,j element of the covariance matrix is given by

$$K\left(\mathbf{x}_{i},\mathbf{x}_{j}
ight)=\sigma_{f}^{2}\exp\left(-0.5rac{\left(\mathbf{x}_{i}-\mathbf{x}_{j}
ight)^{2}}{\ell^{2}}
ight)$$

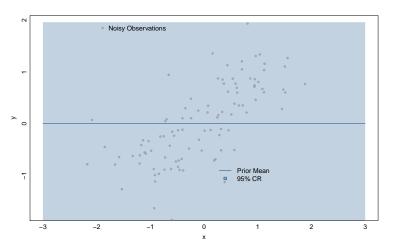


Figure: Learning the Mapping from x to y with a GP Prior

The posterior over f is given using well-known Gaussian identities

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K + \sigma_y^2 I & K_*^T \\ K_* & K_{**} \end{bmatrix} \right),$$

$$K = K (\mathbf{x}, \mathbf{x}),$$

$$K_* = K (\mathbf{x}_*, \mathbf{x}),$$

$$K_{**} = K (\mathbf{x}_*, \mathbf{x}_*),$$

$$\mathbf{f}_* \mid \mathbf{x}, \mathbf{y}, \mathbf{x}_* \sim \mathcal{N} \left(K_* \left[K + \sigma_y^2 I \right]^{-1} \mathbf{y}, K_{**} - K_* \left[K + \sigma_y^2 I \right]^{-1} K_*^T \right).$$

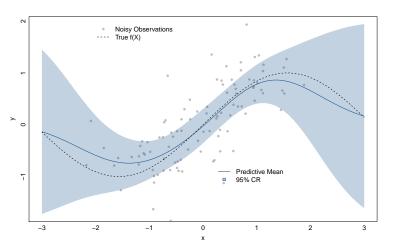


Figure: Learning the Mapping from x to y with a GP Prior

Gaussian Process Regression for Regression Discontinuity Designs

 Two methods to estimate treatment effects in RD designs using GP regression.

- Two methods to estimate treatment effects in RD designs using GP regression.
- First is the global GPRD estimator:

- Two methods to estimate treatment effects in RD designs using GP regression.
- First is the global GPRD estimator:
 - We fit one GP regression to all the data, with a dummy for treatment

- Two methods to estimate treatment effects in RD designs using GP regression.
- First is the global GPRD estimator:
 - We fit one GP regression to all the data, with a dummy for treatment
 - Then the treatment effect is the difference in predictions when x equals the cutoff and the dummy is 1 and 0

- Two methods to estimate treatment effects in RD designs using GP regression.
- First is the global GPRD estimator:
 - We fit one GP regression to all the data, with a dummy for treatment
 - Then the treatment effect is the difference in predictions when x equals the cutoff and the dummy is 1 and 0
- Second is the *piecewise GPRD estimator*:

- Two methods to estimate treatment effects in RD designs using GP regression.
- First is the global GPRD estimator:
 - We fit one GP regression to all the data, with a dummy for treatment
 - Then the treatment effect is the difference in predictions when x equals the cutoff and the dummy is 1 and 0
- Second is the piecewise GPRD estimator:
 - We fit two GP regressions, one to each side of the cutoff

- Two methods to estimate treatment effects in RD designs using GP regression.
- First is the global GPRD estimator:
 - We fit one GP regression to all the data, with a dummy for treatment
 - Then the treatment effect is the difference in predictions when x equals the cutoff and the dummy is 1 and 0
- Second is the *piecewise GPRD estimator*:
 - We fit two GP regressions, one to each side of the cutoff
 - Then the treatment effect is the difference in the two GPs' predictions when x equals the cutoff

