Developing new practices for increasing transparency in social science research

Emily H Ho Department of Psychology

Outline

- Reproducibility crisis
- Study 1: Theoretical
- Study 2: Empirical (subjective judgment)
- Conclusion

Reproducibility Crisis

- Nosek et al. (2015) found that the results from about 100 studies, using original data, could not be replicated
 - 97% percent of original studies had significant results (*P* < .05).
 - Only 36% percent of replications had significant results

How better to evaluate design and results of studies?

- Empirical distributions, or data occurring 'in the wild', is often non-normal
- Yet there is no statistically robust way of quantifying the extent of non-normality between two such distributions
- Additionally, simulation studies often attempt to investigate the extent of non-normality on a certain phenomenon

Conflicting definitions of non-normality

		•		
	Values	Method of simulation		
Woods, 2008	Skewness = 1.57	Mixture of two normal		
	Kurtosis = 3.52	distributions (M1 = -0.253 , M2 =		
		2.192, S1 = 0.609, S2 = 1.045, mp1		
		= .897, mp2 = .103)		
Preston &	Skewness = 1.75	Mixture of normal distributions		
Reise, 2014	Kurtosis = 6.75	Bimodal (M1 = 21.5, M2 = 3.0, S1		
		= 0.7, S2 = 1.5, mp1 = 1.0, mp2 =		
		0.7)		
Savalei, 2010	Skewness = 2 Kurtosis = 7	Fleishman (1978) method		
Enders, 2001	Moderate nonnormality:	(Fleishman, 1978; Vale & Maurelli,		
LIIGC13, 2001	Skewness=1.25	1983)		
	Kurtosis = 7.0			
	Extreme nonnormality:			
	Skewness=3.25			
	Kurtosis= 20.0			

- Goal: to evaluate a suite of theoretical distances, as applied to constructed nonnormal distributions
- Using the Fleishman (1978) method of constructing non-normal distributions, we simulate 107 distributions of the form $F^{\sim}(0,1,x,y)$
- x = Skewness: ranged from [-0.25, 1.75]
- y = Kurtosis: ranged from [-1, 3.75]

- Using 17 measure s from 3 classes, we calculated the distance between 107 non-normal distributions and the standard normal, $X^{\sim}N(0,1,0,0)$.
 - Minkowski (includes Euclidean, Chebyshev distance)
 - L1 (includes Sorenson)
 - Intersection (includes WavesHedges)

Theoretical (Minkowski)

Theoretical (Lp family)

Theoretical (Intersection Family)

Theoretical (summary)

- The intra-class distance measures exhibit little agreement with each other, with some measures appearing to be minimally affected by skewness and kurtosis
- To more clearly delineate a 'new' grouping of distances based on their sensitivity to skewness and kurtosis, polynomial regression was conducted:

```
Distance = Intercept + Skewness + Kurtosis + Skewness<sup>2</sup> + Kurtosis <sup>2</sup> + Skewness * Kurtosis
```

Prescribed Taxonomy

						Skew*K			
Distance	Int	Skew	Kurt	Skew^2 Kurt^2 urt			R^2		
Euclidean		1	1	0	1	1	1	0.93	
City.Block		1	1	0	1	1	1	0.94	
Minkowski		1	1	0	1	1	1	0.9	
Chebyshev		1	1	1	1	1	0	0.92	
Sorenson		1	1	0	1	0	0	0.42	
Gower		1	1	0	1	1	1	0.94	
Soergel		1	0	0	0	0	0	0.06	
Kulczynski.d		1	0	0	0	0	0	0.06	
Canberra		0	0	0	0	0	0	0.58	
Lorentzian		1	1	0	1	1	1	0.93	
Intersection		1	1	0	1	1	1	0.94	
WavesHedges		0	1	1	1	1	1	0.98	
Czekanowski		1	1	0	1	0	0	0.42	
Motyka		1	1	0	1	0	0	0.42	
Kulczynski.s		1	0	0	0	0	0	0.06	
Ruzicka		1	0	0	0	0	0	0.06	
Tanimoto		1	0	0	0	0	0	0.06	

