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Commuting reflects the long-term travel behavior of people and significantly impacts urban traffic congestion
and emission. Recent advances in data availability provide newopportunities to understand commuting patterns
efficiently and effectively. This study develops a series of data mining methods to identify the spatiotemporal
commuting patterns of Beijing public transit riders. Using one-month transit smart card data,wemeasure spatio-
temporal regularity of individual commuters, including residence,workplace, and departure time. This data could
be used to identify transit commuters by leveraging spatial clustering and multi-criteria decision analysis ap-
proaches. A disaggregated-level survey is performed to demonstrate the effectiveness of the proposed methods
with a commuter identification accuracy that reaches as high as 94.1%. By visualizing the spatial distribution of
the homes and workplaces of transit commuters, we determine a clear disparity between commuters and
noncommuters and confirm the existence of job–house imbalance in Beijing. The findings provide useful insights
for policymakers to shape a more balanced job–housing relationship by adjusting the monocentric urban struc-
ture of Beijing. In addition, the extracted individual-level commuting patterns can be used as valuable informa-
tion for public transit network design and optimization. These strategies are expected to reduce car dependency,
shorten excess commute, and alleviate traffic congestion.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

As the primary component of personal daily travel, commuting con-
siderably influences urban traffic conditions (Zhou et al., 2014). The
job–housing spatial imbalance forces people to endure long commuting
time, and thus, results in excessive travel time and fuel consumption
(VanAcker andWitlox, 2011; Charron, 2007). Tomitigate these adverse
effects, transportation planners and operators strive to reduce travel de-
mand and improve commuting efficiency through policies or techno-
logical countermeasures (Lovelace et al., 2014; Li et al., 2013a). Among
thesemeasures, prioritizing public transportation systems is considered
as one of themost effective strategies because it can significantly reduce
car dependency, mitigate traffic congestion, and alleviate air pollution
(Ma andWang, 2014; Li et al., 2013b; Zhao, 2013). Understanding tran-
sit commuting patterns offers valuable insights into the spatial and tem-
poral relationship between transit commuters' residences and
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workplaces (Zhao, 2013; Louf and Barthelemy, 2014). These insights
will highlight the critical need for properly designing public transport
networks to establish job–housing balance (Zhou et al., 2014). Unlike
traditional zonal or regional travel commuting behavioral studies, indi-
vidual-level commuting patterns provide more detailed and useful in-
formation to refine existing travel demand forecasting models with
high-resolution human mobility (Yang et al., 2014; Ren et al., 2014).
In addition, targeting individual transit commuters using fare reduction
for ridership attraction is necessary to improve public transportation
systems usage rates (Ma et al., 2013). However, extracting the commut-
ing behavior of an individual transit rider is not a straightforward task.
Conventional public transport behavioral studies rely on household
travel surveys or diaries to obtain personal profile, socioeconomic and
demographic information, and travel patterns (Louail et al., 2014;
Schneider et al., 2013; Jiang et al., 2012). This process is costly, time-
consuming, and frequently results in a low sampling rate and a small
population size. When ask to participate in multi-day travel surveys,
people are usually reluctant to respond because of survey fatigue,
which will further decrease data availability and accuracy (Mahrsi et
al., 2014).

The recent developments of emerging data sources and statistical
methods have created opportunities to analyze and determine transit
commuting behavior at an individual level over long-term periods.
Transit smart card data from automatic fare collection systems are
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widely adopted by transit authorities to manage revenue as well as to
gather abundant passenger boarding and alighting information in a dis-
aggregated manner (Kusakabe and Asakura, 2014). Comparedwith tra-
ditional data collectionmethods, smart card data can record the day-to-
day variability in the travel patterns of an individual transit rider and
have the potential to identify transit commuters and detect their spatial
and temporal regularity through a continuous long-term observation
period (Schneider et al., 2013). A large number of behavioral studies
using smart card data have gained more and more popularities.
Morency et al. (2007) applied data mining techniques to examine the
spatial and temporal variability of transit use based on smart card
data. Ma et al. (2013) developed a Density-Based Scanning Algorithm
with Noise (DBSCAN) to categorize different groups of transit riders
with varying travel patterns. Kieu et al. (2015a, b) improved the original
DBSCAN algorithm proposed by Ma et al. (2013), and significantly re-
duced the algorithm complexity with the same clustering performance.
Langlois et al. (2016) utilized four-week transit smart transaction data
to identify transit rider heterogeneity, and generated 11 clusters with
distinct activity sequences and demographic attributes. Ali et al.
(2015) developed a large-scale activity based public transport simula-
tion platform based on MATSim, and used the smart card as an input.
They demonstrated the feasibility of applying smart card data into
microsimulation travel demand models. As documented by Pelletier et
al. (2011), new analytical methods and disaggregate approaches based
on smart card data are renovating traditional travel behavior research.