For the global GPRD estimator, we place a Gaussian process (GP) prior on f(x),

$$p(f) = \mathcal{GP}(X\beta, K(X)),$$

 $X = [1|x|D],$

where K is the squared exponential automatic relevance determination covariance function

$$\mathcal{K}\left(\mathbf{X},\mathbf{X}'
ight) = \sigma_f^2 \exp\left(-0.5 \sum_j rac{\left(\mathbf{X}_{\cdot,j} - \mathbf{X}'_{\cdot,j}
ight)^2}{\ell_j^2}
ight).$$

So we are interested in the treatment effect

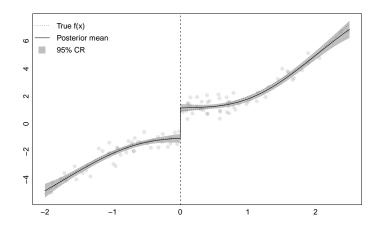
$$\tau_{GPRD-G} \stackrel{\text{def}}{=} f(\begin{bmatrix} 0 & 1 \end{bmatrix}) - f(\begin{bmatrix} 0 & 0 \end{bmatrix}),$$

or the difference between f(x = 0, D = 1) and f(x = 0, D = 0), which is distributed

$$\begin{split} \tau_{\textit{GPRD}-\textit{G}} &\sim \mathcal{N}\left(\mu_*, \Sigma_*\right), \\ \mu_* &= \bar{f}\left(\begin{bmatrix} 0 & 1 \end{bmatrix}\right) - \bar{f}\left(\begin{bmatrix} 0 & 0 \end{bmatrix}\right), \\ \Sigma_* &= \text{cov}\left(f\left(\begin{bmatrix} 0 & 1 \end{bmatrix}\right)\right) + \text{cov}\left(f\left(\begin{bmatrix} 0 & 0 \end{bmatrix}\right)\right). \end{split}$$

Here's an example, where

$$x \sim \mathcal{N}(0,1)$$
 $f(x) = egin{cases} x^2 + 1 & ext{if } x > 0 \ -x^2 - 1 & ext{otherwise,} \end{cases}$
 $y = f(x) + arepsilon,$
 $arepsilon \sim \mathcal{N}(0,0.5^2).$



True effect: 2; Estimate: 2.19; 95% CI: [1.77, 2.62]

Piecewise GPRD Estimator

For the piecewise GPRD estimator, we place GP priors on $f_+(x)$ and $f_-(x)$,

$$\begin{split} p(f_+) &= \mathcal{GP}(\mathbf{X}_+\beta_+, K(x_+)), \\ p(f_-) &= \mathcal{GP}(\mathbf{X}_-\beta_-, K(x_-)), \\ \mathbf{X} &= \begin{bmatrix} \mathbf{1} | \mathbf{x} \end{bmatrix}, \end{split}$$

where K is the isometric squared exponential covariance function

$$K(x, x') = \sigma_f^2 \exp\left(-0.5 \frac{(x - x')^2}{\ell^2}\right).$$

Piecewise GPRD Estimator

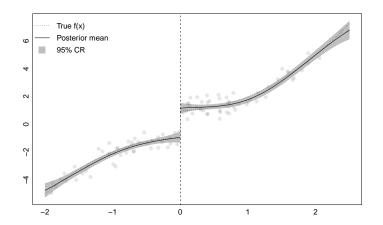
So we are interested in the treatment effect

$$\tau_{GPRD-P} \stackrel{\text{def}}{=} f_{+}(0) - f_{-}(0),$$

which is distributed

$$au_{GPRD-P} \sim \mathcal{N}(\bar{f}_{+}(0) - \bar{f}_{-}(0), \text{cov}(f_{+}(0)) + \text{cov}(f_{-}(0))).$$

Piecewise GPRD Estimator



True effect: 2; Estimate: 2.09; 95% CI: [1.54, 2.64]

• Choice of hyperparameters—particularly the length scale (ℓ) —likely to affect our estimates.

