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A mixed-scale dense convolutional neural network for image analysis

Daniël M. Pelt1 and James A. Sethian1,2

Abstract— Deep convolutional neural networks have been
successfully applied to many image processing problems in
recent works. Popular network architectures often add addi-
tional operations and connections to the standard architecture
to enable training deeper networks. To achieve accurate results
in practice, a large number of trainable parameters is often
required. Here, we introduce a network architecture based on
using dilated convolutions to capture features at different image
scales, and densely connecting all feature maps with each other.
The resulting architecture is able to achieve accurate results
with relatively few parameters and consists of a single set of
operations, making it easier to implement, train, and apply
in practice, and automatically adapts to different problems.
We compare results of the proposed network architecture
with popular existing architectures for several segmentation
problems, showing that the proposed architecture is able to
achieve accurate results with fewer parameters, with a reduced
risk of overfitting the training data.

INTRODUCTION

Machine learning is successful in many imaging appli-

cations, such as image classification [1]–[3] and semantic

segmentation [4]–[6]. Many applications of machine learning

to imaging problems use deep convolutional neural networks

(DCNNs), in which the input image and intermediate images

are convolved with learned kernels in a large number of

successive layers, allowing the network to learn highly

nonlinear features. The popularity of machine learning has

grown significantly due to (a) recent developments that allow

for effective training of deeper networks, e.g. the introduction

of rectified linear units [7] and dropout layers [8]; (b) the

public availability of highly optimized software to both train

and apply deep networks, e.g. TensorFlow [9] and Caffe [10];

and (c) the public availability of large pretrained networks

and large training data sets, e.g. VGG [2] and ImageNet [11],

and will continue to be an active research area [12].

To achieve accurate results for difficult image processing

problems, DCNNs typically rely on combinations of addi-

tional operations and connections including, for example,

downscaling and upscaling operations to capture features

at various image scales [4], [5]. To train deeper and more

powerful networks, additional layer types [8], [13] and

connections [14], [15] are often required. Finally, DCNNs

typically use a large number of intermediate images and

trainable parameters (e.g. more than 100 million [2]) to

achieve results for difficult problems.
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The large size and complicated nature of many DCNNs

bring significant challenges. For example, the chosen combi-

nation of layers and connections can significantly influence

the accuracy of trained networks. Determining which combi-

nation is best for a given problem is difficult to predict a pri-

ori. Consequently, a network that works well for one problem

is not guaranteed to work well for a different problem, and

can require significant changes to achieve accurate results.

Furthermore, the large number of parameters to learn during

training requires careful choices of hyperparameters (e.g.

learning rates and initialization values) to avoid problems

such as overfitting [8] and vanishing gradients [13] that result

in inaccurate trained networks. As a result, image analysis

often relies on problem-specific traditional methods instead.

Here, we introduce a network architecture specifically

designed to be easy to implement, train, and use. All layers

of the network use the same set of operations and are

connected to each other in the same way, removing the

need to choose which operations and connections to use for

each specific problem. Our proposed network architecture

achieves accurate results with relatively few intermediate

images and parameters, eliminating both the need to tune

hyperparameters and additional layers or connections to en-

able training. The network uses dilated convolutions instead

of scaling operations to capture features at various image

scales, employing multiple scales within a single layer, and

densely connecting all intermediate images with each other.

During training, the network learns which combinations of

dilations to use for the given problem, allowing the same

network to be applied to different problems.

This paper is structured as follows. We first introduce

notation and discuss the general structure of existing deep

convolutional networks. We then introduce the proposed net-

work architecture. We explain the experiments we performed

to investigate the performance of the architecture, comparing

with popular existing architectures, and discuss their results.

Finally, we conclude with a summary and final remarks.

NOTATION AND CONCEPTS

Problem definition

In this paper, we apply our approach to real-valued two-

dimensional (2D) images. We define an image as a set

of pixels x ∈ R
m×n×c with m rows, n columns, and c

channels. We denote the image corresponding to a single

channel j of x as xj . Many image processing problems

can be written as the problem of finding a function f that

takes a certain image x and produces an output image y,

i.e. f : Rm×n×c → R
m′

×n′
×c′ . Note that the dimensions of

the output image can be different from those of the input
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image. In image classification problems, for example, the

output image consists of a single probability value for each

of the c′ possible classifications, i.e. m′ = n′ = 1. In the rest

of this paper, however, we will focus on problems with dense

outputs, i.e. with the number of rows and columns of the

output image identical to those of the input image: m′ = m
and n′ = n, similar to “pixel to pixel” architectures [16].

