Miniature Electrical Stimulator for Hemorrhage Control

Mark R. Brinton*, Member, IEEE, Yossi Mandel*, Roopa Dalal and Daniel Palanker

*These authors contributed equally to this work

Abstract— Non-compressible hemorrhage is currently the most common cause of preventable death in battlefield and in civilian trauma injuries. Tourniquets, specialized wound dressings and hemorrhage-inhibiting biomaterials are not sufficiently effective in arrest of non-compressible hemorrhage and often cause collateral tissue damage. An effective, easy-to-use, portable device is needed to reduce blood loss in trauma patients immediately following injury and to maintain hemorrhage control up to several hours - until the injured is evacuated to a medical facility. We developed a miniature electrical stimulator to induce vascular constriction and thereby reduce hemorrhage. Vasoconstriction of the rat femoral arteries and veins was studied with pulse durations in the range of 1μs to 10ms and repetition rate of 10 Hz. Pulse amplitude of 20V, duration of 1ms and repetition rate of 10Hz were found sufficient to induce rapid constriction down to 31 ± 2% of the initial diameter, which could be maintained throughout a two-hour treatment. Within one minute following treatment termination the artery dilated back to 88 ± 3% of the initial diameter, providing rapid restoration of blood perfusion. Histology indicated no damage to the vessel wall and endothelium 7 days after stimulation. The same treatment reduced the blood loss following complete femoral artery resection by 68 ± 11%, compared to untreated vessels. Very low power consumption during stimulation (<10 mW per 1.6 mm electrode) allows miniaturization of the stimulator for portable battery-powered operation in the field to control the blood loss following vascular trauma.

Index Terms—Electrical stimulation, vasoconstriction, vascular trauma, hemorrhage control, junctional bleeding.

I. INTRODUCTION

Hemorrhage shock is the second leading cause of fatality among those traumatically injured in the United States, accounting for 30-40% of trauma deaths[1]. Hemorrhage control is especially challenging in cases of junctional areas, such as inguinal hemorrhage, and hemorrhage in internal solid organs, such as the liver and spleen. Hemorrhage from these areas cannot be successfully controlled using traditional tourniquets or standard bandages. According to the U.S. military reports, successful implementation of traditional tourniquets significantly reduced hemorrhage morbidity from limb injury, and now hemorrhage not amenable to truncal tourniquets (i.e. non-compressible wounds in joints, cavities and solid organs) is the most common cause of preventable of death [2-4].

Recent military data from U.S. and coalition troops reports that 23% of casualties were potentially survivable, 20% of which died from junctional hemorrhage [3]. Consequently, an efficient method of hemostasis could have prevented these casualties. A device capable of preventing hemorrhage from truncal non-compressible injuries could save an even greater number of lives [4].

Recent efforts to address the problem of non-compressible hemorrhage include use of hemorrhage-inhibiting biomaterials, gauze packing or sophisticated new tourniquets. Biomaterials and biomaterial-enhanced dressings have been proven effective for some locations and severity of injury, but not all [5]. For example, wound dressings enhanced with fibrin, chitosan (HemCon) or poly(N-acetyl glucosamine) have inhibited hemorrhage with high efficacy. However, they are less effective when applied to deep cavity or incompressible wounds [5-7]. Similarly, the QuikClot Combat Gauze, a zeolite-based wound dressing endorsed by the US Army for hemorrhage control not amenable to a tourniquet, and other enhanced wound dressings, are also ineffective in junctional bleeding (i.e. groin, gluteal, axilla, shoulder and others) [1, 3, 5, 8, 9]. In a powdered form biomaterials such as QuikClot granules can be easily poured into deep wounds and conform to irregular surfaces but can cause tissue damage by exothermic reactions, may have local or systemic toxicity and are not biodegradable and therefore must be removed before definitive surgery [5]. WoundStat, a ceramic-based hemostatic powder, was shown to be more effective than QuikClot granules and HemCon dressing in a porcine femoral artery model [10]. Unfortunately, WoundStat was difficult to remove from the wounds and it caused endothelial damage and moderate vein necrosis [10]. Recently, improved control of non-compressible solid organ hemorrhage has been achieved...
using a polyurethane injection. However, this technique can only be used with closed cavity injuries, and tissue necrosis was observed as a result of the pressure increase within the cavity [11]. A new tourniquet, the Combat Ready Clamp (CRoC), approved by the FDA for pre-hospital hemorrhage control, can only be used for inguinal hemorrhage and cannot be applied to the head, neck, abdomen and chest [12, 13]. Animal and cadaver studies indicated the CRoC’s effectiveness, but as of 2012 there was only one anecdotal report of its effective use in patient care, despite hundreds being deployed [13]. A similar clamp targeting the aorta has been proposed to arrest inguinal hemorrhage [14].

