Latent Tree Models and Approximate Inference in Bayesian Networks
Yi Wang, Nevin L. Zhang, Tao Chen — The Hong Kong University of Science and Technology

The Problem
- Probabilistic inference
 - Given Bayesian network \mathcal{N} and evidence $E = e$
 - What is $P_X(Q|E = e)$?
- Intractable for general BNs

Our Contribution
- A novel approximate inference method

Latent Tree Models
- Tree-structured Bayesian networks
 - Manifest variables at leaf nodes are observed
 - Latent variables at internal nodes are hidden
- Two merits
 - Computationally simple
 - Model complex relationships among manifest variables

Structure Learning
- Basic ideas
 - In LTM, siblings are more closely correlated than nodes located far apart
 - If \mathcal{M} approximates \mathcal{N} well, then
 Nodes closely correlated in \mathcal{M} are closely correlated in \mathcal{N}
- Introduce latent variables for closely correlated nodes in \mathcal{N}
- A hierarchical clustering procedure

Cardinalities of Latent Variables
- Set cardinalities at C
- Extreme case 1: Large $C (\geq \prod_{X \in X} |X|)$
 - Represents BN \mathcal{N} exactly, best approximation
 - High inferential complexity
- Extreme case 2: $C = 1$
 - Poorest approximation of \mathcal{N}
 - Lowest online cost
- Extreme case 1 \rightarrow Extreme case 2
 - Approximation accuracy decreases
 - Inferential efficiency improves

Offline Phase
- Inputs: (1) BN \mathcal{N} over X, (2) Parameter C
- Output: An LTM \mathcal{M}
 - Uses X as manifest variables
 - Cardinalities of latent variables upper bounded by C
 - Small KL divergence
 $$D[\mathcal{P}_N(X)||\mathcal{P}_M(X)] = \sum_X \mathcal{P}_N(X) \log \frac{\mathcal{P}_N(X)}{\mathcal{P}_M(X)}$$

Parameter Learning
- Find optimal parameter $\theta^* = \arg \min_{\theta} D[\mathcal{P}_N(X)||\mathcal{P}_M(X|\theta)]$
- Solve an equivalent problem
 - Generate data set \mathcal{D} with N samples from \mathcal{N}
 - Run EM to learn MLE $\hat{\theta} = \arg \max_{\theta} \log \mathcal{P}_M(\mathcal{D}|\theta)$
- As $N \rightarrow \infty$, $\hat{\theta}$ almost surely converges to θ^*

Experimental Results
- Evaluated on 8 networks
 - Increase C for
 - Higher approximation accuracy
 - Longer online phase
 - Versus clique tree propagation
 - Good approximation accuracy, average KL < 0.01
 - Low online cost, faster by one to two orders of magnitude
 - Versus loopy belief propagation
 - Comparable or higher approximation accuracy
 - Faster by five times to one order of magnitude

Conclusion
- A novel approximate method for probabilistic inference
 - Tradeoff between efficiency and accuracy by changing C
 - Good approximation accuracy at low online cost
 - Offline phase takes a long time due to EM algorithm
- Suitable for applications
 - Allow long offline phase
 - Demand good online performance