Convolutional neural networks

Convolutional neural networks (CNNs) model the un-

known function f by using several layers that are connected

to each other in succession. Each layer i produces an output

image zi ∈ R
mi×ni×ci , called a feature map, using output

of the previous layer zi−1 as input. The dimensions of the

layer output zi can be different from the layer input zi−1.

The input image x is taken as the first layer z0, and the final

layer produces the output image y.

Each individual layer can consist of multiple operations.

A common layer architecture first convolves each channel of

the input feature map with a different filter, then sums the

resulting convolved images pixel-by-pixel, adds a constant

value (the bias) to the resulting image, and finally applies a

nonlinear operation to each pixel. These operations can be

repeated using different filters and biases to produce multiple

channels for the output feature map. Thus, the output z
j
i of

a single channel j of such a convolutional layer is given by

z
j
i = σ (gij(zi−1) + bij) (1)

Here, σ : R
mi×ni → R

mi×ni is a nonlinear opera-

tion such as the popular sigmoid function or rectified lin-

ear unit (ReLU) [7], bij ∈ R is the bias, and gij :
R

mi−1×ni−1×ci−1 → R
mi×ni convolves each channel of

the input feature map with a different filter and sums the

resulting images pixel-by-pixel:

gij(zi−1) =

ci−1
∑

k=0

Chijk
zk
i−1 (2)

where Cga is a 2D convolution of image a with filter g.

Different ways of handling the boundaries of the image

during convolution are possible: here, we use reflective

boundaries. Often, the filters hijk are relatively small (e.g.

3×3 pixels), enabling faster computation of network outputs

and making the network easier to train. The architecture of

the final layer can differ from other layers, and can depend

on the application: common choices include using a fully

connected layer instead of a convolutional one [2], or a

softmax function as the nonlinear operation for classification

problems [5]. A schematic of a two-layer CNN architecture

is shown in Fig. 1.

The goal of training a CNN is to find filters hijk, biases

bij , and potential other parameters, such that the CNN

performs the task that is required. In supervised learning,

training is achieved by using a set of Nt representative inputs

X = {x̂1, . . . , x̂Nt
} with corresponding correct outputs

Y = {ŷ1, . . . , ŷNt
} and iteratively minimizing a chosen

error metric between Y and the CNN output for X . Because

Fig. 1. A schematic representation of a two-layer CNN with input x,
output y, and feature maps z1 and z2. Arrows represent convolutions with
nonlinear activation.

Fig. 2. A schematic representation of a common DCNN architecture with
scaling operations. Downward arrows represent downscaling operations,
upward arrows represent upscaling operations, and dashed arrows represent
skip connections.

of the specific architecture of CNNs, partial gradients of

the error with respect to the filters and biases can be

computed accurately and efficiently through backpropagation

for several popular error metrics, enabling the use of efficient

gradient-based optimization algorithms [17].

Deep convolutional neural networks

Deep convolutional neural networks (DCNNs) use a net-

work architecture similar to standard CNNs, but consist of

a larger number of layers, which enables them to model

more complicated functions. In addition, DCNNs often in-

clude downscaling and upscaling operations between layers,

decreasing and increasing the dimensions of feature maps

to capture features at different image scales. Many DCNNs

incrementally downscale feature maps in the first half of

the layers, called the encoder part of the network, and

subsequently upscale in the second half, called the decoder

part. Skip connections are often included between feature

maps of the decoder and encoder at identical scales [5].

A schematic representation of a common encoder-decoder

DCNN architecture is shown in Fig. 2.

In general, the increased depth of DCNNs compared with

shallow CNNs makes training more difficult. The increased

depth often makes it more likely that training gets stuck

in a local minimum of the error function, and can result

in gradients that become either too large or too small [13].

Furthermore, DCNNs typically consist of many parameters

(e.g. filters and biases), often several million or more, that

have to be learned during training. The large parameter space

can make training more difficult, by increasing both training

time [18], and the likelihood of overfitting the network to

the training data [8], thereby forcing large training sets.