In the current literature on transit behavioral studies on commuting
travel patterns, the definition of a transit commuter is oversimplified.
The majority of these studies only considered the repeatability of tem-
poral activities (e.g., transit riders traveling for at least a number of
days are determined to be transit commuters) (Long et al., 2012; Zhou
et al., 2014). Several researchers simultaneously incorporated both the
spatial and temporal regularities of recurring travels into transit passen-
ger segmentation studies. Ortega-Tong (2013) analyzed the spatial and
temporal travel patterns of London transit riders with Oyster Cards, and
grouped them into 8 clusters based on different sociodemographic char-
acteristics and activity patterns. The transit riders traveling 4 days a
week ormorewere categorized as regular users. Kieu et al. (2015b) pro-
posed a transit passenger segmentation method based on smart card
data. The method identified the spatial travel pattern of each transit
rider using a two-step DBSCAN algorithm, and a k-means algorithm
was the applied to distinguish frequent and infrequent transit users
based on the number of travel days and journeys made. Ma et al.
(2013) developed a density-based clustering algorithm to mine each
transit rider's spatial and temporal travel pattern in Beijing, and then
proposed a K-means++ algorithm and Rough Set based approach to
measure travel regularity. More than 40% transit riders were identified
as frequent passengers. Kung et al. (2014) used mobile phone data to
understand home-work commuting behaviors at three countries (Por-
tugal, Ivory Coast, and Saudi Arabia) and one city (Boston). Individual's
home andwork locations can be identified by a spatial and temporal fil-
tering approach. They found that the home-work commuting time dis-
tribution is independent of commute distance. However, the above
studies are not specifically designed for transit commuter identification.
Even if each transit rider's spatial and temporal travel pattern can be
mined in some literatures, how the identified spatiotemporal travel pat-
tern tie to one's commuting behavior is still not clear. Fortunately, the
rapid development of data mining and statistical techniques has facili-
tated finding underlying and previously hidden information through
large-scale data processing (Jiang et al., 2012), and thus can be applied
to transit commuting pattern mining using smart card data. Both the
spatial and temporal features of the commuting trips of transit riders
should be considered in a quantitative and synthetic manner.

This study seeks to answer the following important questions:
Which transit riders can be classified as transit commuters? Can we
infer the residence and workplace of an individual transit commuter,
as well as his/her commuting departure time, based on his/her long-
term smart card transaction records? To answer these questions, we
first extract the spatial and temporal features of an individual transit
rider that can represent the regularity of commuting patterns. These
features are calculated based on continuous trip-chaining behavior
fromone-month of smart card data in Beijing. These features fully incor-
porate the heterogeneity of individual route choices and the uncertainty
of departure times using a modified DBSCAN clustering algorithm. A
spatial clustering algorithm, called iterative self-organizing data analy-
sis technique (ISODATA), is then utilized to categorize group transit
riders into three clusters based on their spatiotemporal features. The
three clusters are automatically determined and can reflect the intensity
of transit commuting travel. Consequently, the residence andworkplace
of each transit commuter can be derived by summarizing his/her most
frequently visited locations. For each cluster, we also develop a transit
commuting score based on the technique for order of preference by sim-
ilarity to ideal solution (TOPSIS)method. Thismethod can score each in-
dividual transit rider based on his/her commuting patterns via a multi-
criteria decision analytical framework. The score threshold for
distinguishing commuters from noncommuters routinely remains at
approximately 51.7 evenwhen different groups of transit riders are ran-
domly selected. Instead of clustering the total population of transit
riders, we can identify transit commuters only by calculating the indi-
vidual commuting score. This approachwill significantly reduce compu-
tational power. Finally, the proposedmethods are validated via a survey
conducted in Beijing and visualized in map platform to demonstrate
their effectiveness.

2. Methodology

2.1. Trip generation

The public transportation systems in Beijing consist of over 1000 bus
routes and 18 subway lines in 2015 (Fig. 1), and these figures result in
over 28,000 bus and subway stops. The percentage of subway and bus
trips among all motorized trips reached 60.1% at the end of 2014 be-
cause of the expansion of subway lines and the governmental subsidies
for public transit (Beijing Transportation Research Center, 2015). Over
90% of transit riders utilize smart cards to pay fares because a huge dis-
count rate is received by smart card holders (i.e., 75% fare reduction for
students and 50% fare reduction for regular passengers) (Ma et al.,
2012). Since January 2015, all buses and subway lines have adopted dis-
tance-based fare strategies in which both passenger tap-in and tap-out
data (e.g., route ID, transaction times, and boarding and alighting stops)
for an individual transit rider are recorded. Beijing Automatic Fare Col-
lection (AFC) system includes urban transit, rural transit and subway
systems. Buses running in the rural area record passengers' boarding
times/stops and alighting time/stops. Similarly, subway AFC system
also contains passengers' full trip information. However, buses running
in the urban area only store individual's boarding stop and alighting
time/stop. The percentage of recordswithmissing boarding times is ap-
proximately 40% of total smart card transactions. For the urban AFC sys-
tem, the bus boarding time of each transit rider can be calculated by
using the transaction time (i.e. alighting time)minus the average in-ve-
hicle travel time. According to the 2015 Beijing Transport Annual Re-
port, the average in-vehicle travel time during morning peak hours is
59.6 min, while this time increases to 65.3 min during evening peak
hours (Beijing Transportation Research Center, 2015). We collected
one-month smart card data (June 2015). A total of 18 million active
transit riders were identified, thus generating a total of over 364million
smart card transaction records.