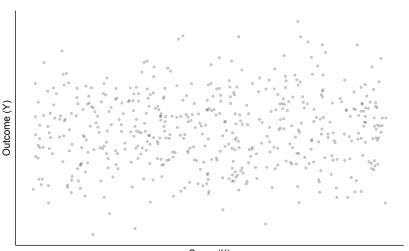
- Choice of hyperparameters—particularly the length scale (ℓ) —likely to affect our estimates.
 - Length scale in GPRD performs similar role as bandwidth in local linear approach.

- Choice of hyperparameters—particularly the length scale (ℓ) —likely to affect our estimates.
 - Length scale in GPRD performs similar role as bandwidth in local linear approach.
- Commonly in GP regression, chosen by maximizing marginal log likelihood

- Choice of hyperparameters—particularly the length scale (ℓ) —likely to affect our estimates.
 - Length scale in GPRD performs similar role as bandwidth in local linear approach.
- Commonly in GP regression, chosen by maximizing marginal log likelihood
- In simulations and applications shown here, covariance hypers chosen via MLE, prior placed over β then exact inference performed for τ

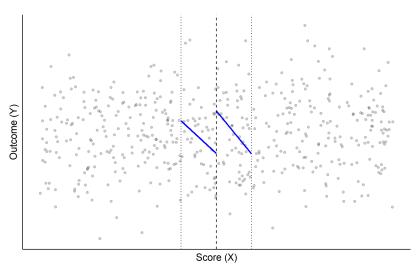
Returning to our earlier example...

Preliminaries



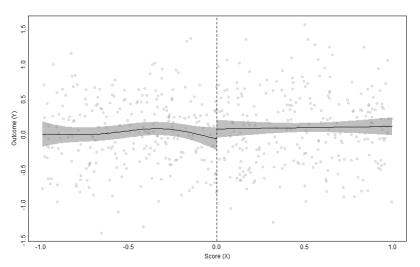
Gaussian Process RD

Returning to our earlier example...



Gaussian Process RD

Now with GPRD...



Simulations

$$x = 2z - 1,$$

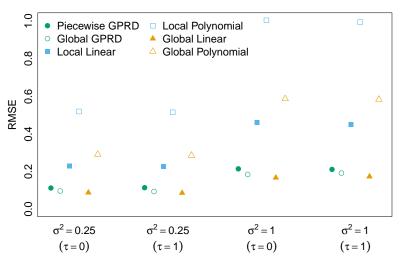
$$z \sim \mathcal{B}(2, 4),$$

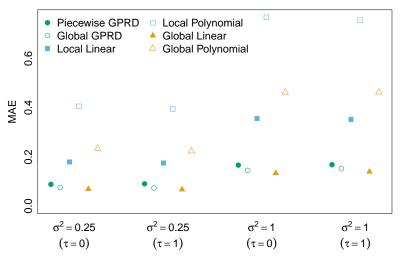
$$f(x) = x + \tau I(x > 0),$$

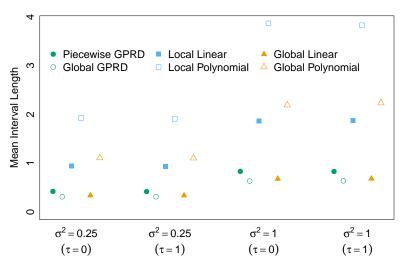
$$y = f(x) + \varepsilon,$$

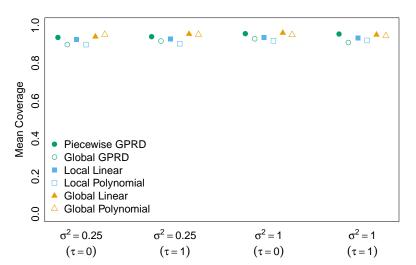
$$\varepsilon \sim \mathcal{N}(0, \sigma^2),$$

for $\tau=0$ and $\tau=1$, and for $\sigma=0.5$ and $\sigma=1$.