Several additions to standard DCNN architectures have been

proposed, including Batch Normalization layers [13], which

rescale feature maps between layers to improve the scaling of

gradients during training, highway connections [14], residual

connections [15], and fractal networks [19], which allow

information to flow more easily through deep networks by

skipping layers, and Dropout layers [8], in which feature
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maps are randomly removed from the network during train-

ing, reducing the problem of overfitting large networks.

Although these additions have advanced image processing

in several fields [12], they can be difficult to routinely apply

in areas such as biomedical imaging and materials science.

Instead, traditional imaging algorithms are used, such as the

Hough transform [20] and template matching [21], or manual

processing, (e.g. biological image segmentation [22]).

THEORY AND ALGORITHMS

Our goal is to enable easier application of DCNNs to

many imaging problems by introducing a less complicated

network architecture with significantly fewer parameters to

learn and which is able to automatically adapt to different

problems. To do so, we introduce “the Mixed-Scale Dense

(MS-D)” network architecture, which (a) mixes scales within

each layer and (b) densely connects all feature maps.

Mixing scales

Instead of using downscaling and upscaling operations to

capture features at different scales, the MS-D architecture

uses dilated convolutions. A dilated convolution Dh,s with

dilation s ∈ Z
+ uses a dilated filter h that is only nonzero

at distances that are a multiple of s pixels from the center.1

Recently, it was shown that dilated convolutions are able to

capture additional features in DCNNs that use the traditional

scaling approach [23]. Furthermore, instead of having each

layer operate at a certain scale as in existing DCNNs,

in the Mixed-Scale approach each individual channel of a

feature map within a single layer operates at different scale.

Specifically, we associate the convolution operations for each

channel of the output image of a certain layer with a different

dilation:

gij(zi−1) =

ci−1
∑

k=0

Dhijk,sijz
k
i−1 (3)

The proposed Mixed-Scale approach alleviates many of

the disadvantages of the standard downscaling and upscaling

approach. First, large-scale information about the image

quickly becomes available in early layers of the network

through relatively large dilations, making it possible to use

this information to improve the results of deeper layers.

Furthermore, information at a certain scale can be used

directly to inform decisions at other scales without having to

pass through layers at intermediate scales. Similar advantages

were recently found when training large multigrid archi-

tectures [24]. No additional parameters have to be learned

during training, since the Mixed-Scale approach does not

include learned upscaling operations. This results in smaller

networks that are easier to train. Finally, although dilations

sij must be chosen in advance, the network can learn which

combinations of dilations to use during training, making

identical Mixed-Scale DCNNs applicable across different

problems (see experiments below).

1Alternatively, dilated convolutions can be defined without using dilated
filters by changing the convolution operation itself; see [23] for a detailed
explanation.

Dense connections

When using convolutions with reflective boundaries, the

Mixed-Scale approach has an additional advantage compared

with standard scaling: all network feature maps have the

same number of rows and columns as the input and output

image, i.e. mi = m and ni = n for all layers i and hence,

when computing a feature map for a specific layer, we are not

restricted to using only the output of the previous layer. In-

stead, all previously computed feature maps {z0, . . . , zi−1},

including the input image x, can be used to compute the layer

output zi. Thus, we change the channel image computation

(Eq. 1) and the convolutional operation (Eq. 3) to:

z
j
i = σ (gij({z0, . . . , zi−1}) + bij)

gij({z0, . . . , zi−1}) =

i−1
∑

l=0

cl−1
∑

k=0

Dhijkl,sijz
k
l

(4)

Similarly, to produce the final output image y, all feature

maps can be used instead of only those of the last layer. We

call this approach of using all previously computed feature

maps densely connecting a network.

In a densely connected network, all feature maps are

maximally (re-)used: if a certain useful feature is detected

in a feature map, it does not have to be replicated in

other layers to be used deeper in the network, as in other

DCNN architectures. As a result, significantly fewer feature

maps and trainable parameters are required to achieve the

same accuracy in densely connected networks compared

with standard networks. The smaller number of maps and

parameters makes it easier to train densely connected net-

works, reducing the risk of overfitting and enabling effective

training with relatively small training sets. Recently, a similar

dense connection architecture was proposed which relied

on a relatively small number of parameters [25], however,

in [25] the dense connections were only used within small

sets of layers at a single scale, with traditional downscaling

and upscaling operations to acquire information at different

scales. Here, we combine dense connections with the mixed-

scale approach, enabling dense connections between the

feature maps of the entire network, resulting in more efficient

use of all feature maps, and an even larger reduction of the

number of required parameters.