We generate individual trips on a daily basis. A trip is composed of a
sequence of activities for a particular purpose (Primerano et al., 2008).
In the context of public transport, a transit rider may transfer from
one bus route to a subway line and continue to take another bus route
to his/her destination. In the above example, the trip is associated
with three smart card transactions (bus, subway and bus). Time



Fig. 1. Spatial distribution of Beijing bus routes and subway lines. Themapdisplays only the bus routes and subway lineswithin the Sixth Ring Road region of Beijing,which is located at the
outer fringes of Beijing and covers most of its administrative districts.
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thresholds are adopted to link these transactions. Three possible trans-
fer activities can be identified: subway to bus, bus to bus, and bus to sub-
way. A comprehensive field survey conducted in Beijing suggested that
the time thresholds for these three transfer activities should be set to
104, 112, and 20 min, respectively (Wang, 2014). Due to missing
boarding times for buses, in-vehicle travel time, passenger's walking
speed andwaiting time are jointly taken into account to estimate amax-
imum transfer time for each transfer mode. The maximum transfer
times for the three transfer activities (i.e. subway to bus, bus to bus,
and bus to subway) are 140 min, 140 min and 30 min, respectively.
Then, the transaction time differences that fall within the maximum
transfer times are extracted and ordered, and the 95th percentile trans-
action time difference for each transfer activity is selected as the time
threshold to form up a complete trip. If the transaction time difference
for two consecutive smart card records for an individual passenger ex-
ceeds any of the thresholds, then a trip is separated. All trips can be gen-
erated based on the aforementioned criteria.

In this study, a commuter is defined as a regular transit rider who
performs periodically recurring travels between home and other non-
residential locations (primarily refers to the repeated trip between
home and work/school) (Kung et al., 2014). We assume that only the
first trip (i.e., home-to-work trip) and last trip (i.e., work-to-home
trip) of an individual transit rider for each day contribute to their com-
muting behavior. For individual's first trip and last trip, we merge the
multiple trips with short dwell times (i.e. 2 h) as a single trip. This
treatment can eliminate the error caused by lacking trip purpose infor-
mation to some extent: If passengers take buses/subway for meal or
picking up children at school, the destination of the first trip and the or-
igin of the last trip are notworkplaces. This fact is confirmed by thefind-
ings of Zhou et al. (2014) because the majority of transit riders start
their trips from their homes to their workplaces and returns to their
homes at the end of a day. The rationale of choosing both the first trip
and last trip of each transit rider is that one's home-to-work trip may
be distinct from his/her work-to-home trip given that there could be
multiple alternative bus/subway routes to commute.

2.2. Commuting feature extraction and travel pattern recognition

The regularity of commuting should be spatially and temporally
measured. The repeatability of temporal patterns can be quantified by
the similarity of departure time and the number of traveling days,
whereas the repeatability of spatial patterns can be represented by the
frequency of the most visited stops and the number of recurring travels
on similar bus routes or subway lines. The underlying rationale for
selecting the four commuting features is that transit commuters are
likely to take buses or subways regularly with relative fixed stops at
similar times within a long time span.

For the repeatability of temporal patterns, we divided the 24 h in a
day into 30-minute intervals, and the transaction times of the first trip
and the last trip can be converted into integer values from 0 to 47 (0



Fig. 2. Density map of clustered bus and subway stops.
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indicates that a trip starts between 00:00AMand00:30 AM,whereas 47
denotes that the trip starts between 11:30 PM and 00:00 AM). Integer
values are defined as departure time indices. For each transit rider, we
record the set of departure time indices of the first trip and the last
trip on a daily basis over a one-month period and count the number
of occurrences of each index. The departure time index with the largest
number of occurrences is considered the most frequent departure time
index. For the home-to-work trip, the most frequent departure time
index is defined as Th. For the work-to-home trip, themost frequent de-
parture time index is defined as Tw. The number of occurrences of Th and
Tw are represented as NTh and NTw, respectively. The similarity of depar-
ture time Ntime can be calculated using Eq. (1):

Ntime ¼ NTh
þ NTw ð1Þ

Thus, the value of Ntime represents the regularity of departure times
for each transit commuter.

In addition,we can count the number of dayswhen each transit rider
travels as Nday. A large Nday indicates that the transit rider has likely be-
come a regular transit commuter.