Variance Explained Taxonomy

						Skew*K			
X	Int	Skew	Kurt	Skew^2 Kurt^2 ur		^2 urt	R^2		
Euclidean		1	1	0	1	1	1	0.93	
City.Block		1	1	0	1	1	1	0.94	
Minkowski		1	1	0	1	1	1	0.9	
Gower		1	1	0	1	1	1	0.94	
Lorentzian		1	1	0	1	1	1	0.93	
Intersection		1	1	0	1	1	1	0.94	
Sorenson		1	1	0	1	0	0	0.42	
Czekanowski		1	1	0	1	0	0	0.42	
Motyka		1	1	0	1	0	0	0.42	
Chebyshev		1	1	1	1	1	0	0.92	
							·		
Canberra		0	0	0	0	0	0	0.58	
WavesHedges		0	1	1	1	1	1	0.98	

The Soergel, Kulczynski.d, Kulczynski.s, Ruzicka, and Tanimoto were predicted only by the intercept, $R^2 = 0.06$

Theoretical: Summary

- Theoretical distances do not cleanly map onto the non-normal distributions of varying skewness and kurtosis
- The distances are, in some cases, completely insensitive to these moments
- A variance explained taxonomy of distances reveals very different groupings than the theoretical classes
- Future work: more distance classes, different ways of producing non-normal distributions (e.g., mixture proportions), different distribution parameters (hypermoments, tail weights)

Empirical (psychophysical)

- How well can laypeople distinguish differences between distributions?
- Thomas et al (2015) asked 6 experts their assessment of sea level rise in the year 2050.
- Using two display formats (cumulative distribution functions and probability density functions), we asked laymen to evaluate their perceived distance between two experts

Experiment Display

Empirical

 Unidimensional scaling of the theoretical distances (same used in Study 1) and the median subjective judgments (pdf and cdf)

Empirical

- The theoretical metrics agree on the clustering of expert judgments
- The empirical metrics have moderate agreement

Conclusion

- Theoretical metrics perform non-uniformly when assessing the extent of systematic deviance from a standard normal distribution
- In the empirical study, we found (a) high agreement between theoretical metrics, (b) moderate agreement (r=0.5) between empirical judgments based on pdfs and cdfs, and (c) low agreement between empirical judgments and the theoretical metrics
- Psychophysical methods do not agree with purely statistical methods
- Future experiments will use theoretical distributions (as in those generated by the Fleishman method) to compare more directly psychophysical and statistical judgments

References

- Deza, M., & Deza, E. (2009). *Encyclopedia of Distances*. Springer Berlin Heidelberg.
- Enders, C. K. (2001). The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data. *Psychological Methods*, 6(4), 352.
- Fleishman, A. I. (1978). A method for simulating non-normal distributions. Psychometrika, 43(4), 521–532.
- Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105(1), 156.
- Nosek, et al (2015). Estimating the reproducibility of psychological science. Science. doi: 10.1126/science.aac4716.
- Preston, K. S. J., & Reise, S. P. (2014). Estimating the Nominal Response Model Under Nonnormal Conditions. *Educational and Psychological Measurement*, 74(3), 377–399. http://doi.org/10.1177/0013164413507063
- Savalei, V. (2010). Expected versus observed information in SEM with incomplete normal and nonnormal data. Psychological Methods, 15(4), 352–367. http://doi.org/10.1037/a0020143
- Thomas, M., Pidgeon, N., Whitmarsh, L., & Ballinger, R. (2015). Expert judgements of sea-level rise at the local scale. *Journal of Risk Research*, 1–22. http://doi.org/10.1080/13669877.2015.1043568
- Vale, C. D., & Maurelli, V. A. (1983). Simulating multivariate nonnormal distributions.
 Psychometrika, 48(3), 465–471.
- Woods, C. M. (2008). Likelihood-Ratio DIF Testing: Effects of Nonnormality. Applied Psychological Measurement, 32(7), 511–526. http://doi.org/10.1177/0146621607310402

Theoretical Distance Formulas

- Euclidean (of the Minkowski family)- "straight-line" metric distance
- Sorenson (of the L₁ family) a proportion coefficient of overlap that is semi-metric (can have two distinct points with a distance of 0); more sensitive to outliers
- WavesHedges (of the Intersection family) – metric distance used as a measure of overlap; sensitive to histogram binning

$$d_{Euc} = \sqrt{\sum_{i=1}^{d} |P_i - Q_i|^2}$$

$$d_{sor} = \frac{\sum_{i=1}^{d} |P_i - Q_i|}{\sum_{i=1}^{d} (P_i + Q_i)}$$

$$d_{WH} = \sum_{i=1}^{d} (1 - \frac{\min(P_i, Q_i)}{\max(P_i, Q_i)})$$

$$= \sum_{i=1}^{d} \frac{|P_i - Q_i|}{\max(P_i, Q_i)}$$