In the current study we evaluate a novel method of hemorrhage control, based on electrical stimulation of blood vessels with microsecond pulses [15, 16]. Though vasoconstriction was long reported in response to direct electric current, it was accompanied by tissue damage [17, 18], probably due to excessive heating or electrochemical reactions caused by the charge imbalance. Charge-balanced pulsed electrical stimulation, on the other hand, can avoid irreversible electrochemical reactions and tissue damage at the electrode-tissue interface [19]. Pulsed electrical stimulation of chicken embryo caused vasoconstriction in 10 seconds and thrombosis after 3 minutes [20]. Recent studies using microsecond and millisecond pulses have demonstrated vasoconstriction and reduced bleeding in femoral and mesenteric vessels in rats or in injured liver in rabbits, without tissue damage [15, 16].

In the current paper we describe an effective, easy-to-use, portable device for hemorrhage control, which should help minimize bleeding until the injured is evacuated to a medical facility[21]. We explore the feasibility of providing sustained vasoconstriction for several hours using a portable, battery operated miniature stimulator.

II. METHODS

Based on evaluation of the vasoconstriction thresholds in our previous studies [16] and in current experiments, we elected to design the portable device to operate at 20V due to the following reasons. First, 20V provides vasoconstriction sufficient to reduce vessel diameter by a factor of 3, cross-sectional area by a factor of 9. Second, 20V can be simply and inexpensively supplied using a stack of several 3-V coin batteries, eliminating the need for bulky, power consuming voltage converters. Third, the use of low voltage components and integrated circuits greatly reduce the device size and cost.

A. Animals

Male, wild-type Long Evans rats, aged 50-60 days, were used for this study (Charles River, Wilmington, MA). The average animal weight was 263g. Animals were anesthetized with 75mg/kg Ketamin HCl and 5mg/kg Xylazine. An additional half dose was given every 45 minutes, when necessary. Buprenorphine (0.01mg/kg) and Hartman’s Lactated Ringer Solution (114ml/kg/24hr, 37°C) were administered subcutaneously at the beginning of the experiment for pain control and hydration. Animal experiments were approved by the Stanford Administrative Panel on Laboratory Animal Care.

B. Surgery

With the animal in the supine position the internal body temperature was monitored and held to 37 ± 1°C using a heating pad. The femoral artery was exposed by removing the skin and fascia. Hartman’s Lactated Ringer solution (37°C) dripped onto the surgical site throughout surgery and experiments. After exposure, the vessel was allowed to acclimate for 15 minutes before any experiments were performed.

C. Vessel Stimulation and Data Collection

Stainless steel wires (3N8 purity, EPSI Metals, Ashland, OR) were coated with insulating spray, except for the circular end-face, to create 1.6-mm diameter stainless steel disc electrodes. Since the stimulation target is the blood vessels, the two electrodes spaced 4mm apart were placed with the artery and vein centered between them (Figure 1). Monophasic, anodic pulses were generated using a customized pulse generator. A 10-μF capacitor between the generator and