For the repeatability of spatial patterns, we quantify route-level and
stop-level similarities. However, route-level similarity can only describe
Table 1
Statistical data of commuting patterns of transit riders. Sh is themost frequent stop of home. Sw is
themost frequent route sequence ofworkplace. Th is themost frequent departure time of home
Nroute is the number of similar route sequences. Nstop is the number of similar stops. Ntime is the

Card ID Sh Sw Rh Rw

43207 20152 365 00986 00958
41610 217 102 6–2 10–6
32558 1533 5503 00359 00359
32664 265 723 57300–60366 60366–00741
86147 10485 20295 00012 00012
partial commuting regularity because several distinct route choicesmay
exist between the home and workplace of an individual, which leads to
different sequences of routes connecting the same bus or subway stops.
To address this issue, we propose an improved DBSCAN algorithm to
cluster the spatially adjacent stops into several groups and renumber
these groups as new stop IDs. The traditional DBSCAN algorithmcan cat-
egorize these points with a number of nearby neighbors but leave other
points with only a few neighbors as outliers.When the original DBSCAN
algorithm is applied into bus or subway stop partitioning, one primary
disadvantage should be overcome. That is, depending on the density
of points in each cluster, intra-cluster distances may be high, which
causes the cluster boundary, including multiple distinct stops that
should belong to multiple clusters, to form only one cluster. This occur-
rencemay lead to thewrong identification of commuting stops. We im-
prove the original algorithm by allowing the reclustering of these
abnormal groups and by splitting each large cluster into several small
clusters (see Appendix A).

A total of 28,871 bus/subway stops are clustered into 6544 stop
groups. The distribution of these stop groups can be visualized in Fig.
2. The grouped stops are aggregated based on traffic analysis zones.
Most clustered stop groups are densely scattered in the Central Business
District (CBD) area of Beijing but sparsely located in suburban areas.
themost frequent route sequence of home.Rh is themost frequent stop ofworkplace.Rw is
. Tw is themost frequent departure time ofworkplace.Nday is the number of traveling days.
number of similar departure times.

Th Tw Nday Nroute Nstop Ntime

19 29 5 2 3 3
14 31 2 2 4 2
15 35 24 21 33 11
16 36 15 10 19 9
19 25 3 5 4 2
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We can compute stop-level similarity by following the calculation
procedure for departure time similarity. The first trip and last trip of
each transit rider are assumed to be home-to-work trip and work-to-
home trip, respectively. We record the set of origin stop IDs of home-
to-work trip and the destination stop IDs of work-to-home trip and
Fig. 3. Daily commuting trips of transit rider with smart card ID
then count the number of occurrences of each stop ID. The stop ID
with the largest number of occurrences is considered the most frequent
stop of residence Sh. Similarly, we can record the set of destination stop
IDs of home-to-work trip and origin stop IDs of work-to-home trip and
then count the number of occurrences of each stop ID. The stop ID with
32664: (a) home-to-work trip and (b) work-to-home trip.



Table 3
Key questions in Beijing public transit commuting behavior survey.

Question content Question type

What is your smart card ID? Open-ended
question

What is your primary purpose to take bus or subway? (e.g.
commuting, personal business, shopping, recreational, social
activities, and others)

Close-ended
question

How many days do you take bus or subway per week? Close-ended
question

What is the stop that is adjacent to your home for your daily
travel?

Open-ended
question

What is the stop that is adjacent to your work place for your
daily travel?

Open-ended
question

What is your frequent departure time of your first trip? Close-ended
question

What is your frequent departure time of your last trip? Close-ended
question

Table 2
Clustering results of the three sample clusters from the randomly selected 500,000 transit riders.

Sample 1 Nday Nstop Nroute Ntime Number of transit riders Commuting score
(CS)

Absolute commuters 23.28 28.16 55.39 21.68 50,228 CS ≥ 71.30
Average commuters 18.31 13.85 21.81 11.93 79,301
71.30 N CS ≥ 51.67
Noncommuters 4.33 2.80 4.31 2.49 370,471 CS ≥ 51.67

Sample 2 Nday Nstop Nroute Ntime Number of transit riders Commuting score
(CS)

Absolute commuters 23.27 28.18 55.40 21.68 51,177 CS ≥ 71.27
Average commuters 18.23 13.77 21.66 11.87 78,970
71.27 N CS ≥ 51.70
Noncommuters 4.32 2.80 4.31 2.50 369,853 CS ≥ 51.70

Sample 3 Nday Nstop Nroute Ntime Number of transit riders Commuting score
(CS)

Absolute commuters 23.31 28.18 55.52 21.73 50,307 CS ≥ 71.33
Average commuters 18.31 13.85 21.86 11.93 78,922
71.33 N CS ≥ 51.69
Noncommuters 4.35 2.81 4.32 2.50 370,771 CS ≥ 51.69