Mixed-Scale Dense neural networks

By combining mixed-scale dilated convolutions and dense

connections, we can define a DCNN architecture that we

call the Mixed-Scale Dense (MS-D) network architecture.

Similar to existing architectures, an MS-D network consists

of several layers of feature maps. Each feature map is

the result of applying the same set of operations given by

Eq. 4 to all previous feature maps: dilated convolutions with

3 × 3 pixel filters and a channel-specific dilation, summing

resulting images pixel-by-pixel, adding a constant bias to

each pixel, and finally applying a ReLU activation function.

The final network output is computed with the same set

of operations applied to all feature maps, using 1 × 1
pixel filters instead of 3 × 3 pixel filters. In other words,
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Fig. 3. Schematic representation of an MS-D network with w = 2 and
d = 3. Colored lines represent 3× 3 dilated convolutions, with each color
representing a different dilation. Note that all feature maps are used for the
final output computation.

channels of the final output image are computed by taking

linear combinations of all channels of all feature maps, and

applying an application-specific activation function to the

result:

yk = σ′





∑

i,j

wijkz
j
i + b′k



 (5)

Different ways of choosing the number of channels per

layer are possible. Here, we use a simple approach with each

layer having the same number of channels, denoted by the

network width w, and the number of non-input and non-

output layers of the network denoted by the network depth d.

A graphical representation of an MS-D network with w = 2
and d = 3 is shown in Fig. 3. The parameters that have to be

learned during training are the convolution filters hijkl and

biases bij of Eq. 4 and the weights wijk and biases b′k of

Eq. 5. Given a network depth d and width w, and number of

input channels cin and output channels cout , the number of

trainable parameters Npar = Nflts +Nwgts +Nbias is given

by Nflts = 9
∑d−1

i=0
w(iw + cin), Nwgts = (wd + cin)cout ,

and Nbias = wd+ cout .
Compared with existing DCNN architectures, the MS-

D network architecture has several advantages. Due to the

mixing of scales through dilated convolutions and dense

connections, MS-D networks can produce accurate results

with relatively few feature maps and trainable parameters.

Furthermore, an MS-D network learns which combination of

dilations to use during training, allowing the same network

to be effectively applied to a wide variety of problems.

Finally, all layers are connected to each other in the same

way and computed using the same set of standard operations,

making MS-D networks easier to implement, train, and use

in practice. MS-D networks do not include learned scaling

operations or advanced layer types to facilitate training,

and do not require architecture changes when being applied

to different problems. These advantages can make MS-D

networks applicable beyond semantic segmentation, with

potential value in classification, detection, instance segmen-

tation, and adversarial networks [16].

EXPERIMENTS

Setup

We implemented the MS-D architecture in Python, using

PyCUDA [26] to enable GPU acceleration of computation-

ally expensive parts such as convolutional operations. We

note that existing frameworks such as TensorFlow [9] or

Caffe [10] typically do not support the proposed mixed-

scale approach well, since they assume that all channels

of a certain feature map are computed in the same way.

Furthermore, existing frameworks are mostly optimized for

processing large numbers of relatively small images by effi-

ciently implementing convolutions using large matrix multi-

plications [27]. To allow the application of MS-D networks to

problems with large images, we implemented the architecture

using direct convolutions. Computations were performed on

two workstations, with an NVidia GeForce GTX 1080 GPU

and four NVidia Tesla K80 GPUs, respectively, all running

CUDA 8.0.

In general, deeper networks tend to produce more accurate

results than shallower network [2]. Because of the dense

connections in MS-D networks, it is possible to effectively

use networks that have many layers and few channels per

layer, resulting in very deep networks with relatively few

channels. Such very deep networks might be more difficult to

train than shallower networks, as explained above. However,

we did not observe such problems, and were able to use the

extreme case of each layer consisting of only one channel

(w = 1), and the number of layers d controlling the number

of trainable parameters. We initialize all convolution filter

parameters based on the same considerations as [3] by

sampling random values from a zero-mean normal distribu-

tion with a standard deviation of
√

2/nc, where nc is the

number of incoming and outgoing connections of a feature

map channel: nc = 9(cin + w(d − 1)) + cout . All other

trainable parameters are initialized to zero. Finally, in most

experiments we use equally distributed dilations sij ∈ [1, 10]
by setting the dilation of channel j of layer i equal to

sij = ((iw + j)mod 10) + 1.