Fig. 1. (A) Two 1.6-mm diameter electrodes, 4mm separation, were placed across and equidistant from the vessels. Disc electrodes represent the exposed end face of the insulated 1.6-mm diameter (inset). (B) Femoral vessels with arrows indicating the original and the constricted artery widths. The femoral vein (bottom) has a darker lumen than the artery (middle).
one of the electrodes assured charge balance of each pulse cycle. Stimulation waveforms were captured and monitored using an oscilloscope (Tektronix 3034B, Beaverton, OR). Current was calculated from the voltage drop across a 10-Ω series resistor. The effect of pulse duration on vasoconstriction was studied for 1, 10, 100μs and 1 and 10ms pulses of 20-V at 10-Hz repetition rate. Sustained electrical stimulation was applied for 120 minutes using 20-V, 1-ms pulses at 10-Hz repetition rate.

The blood vessel lumen diameters were measured from the images captured with a digital camera (TC202USB-A, Sentech Inc.) using ImageJ software (NIH, Bethesda, MD). The bleeding rate from the arterial injury was measured using ImageJ software (NIH, Bethesda, MD). Using the weight change and knowing the blood density (1060 mg/ml), the collected blood volume was calculated. In the bleeding experiments stimulation was applied with 1-ms pulses at 10-Hz repetition rate using 20 and 100V amplitude. All results are presented as mean ± SEM. Statistical significance was determined using the Student’s t-test.

D. Histology

After stimulation, the skin and fascia were closed using a 6-0 silk suture. After 7 days the vessel stimulation site was once again exposed and 10% buffered formalin was applied topically for 20 minutes. After euthanasia the vessel was dissected and immersed in 10% buffered formalin overnight. The tissue was then dehydrated with a graded series of ethanol, fixed in paraffin, sectioned and stained with hematoxylin and eosin (H&E).

III. RESULTS

A. Effect of Pulse Duration on Vessel Constriction

To explore the effect of pulse duration on vessel constriction, 20-V stimulation pulses were applied for 10 minutes with pulse durations of 1, 10, 100μs and 1 and 10ms at a 10-Hz repetition rate. As shown in Figure 2, no response was observed for 1- and 10-μs durations, but within seconds of applying the 100-μs pulses the artery constricted to 50 ± 6% of the original diameter. The artery further constricted to 30 ± 5% with 1-ms pulses (p=0.01), while the vein only constricted transiently to 86 ± 6%. The 10-ms pulse duration added only transient improvement to arterial response: after initial constriction to 19 ± 1%, the artery slowly dilated back to 28 ± 2%. However, the vein constricted to approximately 60 ± 4%.

B. Sustained Vasoconstriction

Two important characteristics of a hemorrhage control device are its ability to (a) maintain vasoconstriction and prevent blood loss for a few hours, until the patient is evacuated, and (b) rapidly restore the flow when patient arrives at the definitive treatment center. The 20-V, 10-Hz, 1-ms stimulation was able to sustain the constriction of the femoral artery for two hours, which then rapidly recovered to its original diameter after stimulation ended (Figure 3). The artery constricted initially to 31 ± 2% and then gradually dilated to 44 ± 4% during the two hours of stimulation. Interestingly, the vein constricted only transiently to 81 ± 7%, and dilated to 110 ± 6% of the initial normalized diameter during the first 15 minutes. After the end of stimulation the artery recovered to 88 ± 3% of its diameter within one minute. Vessel histology at 24 hours (not shown) and one week after stimulation (Figure 4) did not show any obvious damage caused by the prolonged stimulation.

C. Control of blood loss in severe arterial injury

To assess the rate of blood loss in severe injury of the femoral artery, it was completely cut and the volume of blood lost during 2 minutes was recorded with and without electrical stimulation (n=5 for each group). Fig. 5 shows the bleeding rate (ml/min) averaged over the two-minute collection time. Bleeding rate during 100-V and 20-V stimulation at 10Hz with 1-ms pulses is compared to a control (no stimulation). The 20-V
V stimulation reduced the bleeding rate by more than 3.5 fold from 1.04±0.12 to 0.29±0.08 ml/min (p = 0.0075). The 100-V stimulation reduced the bleeding rate by 9 fold – down to 0.11±0.04 ml/min (p < 0.001).