Sample 4 Nday Nstop Nroute Ntime Number of transit riders Commuting score
(CS)

Absolute commuters 23.31 28.17 55.33 21.70 50,523 CS ≥ 71.34
Average commuters 18.32 13.88 21.87 11.98 78,836
71.34 N CS ≥ 51.72
Noncommuters 4.33 2.80 4.31 2.49 370,641 CS ≥ 51.72

Sample 5 Nday Nstop Nroute Ntime Number of transit riders Commuting score
(CS)

Absolute commuters 23.29 28.22 55.45 21.72 50,416 CS ≥ 71.36
Average commuters 18.37 13.89 21.88 11.97 79,252
71.36 N CS ≥ 51.73
Noncommuters 4.34 2.80 4.32 2.50 370,332 CS≥51.73
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the largest number of occurrences is considered the most frequent stop
of workplace Sw. The number of occurrences of Sh and Sw are represent-
ed by NSh and NSw, respectively. The similarity of stop Nstop can be calcu-
lated using Eq. (2):

Nstop ¼ NSh þ NSw ð2Þ

Each transit rider may take several different bus routes or subway
lines to complete a trip. The route sequence associated with each trip
is defined as R:r1→r2→⋯→rn, where rn represents either a bus or sub-
way route connecting clustered stops, and n indicates the number of
transfers during each trip. We record the set of route sequences of the
first trip and last trip on a daily basis over a one-month period and
count the number of occurrences of each route sequence. The route se-
quence with the largest number of occurrences is considered the most
frequent route sequence. For home-to-work trip, the most frequent
route sequence is defined as Rh. For work-to-home trip, the most fre-
quent route sequence is defined as Rw. The number of occurrences of
Rh and Rw are represented as NRh

and NRw
, respectively. However, Rh

and Rw can only represent the most frequent route sequences taken
by transit riders. Several alternative route sequences connect the resi-
dences andworkplaces of riders, and are defined as all possible route se-
quences between home and work places excluding the most frequent
route sequence. These alternative route sequences also contribute to
route-level similarity calculation. This is the issue that Ma et al.
(2013)’s algorithm cannot properly address. We find alternative route
sequences from Sh to Sw and summarize the total number of occurrences
of these route sequence as NRh′. Similarly, we find alternative route se-
quences from Sw to Sh and summarize the total number of occurrences
of these route sequence as NRw′.
The similarity of route Nroute can be calculated using Eq. (3):

Nroute ¼ NRh
þ NRw þ N0

Rh
þ N0

Rw
ð3Þ

Nroute does not only represent the spatial regularity of these fre-
quently visited routes but also includes the occasional routes that
share the common origins and destinations for each transit rider,
which significantly improves the accuracy of transit commuter
identification.

In summary, Ntime and Nday measure the temporal repeatability of
commuting behavior, whereas Nstop and Nroute quantify the spatial re-
peatability of commuting behavior. The most frequent travel patterns
for several transit riders over a one-month period are listed in Table 1
as examples.



Fig. 4. Spatial distribution of Beijing transit commuters in June 2015: (a) workplace and (b) residence. (For interpretation of the references to color in this figure, the reader is referred to
the web version of this article.)
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Table 1 profiles the spatiotemporal travel pattern of each transit rider
over a one-month period. Each smart card ID has been hashed to protect
the privacy of the riders. Using the transit rider with card ID 32664 as an
example, this passenger frequently takes bus route 57300 from stop 265
between 7:30 AM–8:00 AM, transfers to route 60366, and alights at stop
723. In the afternoon, this passenger frequently leaves from stop 265 by
taking route 60366 and transfer to route 00265. His/her most frequent
alighting stop is stop 723. On the average, this passenger travels at
least 15 days by bus or subway with the regularity of routes, stops,
and departure times at 10, 19, and 9, respectively. The commuting
trips of this transit rider can be further visualized in Fig. 3.

