Supporting Information for

Aerosol Based Fabrication of Thiol–Capped Gold Nanoparticles and Their Application for Gene Transfection

Jeong Hoon Byeon and Jeffrey T. Roberts*
- UV–vis spectra of spark generated Au and thiol–capped Au nanoparticles:

![UV–vis spectra of spark generated Au and thiol–capped Au nanoparticles.](image)

Figure 1S. UV–vis spectra of spark generated Au and thiol–capped Au nanoparticles.

UV-vis absorbance measurements (**Figure 1S**) were performed on a Perkin-Elmer 330 spectrophotometer (US), with a variable radiation wavenumber between 400 and 800 nm, at a rate of 60 nm min$^{-1}$ and a spectral resolution of 2 nm. Specimens were prepared by a detachment of particles from a PTFE substrate into water in the presence of ultrasound (10 sec). Peak positions (~520 nm) of the plasmon resonance for the spark generated Au and thiol-capped Au nanoparticles were similar, but the width for the thiol-capped Au nanoparticles was broader. A size increase due to aggregative growth for the thiol-capped Au nanoparticles (refer Figures 2 and 3) may cause a broadening of the high wavelength side of the resonance peak.
- Size distributions of aerosol PEI and chitosan particles:

![Graph showing size distributions of aerosol PEI and chitosan particles.](image)

Figure 2S. Size distributions of aerosol PEI and chitosan particles.

Figure 2S summarizes results of the size distributions of aerosol PEI and chitosan particles. The GMD, GSD, and TNC of the PEI are 120.7 nm, 1.90, and 6.26×10^6 particles cm$^{-3}$, respectively. The same data for the chitosan particles are 164.6 nm, 1.71, and 4.91×10^6 particles cm$^{-3}$, respectively. Both particles were obtained by collison atomizing the each solution (PEI, 25 kDa PEI dissolved in de-ionized water; chitosan: 15 kDa chitosan dissolved in 1% (v/v) acetic acid), briely the atomized droplets then pass through a heated tubular reactor operating at 90$^\circ$C to drive solvent from the droplets.