In segmentation problems with L labels, we represent

correct outputs by images with L channels, with channel

j set to 1 for pixels that are assigned to label j and set to

0 for other pixels. We use the soft-max activation function

in the final output layer, and use the ADAM optimization

method [17] during training to minimize the cross-entropy

between correct outputs and network outputs [5]. To compare

results of MS-D networks with existing architectures for seg-

mentation problems, we use the global accuracy metric [4],

defined as the percentage of correctly labeled pixels in the

network output, and the class accuracy metric [4], computed

by taking the average of the true positive rates for each

individual label.

Simulated data

In a first experiment, network input consist of 512× 512
pixel single-channel images of objects with two shapes (cir-

cles and squares), 3 different sizes, and 6 possible textures,

with added Gaussian noise. Out of all 36 combinations of

shape, size, and texture, we train networks to detect six

specific combinations, e.g. large squares with a horizontal

texture, small circles with a diagonal texture, etc. We chose

this segmentation problem because it requires DCNNs to

combine features at small scales (pixel intensity and texture)
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a b c

Fig. 4. Example of the segmentation problem of the simulated dataset,
with (a) the single-channel input image, (b) the correct segmentation, with
labels indicated by color, and (c) the output of a trained MS-D network
with 200 layers.

with features at larger scales (size and shape) to produce

accurate results. An example input is shown in Fig. 4a,

with colors indicating the six combinations that have to

be detected in Fig. 4b. We compare segmentation results

of trained MS-D networks with those of the popular U-

Net architecture [5]: We use a TensorFlow implementation

[28]. U-Net architectures are similar to that shown in Fig. 2.

Two main parameters influence performance: the number of

downscaling (and subsequent upscaling) operations, and the

number of channels per feature map. We train each network

with the same set of 105 randomly generated images, using

a batch size of one image, and stop training once global

accuracy for a different set of 100 validation images has not

improved for 105 iterations.

In Fig. 5, class accuracy for an independent test set

of 100 images is shown as a function of the number of

trainable parameters for MS-D networks with w = 1 and

d ∈ {25, 50, 100, 200} layers, and U-Net networks with

2, 3, 4, and 5 scaling operations and various numbers of

channels. The performance of the U-Net networks depends

significantly on the chosen number of scaling operations.

Networks with 3 scaling operations are able to achieve

around 80% accuracy with relatively few parameters, but

do not improve significantly when using more channels per

feature map, while networks with 4 scaling operations are

able to achieve around 95% accuracy, but require a large

number of parameters to do so. For a given number of

parameters, MS-D networks are able to achieve significantly

higher accuracies than all tested U-Net architectures, espe-

cially with relatively few parameters, and the performance of

MS-D networks is similar for different choices of dilations.

CamVid dataset

Next, we compare results for the CamVid dataset [29],

using 367 training, 101 validation, and 233 testing color im-

ages of road scenes with 360×480 pixels [4]. The goal is to

segment 11 classes such as cars, roads, sidewalks, and pedes-

trians. We train MS-D networks and U-Net networks with

local contrast normalized images [30] until no improvement

in global accuracy of the validation set, using minibatches of

10 images for MS-D networks and smaller minibatches of 3

images for U-Net networks due to memory constraints. We

also report results for the SegNet architecture [4], showing

the two best global accuracy results from Table 1 of [4], and

two traditional segmentation methods [31], [32], showing the

Fig. 5. The class accuracy of a set of 100 simulated images (Fig. 4) as
a function of the number of trainable parameters for the proposed MS-D
network architecture and the popular U-Net architecture. For each U-Net
network (U-Net-q), q indicates the number of scaling operations used. For
the MS-D architecture, results are shown for dilations sij ∈ [1, 10] (solid
line) and sij ∈ {1, 2, 4, 8, 16} (dashed line).