2.3. Commuter identification

We identify transit commuters using the 4D inputs (Nday, Nroute,
Nstop, Ntime) based on the mined spatiotemporal regularities of transit
riders. TOPSIS (Hwang and Yoon, 1981) is used to rate the commuting
intensity of each transit rider (see Appendix A). The TOPSIS method
can measure the distance among target alternatives, positive idea solu-
tions, and negative idea solutions, and consequently, yield a similarity
ratio for multi-criteria decision analysis. Each transit rider is assigned
a normalized value as a commuting score between zero and one to con-
sider the multi-attribute of commuting behavior. A score that ap-
proaches one indicates that the associated transit rider is likely to be a
commuter. Instead of applying an arbitrary threshold (e.g., transit riders
with scores exceeding 0.6 are classified as commuters) to distinguish
transit commuters, we propose to use ISODATA to cluster transit riders
automatically based on their spatiotemporal regularities and to deter-
mine the cutoff score for quantifying commuting intensity. The
ISODATA method is an unsupervised learning method that can split
and merge clusters iteratively and optimize the number of clusters
(Ball and Hall, 1965). However, one of the disadvantages of ISODATA
is the high computational cost for large data sets (Memarsadeghi et
al., 2007). The amount of smart card data is considerable; that is, cluster-
ing 18 million transit riders is unrealistic. We randomly select 500,000
transit riders for 5 times and perform ISODATA for each subsample of
transit riders based on their spatiotemporal regularities (Nday, Nroute,
Nstop, Ntime). The random selection is implemented in Microsoft SQL
Server using the newid() function, which generates a globally unique
identifier (GUID) for each transit rider (Microsoft Cooperation, 2016).
The procedure randomly samples from the entire population, and thus
will not yield biased results. Three clusters can be consistently received,
and the transit riders within these clusters can be categorized as abso-
lute commuters, average commuters, and noncommuters. The commut-
ing scores of transit riders within each cluster can be calculated and
ordered based on the TOPSIS method. The minimum and maximum
commuting scores are respectively selected as the lower bound and
upper bound to distinguish absolute commuters, average commuters
and noncommuters. Among each group, the average commuting score
is stable, as presented in Table 2. Both commuting score and spatiotem-
poral travel pattern statistics are averaged within each cluster. We can
define transit commuters as transit riders with commuting scores
higher than 51.7 based on the clustering result.

2.4. Validation and visualization

To validate the effectiveness of the proposed transit commuting pat-
tern identification methods, we conducted a detailed and anonymous
survey about the travel behavior of smart card holders in Beijing via so-
cial media (i.e. WeChat) in August 2015. The population of the survey
sample is diverse and includes students, government officials, and com-
pany employees, among others. Each respondent is required to input
his/her smart card ID.We apply the proposedmethods to assesswheth-
er the respondent is a transit commuter and infer his/her spatiotempo-
ral travel patterns. In addition, several questions are designed to
determine the travel purposes, home and workplace locations,
departure times, and transit usage frequency of each respondent (see
Table 3). To validate whether a particular transit rider belong to a com-
muter, the travel records of the transit rider over a one-month period
can be extracted from the smart card database based on the inputted
smart card ID. Then, the four-dimensional commuting features (Nday,
Nstop, Nroute, Ntime) can be calculated as inputs to generate the commut-
ing score for this transit rider. This score will be compared with the de-
rived thresholds in Table 2 to judge whether this transit rider is a
commuter and identify the corresponding commuting patterns. The in-
ferred spatiotemporal behavioral information (e.g. travel purpose,
home and workplace, departure time, number of traveling days, the
most frequently taken routes, etc.)will be furthermatchedwith the sur-
vey result filled by the same transit rider. A total of 118 copies of effec-
tive questionnaires were received. Among the respondents, 63 consider
themselves commuters, whereas the remaining 55 are noncommuters.
The proposed method can successfully classify 56 out of the 63 respon-
dents as commuters and categorize the remaining 55 respondents as
noncommuters. The detection accuracy is 94.1%. For the group of com-
muters, 40 respondents leave the approximate location information of
their residences and workplaces. The stops adjacent to the homes and
workplaces of 37 respondents are correctly inferred with an accuracy
of 90.0%.

We further compute the commuting scores of all transit riders in
June 2015 and apply the clustering threshold (i.e., the commuting
score is equal to 51.7) to distinguish both commuters and
noncommuters. A total of 18,137,393 transit smart card holders are
identified with a total of 364,846,374 transactions in June 2016. A
total of 1,831,799 and 2,865,604 transit riders are identified as absolute
commuters and average commuters, respectively. This number indi-
cates that the number of transit commuters is 4,697,403, whereas the
remaining 13,439,990 transit riders are noncommuters. We can define
the percentage of daily commuters as the number of daily transit com-
muters divided by the total number of daily transit riders. The percent-
age of daily commuting transactions can be calculated as the number of
home-to-work and work-to-home transactions for commuters divided
by the total number of home-to-work and work-to-home transactions
for all transit riders on a daily basis. We can then compute the percent-
ages of transit commuters and commuting transactions during week-
days and weekends. The percentage of daily transit commuters in June
2015 is 61.70%. This percentage increases to 65.14% during weekdays
but decreases to 50.90% duringweekends. The percentage of daily com-
muting transactions is 53.70%, which increases to 59.50% during week-
days and decreases to 37.60% during weekends.

In Figs. 4 and 5, we further visualize the commuting spatial patterns
of transit commuters in a map-based platform according to the loca-
tions of residences and workplaces.