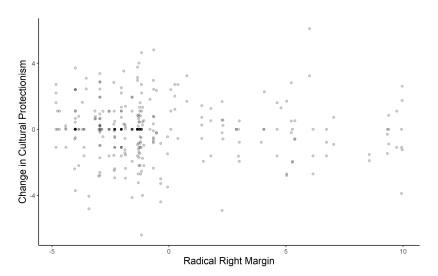


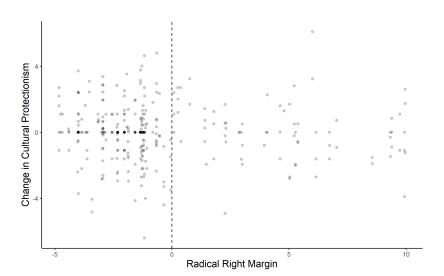


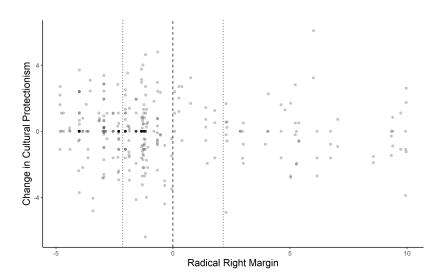


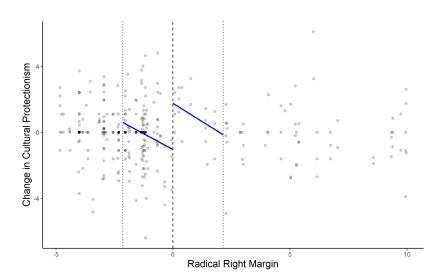
Two Published Examples:

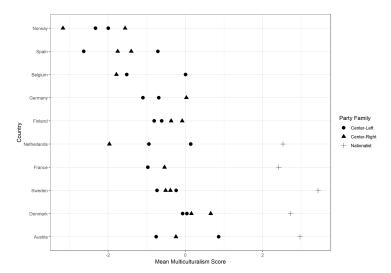
- The Radical Right and Mainstream Party Platforms (Abou-Chadi & Krause, 2018)
- 2. Ethnic Diversity on City Councils and Municipal Finance (Beach & Jones, 2017)

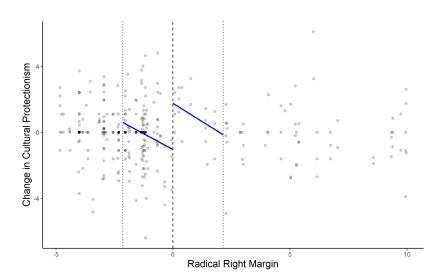




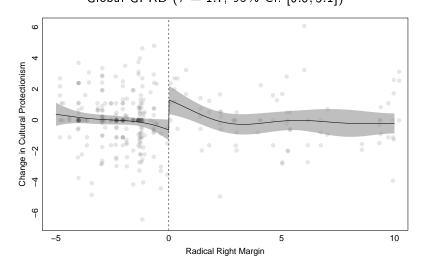




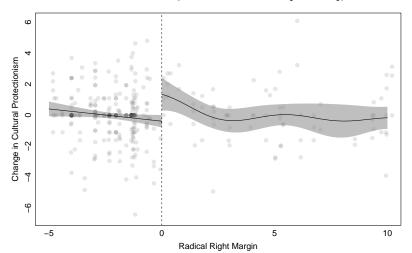


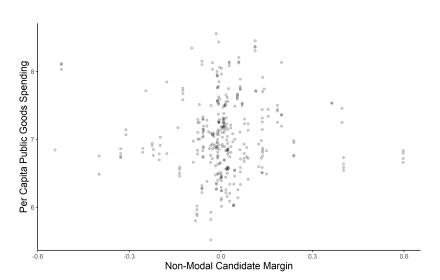


The Radical Right in Parliament Global GPRD ($\hat{\tau} = 1.7, 95\%$ CI: [0.8, 3.1])