Method Pars (M) GA CA

MS-D-Net (100 layers) 0.048 85.1 56.8
MS-D-Net (200 layers) 0.187 87.0 63.9

U-Net (3 scaling operations) [5] 1.863 83.2 50.4
U-Net (4 scaling operations) [5] 1.926 85.5 48.4
SegNet-Basic-EncoderAddition [4] 1.425 84.2 56.5
SegNet-Basic [4] 1.425 84.0 54.6
Boosting+Detectors+CRF [31] 83.8 62.5
Super Parsing [32] 83.3 51.2

Table I. The number of trainable parameters (Pars) in millions (M), global
accuracy (GA), and class accuracy (CA) for the CamVid test set. The highest
global accuracy, highest local accuracy, and smallest number of parameters
out of all tested methods are shown in bold.

two best results from Table 2 of [4]. For U-Net networks,

the number of feature map channels was chosen such that

the number of parameters was similar to that of the SegNet.

Table. I shows global and class accuracies. MS-D seg-

ments with highest global and class accuracy, while using

roughly 10 times fewer parameters. Furthermore, an MS-

D network with 100 layers achieves similar accuracies to

other network architectures while using 30 to 40 times fewer

parameters.2 Fig. 6 shows global accuracy during training for

validation and training sets, for both U-Net network and an

MS-D network. Lack of improvement for the U-Net network

in validation set accuracy, and its difference with training set

accuracy, indicate overfitting of the chosen training set. Due

to the smaller number of trainable parameters, the MS-D

network improves validation set accuracy for more training

iterations, with significantly smaller difference with training

set accuracy, showing reduced risk of overfitting of MS-D

networks, and the ability to accurately train with relatively

small training sets. In addition, MS-D networks are able to

achieve accurate results without pretraining additional large

datasets, e.g. ImageNet [11], or relying on large pretrained

networks, e.g. VGG [2].

2The authors of [4] report improved results for the SegNet architecture
with 90.4% global accuracy by training with a significantly larger set of
around 3500 images. However, since this larger set is not publicly available,
we cannot directly compare this result with the MS-D network architecture.
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Fig. 6. The global accuracy of a U-Net network and an MS-D network
as a function of the training epoch for the CamVid dataset. Given are the
accuracies for the validation set (solid lines) and the training set (dashed
lines).

Segmenting biomedical images

To test whether an MS-D network can be easily applied

to a new problem without adjustments, we use the same

network parameters as above, with w = 1, d = 100, and

dilations sij ∈ [1, 10] applied to segmenting cell structures.

We use eight manual segmentations of 512 × 512 × 512
tomographic reconstructions of (mouse) lympoblastoid cells,

consisting of five labels: nuclear envelope, euchromatin,

heterochromatin, mitochondria and lipid drops. A sample

tomographic slice and corresponding manual segmentation

are shown in Fig. 7a and Fig. 7b. The labeling of cell

structures depends on multiple factors at different image

scales, such as the position of the structure relative to other

structures, and the pixel intensity differences between two

structures can be relatively small, making it difficult to use

traditional methods to perform automatic labeling. Instead,

researchers rely on time-consuming manual segmentation.

To learn limited 3D features, we use five channels in the

input image of the MS-D network: the current slice to be

segmented and four adjacent slices. Out of eight manual

cell segmentations, we randomly chose six for training, one

for validation, and report results for the remaining cell.

During training, we used a batch size of 10 images, and

stopped after no improvements in global accuracy for the

validation cell, yielding network parameters with the best

global accuracy. Fig. 7c shows network output for the slice

of Fig. 7a, showing high similarity to manual segmentation.

Remaining differences between network output and manual

segmentation, indicated by an arrow in Fig 7, typically

represent ambiguous cell structure (see Figs. S1 and S2 for

additional results). Final global accuracy and class accuracy

of the trained network for the test cell are 94.1% and 93.1%,

indicating that identical MS-D networks can be trained

for different problems. Results for two other challenging

problems are given in Figs. S3 and S4.

Denoising large tomographic images

Finally, we use the above architecture, only changing

the nonlinear function of the final layer from the soft-max

function to the identity, and train on the different task of

denoising tomographic reconstructions of a fiber-reinforced

1 m

Fig. 7. A tomographic slice of the test cell (a), with the corresponding
manual segmentation (b) and output of an MS-D network with 100 layers
(c).