Both Fig. 4(a) and (b) are heatmaps in which the region with a dark
color (from light blue to dark red) implies high transit commuter popu-
lation density. In terms of workplaces, most transit commuters work in
the core areas of Beijing CBD, ZhongGuanCun (ZGC), Beijing Financial
Street (BFS), and ZhongGuanCun Software Park (ZSP). Beijing CBD and
BFS are the key international financial and business centers in China,
where a large number of Fortune 500 enterprises and governmental
agencies are located. The majority of office workers choose public tran-
sit (bus and subway) to commute considering the limited parking re-
sources and expensive parking price. ZGC and ZSP are the technology
hubs in Beijing. These areas are known as “China's Silicon Valley,”
where several universities and high-tech companies are located. These
places attract a myriad of nonpermanent residents and students who
do not own private cars and commute by bus or subway. Unlike the spa-
tial distribution of workplaces, residential areas are located away from
the central areas of Beijing. Typical places include HuiLongGuan
(HLG), FangZhuang, TianTongYuan (TTY), and ShaHe. These areas are
all large suburban residential neighborhoods where most residents
work in downtown Beijing. For example, over 400,000 residents live
in TTY and commute via subway or bus at two adjacent public transport



Fig. 5. Distribution of departure times of transit commuters and noncommuters.
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hubs on a daily basis. By integrating this information into Fig. 1, we fur-
ther summarize the percentages of the residences and workplaces of
transit commuters that fall within the Sixth Ring Road region in Table 4.

A strong job–housing imbalance can be observed in Table 4. Over
80% of transit riders live outside the 3rd Ring Road region of Beijing,
whereas approximately 34% of workplaces are located within the cen-
tral urban area within the 3rd Ring Road region. This observation may
be attributed to the fact that a number of transit commuters working
in the central urban area cannot afford the high house rent of residences
near their workplaces, and thus, have to live at the fringes of Beijing City
(Zhao, 2013).

3. Discussion

We further analyze the commuting behavior between transit com-
muters and noncommuters in terms of their departure times, travel dis-
tances, and number of traveling days (Figs. 5 to 7).

The majority of transit commuters depart from their homes around
morning peak hours (7:00 AM–9:00 AM) and return during evening
peak hours (5:00 PM–7:00 PM), whereas noncommuters take the bus
or subway at any time of a day without a clear shape of the double-
peak temporal distribution. In terms of traveling days in the one-
month period, the most frequent number of traveling days for transit
commuters is 21 days. This number is approximately equal to the total
number of weekdays, excluding weekends, during a typical month. By
contrast, 90% of noncommuters travel below 10 days, which indicates
that most noncommuters are more likely to be sporadic travelers with
low transit usages. This fact is consolidated by the travel distance distri-
bution of commuters during weekdays. The average commuting
Table 4
Percentages of residences and workplaces of transit commuters that fall within the ring road r

Region Number of workplaces Percenta

Outside the 6th Ring Road 391,572 8.43%
Between the 5th and 6th Ring Roads 821,770 17.68%
Between the 4th and 5th Ring Roads 725,858 15.62%
Between the 3rd and 4th Ring Roads 1,146,259 24.66%
Between the 2nd and 3rd Ring Roads 918,226 19.76%
Within the 2nd Ring Road 644,010 13.86%
distance for transit commuters is 10.99 km.When the distance between
residences and workplaces is far, people are unlikely to choose public
transit to commute. For noncommuters, the number of transit riders de-
clines rapidly as travel distance increases. Thus, the average travel dis-
tance of noncommuters is 9.15 km. Most noncommuters prefer short-
distance travels below 5 km.

4. Conclusion

In summary, this study proposes a series of data mining methods to
identify transit commuting patterns based on smart card data. The pro-
posed framework can identify transit commuters by mining spatiotem-
poral travel regularities over continuous long-term observation, as well
as extract individual-level residence and workplace. This approach will
significantly alleviate the burden of manual data collection in longitudi-
nal surveys and travel diaries. The transit commuting score is defined to
measure the commuting intensity of each transit rider. We find that the
threshold for distinguishing commuters from noncommuters remains
consistently at 51.7 by leveraging the spatial clustering algorithm and
the TOPSIS approach. The spatial and temporal disparity of the two
groups is further presented by comparing their departure times, travel
distances, numbers of traveling days, and home/workplace distribu-
tions. We demonstrate the effectiveness of the proposed methods
through a disaggregated-level survey with a transit commuter identifi-
cation accuracy that reaches as high as 94.1%.

We confirm the existence of job–house imbalance in Beijing, which
is partly attributed to the monocentric urban structure and the
centralized public transport network that result in the emergence of
“excess commuting” in the Beijing public transportation system. Job
egions of Beijing.

ge of workplaces Number of residences Percentage of residences

576,471 12.42%
1,638,422 35.31%
783,818 16.90%
846,079 18.24%
513,459 11.07%
281,424 6.07%



Fig. 6. Distribution of the numbers of traveling days of transit commuters and
noncommuters.
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opportunities are densely located in the central urban area with high
housing prices and limited parking resources. Thus, transit commuters
are forced to live in suburban residential regions that will require
long-distance travel. The findings provide useful insights for
policymakers to shape a more balanced job and housing relationship.
In addition, the extracted individual-level commuting patterns can be
used as invaluable information for public transit network design and
optimization. For example, implementing a corridor-level bus route be-
tween HLG and CBD will significantly shorten travel time for transit
commuters. These operational and planning strategies from the pro-
posed commuting pattern mining approach are expected to reduce car
dependency and alleviate traffic congestion.