D. Miniature Stimulator for Hemorrhage Control

To use a hemorrhage control device in the field the apparatus should be small enough to fit into a first aid kit and should allow several hours of battery-powered operation. As a proof of concept of such miniaturization, we designed and fabricated the 11-mm x 23-mm device shown in Figure 6. The stimulator includes a programmable microcontroller (PIC10F202, Microchip), powered with the 3-V supply, which serves as a pulse generator with adjustable duration and repetition rate. The pulse generator employed a NMOS push-pull output stage to deliver the supply voltage (~20V) to the 1.6-mm diameter stainless steel disc electrode. Eight, 3-V Lithium Batteries (CR927, Evergreen), stacked together (9.5-mm diameter, 21.6-mm in length), supplied sufficient voltage to generate pulses of 20.7V. We elected to stimulate with asymmetric charge-balanced pulses to reduce the device size monophasic pulses requires only one +20V power supply. As long as the vessel is equidistant from the two electrodes the vasoconstriction effect will be similar to a biphasic pulse and invariant to electrode polarity. To ensure charge balance, the output was coupled to electrodes via 10-μF coupling capacitor. The recharge time constant was more than 13ms. The rise and fall times (10-90%) of the voltage waveform were 7 and 62μs.
The 20-V, 10-Hz, 1-ms stimulation applied via a bipolar pair of 1.6-mm electrodes resulted in rapid (within seconds) constriction of the rat femoral artery to 31 ± 2% of its diameter, which was maintained throughout a 2-hour period, albeit with slow relaxation to 44 ± 4% by the end of the treatment. Surprisingly, the bleeding rate decreased only by 3.5 fold at these setting, compared to control. One could expect the flow rate decrease at least as a square of the vessel diameter. However, the control vessel also constricts 15% (ATLS class I shock), is associated with less than 4% mortality of 26%. A 3-fold lower volume, i.e. loss of less than 15% (ATLS class I shock), is associated with less than 4% mortality [34]. Though it might be difficult to directly extrapolate the significance of our results to clinical setting, a 3.5 fold decrease in bleeding volume might save many lives.

Stimulation parameters for effective control of bleeding in trauma care will require further investigation in larger animal models and, eventually, in human patients. Practical application of electrical stimulation in large wounds with poor visibility of the vessels will likely require an array of penetrating electrodes integrated with microsensors. Detection of the temperature, conductivity and hemoglobin oxygenation ratio will help localize the source of bleeding and activate the electrodes proximal to that location. Alternatively, implantable devices must be obtained from the ruptured vessel. An alternative mechanism of the reduction in blood loss was suggested to be caused by blood clotting due to endothelial cells electroporation [15, 25]. However, it is unlikely to play a role in the current study, given the lack of the endothelial cell damage upon histological examination.

The mechanism of vasoconstriction in response to electrical stimulation involves activation of sympathetic nerve fibers embodied in the vessel wall and the release of noradrenaline, which binds to the α1-adrenoreceptor [26-30]. Stimulation of the rat mesenteric artery with 5-ms pulses of 15-30V at 10-50Hz, applied via bipolar electrodes, was shown to induce vasoconstriction solely by engaging the sympathetic fibers [28]. Similar to our results, they noted rapid dilation within a few seconds of the treatment termination and slight relaxation of the constricted vessel after 30 minutes of sustained stimulation. Importantly, rapid dilation of the vessel restores the blood flow once a patient is stabilized, which should help prevent unnecessary ischemia and associated tissue damage during definitive surgery. Possible direct engagement of the smooth muscle cells of the vessels’ walls at higher voltage stimulation requires further investigation.