200 m 50 m

Fig. 8. Tomographic images of a fiber-reinforced mini-composite, recon-
structed using 1024 projections (a) and 128 projections (b). In (c), the output
of an MS-D network with image (b) as input is shown. A small region
indicated by a red square is shown enlarged in the bottom-right corner of
each image.

mini-composite. 2160 images of 25602 pixels were recon-

structed using 1024 acquired X-ray projections to obtain

images with relatively low amounts of noise (Fig. 8a). Noisy

images of the same object were obtained by reconstructing

using 128 projections (Fig. 8b). The input is a noisy image,

with corresponding noiseless image used as target output

during training. From the sample top, 500 images were

used for training, and 100 images were used for validation.

Fig. 8c shows output for a tested image near the sample

bottom, computed in 2.05 seconds using a GTX 1080 GPU

(see Fig. S5 for additional timings). The MS-D network

accurately denoises highly noisy images by learning image

features from the training set, and identical MS-D networks

can be easily applied to different problems with minimal

changes.

CONCLUSIONS

We have presented a deep convolutional ”Mixed-Scale

Dense (MS-D)” network architecture for image processing

problems, using dilated convolutions instead of traditional

scaling operations to learn features at different scales, em-

ploying multiple scales in each layer, and computing the fea-

ture map of each layer using all feature maps of earlier layers,

resulting in a densely connected network. By combining di-

lated convolutions and dense connections, the MS-D network

architecture can achieve accurate results with significantly

fewer feature maps and trainable parameters than existing

architectures, enabling accurate training with relatively small

training sets. MS-D networks are able to automatically adapt

by learning which combination of dilations to use, allowing

6



identical MS-D networks to be applied to a wide range of

different problems.
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Supplementary Information

1 m

Fig. S1. A tomographic slice of a lympoblastoid cell (a), with the
corresponding manual segmentation (b) and output of an MS-D network
with 100 layers (c).

1 m

Fig. S2. A tomographic slice of a lympoblastoid cell (a), with the
corresponding manual segmentation (b) and output of an MS-D network
with 100 layers (c).
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5 m

5 m

Fig. S3. Example of how an MS-D network can improve the analysis of C. elegans worm embryos by eliminating time-consuming manual segmentation
of the cell membranes. Here, we used an MS-D network with 100 layers and trained using a single manually segmented stack of 190 images from a single
C. elegans embryo that was engineered to express a GPF-tagged cell membrane protein. (Top Row:) To generate the training material for the machine
learning neural network, a stack of 190 images from a 7-cell embryo was first thresholded. The speckles were then removed from each image, and the
gaps in the membranes were filled in manually to reflect the actual cell membrane structure. These 190 manually segmented images were then trained
to generate an algorithm for labeling cell boundaries. (Bottom Row:) The algorithm generated by machine learning was then directly applied to the raw
images of an 86-cell C. elegans embryo to label boundaries for all the cells within the embryo. Attribution for embryo contribution: Uzawa, S., Bian, Q.,
Meyer, B.J., Howard Hughes Medical Institute and Department of Molecular and Cell Biology at U.C. Berkeley
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400 nm

Fig. S4. Example of applying an MS-D network with w = 1 and d = 100 to the “ISBI Challenge: Segmentation of neuronal structures in EM stacks”.
Input images consist of 512× 512 pixel serial section Transmission Electron Microscopy (ssTEM) images of the Drosophila first instar larva ventral nerve
cord (VNC). The goal is to segment neural structures in each image. The challenge dataset consists of 30 training images for which a manual labeling
is provided, and 30 testing images for which the manual labeling is withheld. For training the MS-D network, the 30 available images were augmented
by rotation, reflection, and elastic deformation, and training was stopped after no improvement was observed in the global accuracy for the original, not
augmented, images. In (a), an input image from the training set is shown, with the corresponding output of the MS-D network (b), and manual labeling (c).
An input image from the test set is shown in (d), with the corresponding MS-D network output shown in (e). For more information about the challenge,
see: Arganda-Carreras I, et al. (2015) Crowdsourcing the creation of image segmentation algorithms for connectomics. Frontiers in neuroanatomy 9:142.
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Fig. S5. The computation time of processing a single image with an
MS-D network as a function of the number of rows and columns, for the
application shown in Fig. 8. Results are shown for both inference (i.e. a
forward pass) and training (i.e. backpropagation and gradient computation),
for various numbers of layers. Computation times were measured by taking
the average time of 500 computations using a single GTX 1080 GPU and a
batch size of one. Note that, in our implementation, the required computation
time for larger batches scales linearly with the number of images.
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