Future research can be expanded to investigate the household com-
muting behavior using smart card. Under this situation, both parents
need to work and their children also need to go to school by public
transport. The proposed transit commuting pattern mining and com-
muter identification approaches will be correspondingly modified. In
addition, how to quantitatively measure the spatial distribution of job-
housing imbalance by leveraging geostatistical models is another inter-
esting and useful research direction.
Fig. 7. Distribution of the travel distances during weekdays of transit commuters and
noncommuters.
Appendix A

Bus/subway stop clustering

The DBSCAN algorithm is applied to group bus/subway stops that
are adjacent to each other and to renumber each cluster as new IDs.
This solution can address the issue of heterogeneous route choices.
Transit riders can choose different routes with distinct boarding or
alighting stops in commuting. In the traditional DBSCAN algorithm,
the shape of a cluster is arbitrary. Thus, an excessively large radius of a
narrowly shaped cluster is formed to include a series of stops that
should be separated by multiple clusters. We improve the original
DBSCAN algorithmby allowing the oversized clusters to recluster them-
selves until certain criteria are satisfied. Several useful parameters are
defined as follows.

Minpts: theminimumnumber of stops that are included in a cluster.
We set Minpts as one.

ε distance: it defines the density-reachable range. If at least Minpts
stops are within ɛ distance of a certain stop, then that stop is a core
point and the surrounding stops are directly reachable points from the
core point. We set ε distance to 300 m.

Dmax distance: we measure the maximum distance between the
stops of each cluster. If the maximum distance of a cluster exceeds
Dmax distance, then reclustering is required with a new ε distance. We
set Dmax distance to 1000 m.

Δ distance: Δ distance is the decremental distance to adjust ε dis-
tance for reclustering. The new ε distance is computed by using ε
distance minus Δ distance on each iteration. We set Δ distance to
25 m.

εmin distance: The minimum ε distance of each cluster, which is set
as 120 m.

The improved DBSCAN algorithm is documented as follows.
Step 1: randomly select one stop S that is not visited and search stops

within the ε distance of stop S.
Step 2: if sufficient neighbor stops are found (i.e., the number of

stops exceeds Minpts), then a cluster is formed and stop S is marked
as visited. Otherwise, stop S is labeled as noise.

Step 3: select each neighbor stop of stop S and continue to search its ε
neighborhood by repeating Steps 1 and 2 until all stops within the clus-
ter are visited.

Step 4: continue to process the remaining unvisited stops from Steps
1 to 2 until all the stops are flagged as visited.

Step 5: examine the existing clusters and calculate the maximum
distance between the stops of each cluster.

Step 6: if the maximum distance of a cluster exceeds Dmax distance,
then set the new ε distance as ε distance minus Δ distance and perform
reclustering within this cluster.

Step 7: repeat Steps 5 and 6 until any of the following criteria is sat-
isfied: the maximum distance of each cluster is less than Dmax distance
and ε distance is less than εmin distance.

Step 8: calculate the average latitude and longitude of all the stops
with each cluster and assign a new stop ID to each cluster.
Calculation of transit commuting score

We use the TOPSIS method to compute the transit commuting score
of each transit rider based on spatiotemporal regularities. The detailed
calculation procedure is listed as follows.

Step 1: define the spatiotemporal regularities of each transit rider as
X=[Nday,Nroute,Nstop,Ntime], and xij is each element of X, where
i=1,2,⋯ ,m ; j=1,2,3 ,4; and m is the total number of transit riders.
The normalized value rij of each spatiotemporal regularity can be

calculated as rij ¼ xij=∑
m

i¼1
xij.
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Step 2: calculate the entropy weight valuewj of each spatiotemporal

regularity as wj ¼ −k �∑
m

i¼1
ðrij lgrijÞ, where k=1/lnm. The normalized

weighted matrix value vij is computed as vij=rij ⋅wj.
Step 3: determine the positive and negative ideal solutions and cal-

culate the Euclidean distance to each of these solutions for each transit
rider:

Positive ideal solution: A+={v1+,v2+,⋯ ,vj+}={maxvij},
Negative ideal solution: A−={v1−,v2−,⋯ ,vj−}={minvij},

Distance to the positive ideal solution: Lþi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

j¼1
ðvij−vþj Þ

2

s
,

Distance to the positive ideal solution: L−i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

j¼1
ðvij−v−j Þ2

s
.

Step 4: calculate the relative closeness to the ideal solution: Ci

¼ L−i
Lþi þL−i

.

Step 5: convert Ci into the transit commuting score: score(i)=50 ⋅ -
log10(100 ⋅Ci)+50.
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