Despite a significant vasoconstriction of the arteries in response to 20-V, 1-ms waveforms, the veins responded weaker at these settings and would likely require stronger stimuli. Previous studies indicate that strong vein constriction occurs at higher voltage (60V with 1ms) [16, 31] or longer pulse durations (20V with 10ms in the current study). At low voltage, veins exhibit short constriction and slow dilatory response, observed in our study and in previous experiments with rabbit portal vein (15-V, 1-ms pulses at 10Hz) [32]. Vein relaxation has been linked to the release of non-adrenergic non-cholinergic neurotransmitters, such as nitric oxide and ATP [32, 33]. Despite weak venous response, constricted arteries will minimize blood loss through damaged veins indirectly. If needed, higher voltage or longer pulse durations can be used to achieve significant vein constriction [16].

Importantly, electrical stimulation provided sustained arterial constriction for two hours with no apparent damage to vessel walls or endothelium, thus leaving the tissues well-preserved for the following surgery and therapy.

Severe loss of blood, defined as more than 40% of total blood volume, corresponding to the ATLS (Advanced Trauma Life Support) shock class IV, is associated with mean mortality of 26%. A 3-fold lower volume, i.e. loss of less than 15% (ATLS class I shock), is associated with less than 4% mortality [34]. Though it might be difficult to directly extrapolate the significance of our results to clinical setting, a 3.5 fold decrease in bleeding volume might save many lives.
microstimulators could be injected into the bleeding tissue and powered wirelessly to induce local vasoconstriction [35]. Since wireless power transmission is rather inefficient, the transmitter will likely be bulky and require a large power supply. In addition, lack of visibility inside the wound will still require multiple electrodes and sensors to activate the ones proximal to the bleeding site.

V. CONCLUSIONS

Pulsed electrical stimulation of the vasculature by a miniature battery-operated generator can constrict the femoral artery in rats within seconds, sustain constriction for multiple hours, and then release the vessel within a minute after termination of the stimulation. Extent of constriction can be controlled by pulse amplitude, duration and repetition rate. The blood loss from injured femoral arteries in rats can be reduced by more than 3 fold with 20-V pulses, and more than 9 times with pulses of 100V. Further experiments in larger animals are required to optimize the stimulation protocol and evaluate the potential of this technology for human use.

REFERENCES


Mark Brinton (S’13) is a PhD candidate in Electrical Engineering at Stanford University and a National Defense Science and Engineering Graduate Fellow. He completed his BS and MS in 2010 in Electrical Engineering from the University of Utah, Salt Lake City, Utah, USA. During his MS, he modeled and studied ultrasonic thermal therapy to induce selective cell death. His current research interests include electrical stimulation of peripheral nerves and muscles, specifically for vasoconstriction and gland secretion.

Yossi Mandel is an Assistant Professor in the Faculty of Life Sciences at Bar Ilan University, Israel. He received his MD in 1992 from the Hebrew University of Jerusalem, Israel and he is a board-certified ophthalmic surgeon. He completed his PhD in Bioengineering in 2011 at the Hebrew University of Jerusalem. He studied irreversible electroporation and its application to uveal melanoma. During 2012-2013 he was a post doctoral fellow in the laboratory of Dr. Palanker at Stanford University. Dr. Mandel studies brain plasticity and training in artificial vision; restoration of sight with neuronal stem cells; electrical stimulation of the sympathetic nervous system and various microfluidic applications in ophthalmology.

Daniel Palanker is an Associate Professor in the Department of Ophthalmology and in the Hansen Experimental Physics Laboratory at Stanford University. He received PhD in Applied Physics in 1994 from the Hebrew University of Jerusalem, Israel. Dr. Palanker studies interactions of electric field with biological cells and tissues in a broad range of frequencies: from quasi-static to optical, and develops their diagnostic, therapeutic and prosthetic applications, primarily in ophthalmology. Several of his developments are in clinical practice world-wide: Pulsed Electron Avalanche Knife (PEAK PlasmaBlade™), Patterned Scanning Laser Photocoagulator (PASCAL™), and OCT-guided Laser System for Cataract Surgery (Catalys™). In addition to laser-tissue interactions, retinal phototherapy and associated neural plasticity, Dr. Palanker is working on electro-neural interfaces, including Retinal Prosthesis, electronic control of vasculature and of the glands.