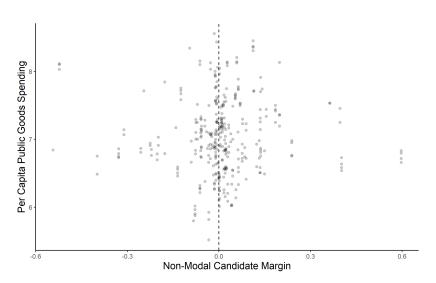


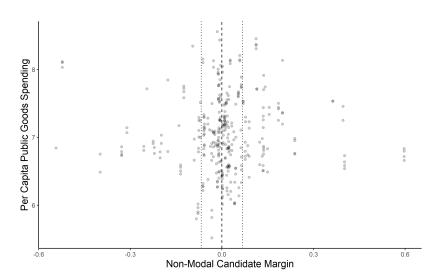
Piecewise GPRD ($\hat{\tau} = 1.9, 95\%$ CI: [0.6, 2.8])

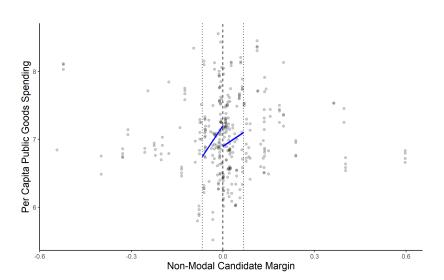




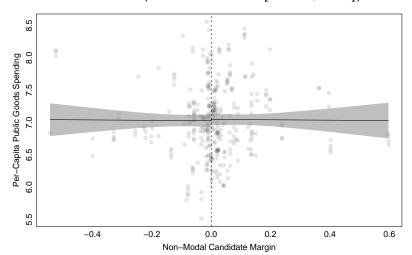
Ethnic Diversity on City Councils



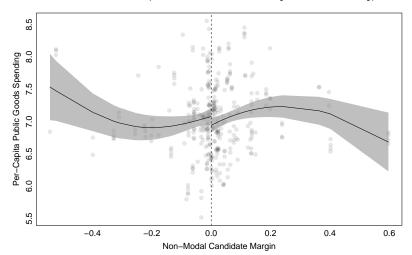




Global GPRD ($\hat{\tau} = 0.02, 95\%$ CI: [-0.115, 0.154])



Piecewise GPRD ($\hat{\tau} = -0.13, 95\%$ CI: [-0.311, 0.038])



• GPRD overcomes several disadvantages of current approaches

- GPRD overcomes several disadvantages of current approaches
- Performs well in simulation, particularly for noisy or low powered datasets

- GPRD overcomes several disadvantages of current approaches
- Performs well in simulation, particularly for noisy or low powered datasets
- Provides more plausible estimates in empirical applications

- GPRD overcomes several disadvantages of current approaches
- Performs well in simulation, particularly for noisy or low powered datasets
- Provides more plausible estimates in empirical applications
- Research in progress:

- GPRD overcomes several disadvantages of current approaches
- Performs well in simulation, particularly for noisy or low powered datasets
- Provides more plausible estimates in empirical applications
- Research in progress:
 - Alternative hyperparameter optimization approaches

- GPRD overcomes several disadvantages of current approaches
- Performs well in simulation, particularly for noisy or low powered datasets
- Provides more plausible estimates in empirical applications
- Research in progress:
 - Alternative hyperparameter optimization approaches
 - Extend to include pre-treatment covariates, fuzzy designs, multiple cutoffs

- GPRD overcomes several disadvantages of current approaches
- Performs well in simulation, particularly for noisy or low powered datasets
- Provides more plausible estimates in empirical applications
- Research in progress:
 - Alternative hyperparameter optimization approaches
 - Extend to include pre-treatment covariates, fuzzy designs, multiple cutoffs
- R package in development (gprd)